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1 Introduction15

Consider the generalized complementarity problem corresponding to f and g, denoted by16

GCP( f, g), which is to find a vector x∗ ∈ ℜn such that17

f (x∗) ≥ 0, g(x∗) ≥ 0 and 〈 f (x∗), g(x∗)〉 = 0 (1.1)18

where f : ℜn → ℜn and g : ℜn → ℜn are given C1 functions.19

Many researchers have studied the above formulation of GCP( f, g), its numerical methods,20

and applications. See Hyer et al. (1997), Isac (1992), Noor (1993) and the references cited21

therein. Also GCP( f, g) covers some related problems studied in the literature in the last22

decades; for example, GCP( f, g) reduces to the nonlinear complementarity problem NCP( f )23

when g(x) = x . By taking in NCP( f ) f (x) = Mx +q with M ∈ Rn×n and a vector q ∈ Rn ,24

then NCP( f ) is called a linear complementarity problem LCP(M, q). Also, GCP( f, g) is25

known as the quasi/implicit complementarity problem when g(x) = x − W (x) with some26

W : Rn → Rn , see, e.g., Isac (1992), Noor (1988), Pang (1981).27

The importance of these problems in operations research, optimization, engineering sci-28

ences, economics and other areas has been well documented in the literature, see e.g., Cottle29

et al. (1992), Cottle et al. (1980), Ferris and Pang (1997a, b), Harker and Pang (1990), Di30

Pillo and Giannessi (1996), and the references therein.31

1.1 Example applications32

1.1.1 Traffic equilibrium problem with nonadditive costs33

The study of traffic equilibrium problem (TEP) has witnessed a growing amount of research34

attentions recently as researchers have presented various formulations in which many dif-35

ferent assumptions are made to represent the real traffic conditions (see., e.g., Aashtiani and36

Magnanti 1981; Chen et al. 1999). One of the standard assumptions in these studies is the37

additivity of route cost. That is, the route cost is simply the sum of the link costs on that38

route. There are many studies about TEP with additive route costs assumptions, a detailed39

overview can refer to Patriksson (1994, 2004), Sheffi (1985).40

There are many situations, however, where this additivity assumption on the route costs is41

inappropriate. In Gabriel and Bernstein (1997), the authors discussed some of the situations42

where nonadditive route costs occur. They claimed that almost all toll and fare schemes being43

implemented around the world are nonadditive. For example, the different pricing policies44

such as congestion pricing and the collection of emission fees add to the nonadditivity of travel45

costs. Moreover, different individuals have different valuations of time, which contributes to46

the nonadditivity of route costs. Although nonadditivity is important in presenting a more47

realistic view of the traffic situation, it causes a difficulty in the analysis and computation of48

an equilibrium, which are usually done by formulating the TEP as the variational inequality49

problem (VIP). Special cases of the VIP include the nonlinear complementarity problem50

(NCP). The TEP with additive costs may be formulated as a monotone VIP (see, Facchinei51

and Pang 2003). In Lo and Chen (2000), the authors studied a special case of the TEP with52

nonadditive cost functions. In particular, under the assumption the route cost is the sum of the53

travel time and an additional charge which is route specific (a specific travel cost, possibly in54

the form of toll, is added only to a particular route in the network), they introduced a route-55

specific cost structure where this additional cost is only incurred by travelers on that route.56

They formulated TEP as a monotone NCP. Under other assumptions, TEP formulated as57

generalized complementarity problems see, e.g., Agdeppa et al. (2007), Xu and Gao (2011).58
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1.1.2 American options pricing59

The real options approach has become a workhorse in modern economics and finance. How-60

ever, many real options studies have focused on relatively simple option models. While these61

types of models have been successful in literature, real problems may involve more complex62

and realistic situations.63

American options are contracts allowing the holder the right to sell (buy) an asset at a64

certain price at any time until a prespecified future date. The pricing of American options65

plays an important role both in theory and in real derivative markets. The American option66

pricing problem can be posed either as a linear complementarity problem (LCP) or a free67

boundary value problem (Company et al. 2014; McKean 1965; van Moerbeke 1976). These68

two different formulations have led to different methods for solving American options. The69

most algebraic approach of LCPs for American option pricing can be found in Feng et al.70

(2011), Huang and Pang (1998), Wilmott et al. (1995) and the references therein.71

Most options traded on option exchanges worldwide and a large fraction of options traded72

over-the-counter are of the American style. These include options on stocks of individual com-73

panies, stock indexes, foreign currencies, interest rates, commodities, and energy. Options74

books of a large financial institution may contain options on thousands of different underly-75

ing assets, and perhaps several dozen different contracts (with expiration dates ranging from76

days to years, and different strike prices). As the underlying asset prices change throughout77

the trading day, the options prices change as well. Re-pricing a large options book in real78

time may thus require re-computing thousands of option prices quickly. For such large scale79

applications, fast numerical algorithms are essential. When the prices of underlying assets are80

assumed to follow a diffusion process, such as in the classical Black-Scholes-Merton model81

based on the geometric Brownian motion process, or in extensions such as Heston’s sto-82

chastic volatility model, the pricing function of an American-style option solves a parabolic83

variational inequality. After this system is discretized in space and time, it yields a linear84

complementarity problem, which must be solved at each time step. Thus, the fast solution of85

linear complementarity problems (LCPs) is of great practical importance in computational86

finance. The standard treatment of LCPs for American options pricing can be found, for87

example, in Wilmott et al. (1995) for the simple case of the Black-Scholes-Merton model88

and in Huang and Pang (1998), Feng et al. (2011), Wilmott et al. (1995) and the references89

therein for several more complicated settings.90

1.2 Motivation and outline91

In the context of nonlinear complementarity problem (NCP), one of the well-known92

approaches to solve the NCP is to reformulate the original NCP as an unconstrained min-93

imization problem whose global minima coincide with the solution of the NCP and the94

objective function of this unconstrained minimization problem is called a merit function for95

the NCP, (Facchinei and Kanzow 1997; Facchinei and Soares 1997; Fischer 1998, 1997;96

Geiger and Kanzow 1996; Jiang 1996; Kanzow 1996; Luca et al. 1996; Mangasarian and97

Solodov 1993; Yamashita and Fukushima 1995; Jein-shan Chen 2007; Chen 2006; Chen and98

Pan 2008; Chen et al. 2011). Most of the merit functions in these references are based on99

the square Fischer-Burmeister function (Facchinei and Soares 1997; Fischer 1998; Geiger100

and Kanzow 1996; Jiang 1996; Kanzow 1996; Luca et al. 1996), the implicit Lagrangian101

function (Jiang 1996; Mangasarian and Solodov 1993; Yamashita and Fukushima 1995),102

and generalized Fischer-Burmeister (Jein-shan Chen 2007; Chen 2006; Chen and Pan 2008;103

Chen et al. 2011). For other merit functions on the basis of various NCP functions, we refer104
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the interested reader to Galántai (2012) and the references therein. Most of these methods105

rely on the a so-called NCP function. In this paper, we follow this approach for generalized106

complementarity problem GCP( f, g) based on the generalized Fischer-Burmeister function.107

But first, we need to define GCP functions. A function φ : R2 → R is called a NCP function108

if it satisfies109

φ(a, b) = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0.110

We call111

�(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

φ( f1(x), g1(x))
...

φ( fi (x), gi (x))
...

φ( fn(x), gn(x))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1.2)112

a GCP function for GCP( f, g). Solving for �(x) = 0 is equivalent to finding the solution to113

the original problem. Then the function � : Rn → R+ defined by114

�(x) :=
1

2
‖�(x)‖2. (1.3)115

is a merit function for the GCP, i.e., the GCP can be recast as an unconstrained minimization:116

min
x∈Rn

�(x). (1.4)117

1.3 Example of GCP functions118

Over the past two decades, a variety of NCP functions have been studied, see Galántai (2012)119

and references therein. Among which, some families of NCP functions (Chen and Pan 2008;120

Jein-shan Chen 2007; Hu et al. 2009) based on the Fischer-Burmeister function with p-norm121

are proposed. We give some examples of GCP functions based on these NCP functions.1 122

Example 1 Suppose that f and g are C1. Consider the following GCP function which is the123

basis of124

φp(a, b) := ‖(a, b)‖p − (a + b) (1.5)125

where p is any fixed real number in the interval (1,+∞) and ‖(a, b)‖p denotes the p-norm126

of (a, b), i.e., ‖(a, b)‖p = p
√

|a|p + |b|p . The function φp was noted by Tseng (1996). For127

further study on this family of NCP functions, see Chen and Pan (2008).128

The i th component of GCP function �(x) in (1.2) is defined as129

�i (x) = φp( fi (x), gi (x)) := fi (x) + gi (x) − ‖( fi (x), gi (x))‖p130

Example 2 Consider the following GCP function which is based on proposed family of NCP131

functions (Chen and Pan 2008) relying on φp in (1.5) and some introduced NCP functions132

in Jein-shan Chen (2007):133

φ1(a, b) := φp(a, b) + αa+b+, α > 0 (1.6)134

where a+ is defined as max(a, 0) and the i th component of GCP function �(x) in (1.2) is135

defined as136

�i (x) = φ1( fi (x), gi (x)) := φp( fi (x), gi (x)) + α fi (x)+ gi (x)+, α > 0.137
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Example 3 The following GCP function is based on NCP function in Chen and Pan (2008)138

φ2(a, b) := φp(a, b) + α(ab)+, α > 0. (1.7)139

We define the i th component of GCP function �(x) in (1.2) as140

�i (x) = φ2( fi (x), gi (x)) := φp( fi (x), gi (x)) + α( fi (x) gi (x))+, α > 0.141

Example 4 The following GCP function is based on NCP function in Chen and Pan (2008)142

φ3(a, b) :=
√

[φp(a, b)]2 + α(a+b+)2, α > 0. (1.8)143

We define the i th component of GCP function �(x) in (1.2) as144

�i (x) = φ3( fi (x), gi (x)) :=
√

[φp( fi (x), gi (x))]2 + α( fi (x)+ gi (x)+)2, α > 0.145

Example 5 We consider the following GCP function based on the NCP function in Chen and146

Pan (2008)147

φ4(a, b) :=
√

[φp(a, b)]2 + α[(ab)+]2, α > 0. (1.9)148

The i th component of GCP function �(x) in (1.2) is defined as149

�i (x) = φ4( fi (x), gi (x)) :=
√

[φp( fi (x), gi (x))]2 + α[( fi (x) gi (x))+]2, α > 0.150

Example 6 We consider the following GCP function which is based on another family of151

NCP functions (Hu et al. 2009)152

φθ,p(a, b) := a + b − p
√

θ(|a|p + |b|p) + (1 − θ)|a − b|p, θ ∈ (0, 1]. (1.10)153

When θ = 1, (1.10) will reduce to (1.5), i.e.,154

φ1,p(a, b) = φp(a, b) = a + b − ‖(a, b)‖p.155

The i th component of GCP function �(x) in (1.2) is defined as156

�i (x) = φθ,p( fi (x), gi (x))157

:= fi (x) + gi (x) − p
√

θ(| fi (x)|p + |gi (x)|p) + (1 − θ)| fi (x) − gi (x)|p,158

θ ∈ (0, 1].159

Example 7 Based on (1.10) and NCP function in Chen and Pan (2008),160

φα,θ,p(a, b) :=
α

2
[(ab)+]2 +

1

2
[φθ,p(a, b)]2, α ≥ 0 (1.11)161

where φα,θ,p(a, b) : R2 → R+, we consider the i th component of GCP function �(x) in162

(1.2) as163

φα,θ,p( fi (x), gi (x)) :=
α

2
[( fi (x) gi (x))+]2 +

1

2
[φθ,p( fi (x), gi (x))]2, α ≥ 0.164

In this article, starting with C1 functions f and g, we consider a generalized complemen-165

tarity problem GCP( f, g) based on the generalized Fischer-Burmeister function. We consider166

a GCP function � : Rn → Rn associated with GCP( f, g) and its merit function � so that167

x̄ solves GCP( f, g) ⇔ �(x̄) = 0 ⇔ �(x̄) = 0.168
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In this paper, we show how, under appropriate regularity and strictly regularity conditions,169

finding local/global minimum of� (or a ‘stationary point’ of�) leads to a solution of the given170

generalized complementarity problem. Further, we show that how our results unify/extend171

various similar results proved in the literature for nonlinear complementarity problem when172

the underlying function is C1. Moreover, we suggest a descent algorithm for GCP( f, g)173

and prove a result on the global convergence of a descent algorithm for solving generalized174

complementarity problem. Finally, we give some preliminary numerical results.175

2 Preliminaries176

Few words about notation. Throughout the paper, vector inequalities are interpreted com-177

ponentwise. Vectors in Rn are regarded as column vectors. The inner-product between two178

vectors x and y in Rn is denoted by either xT y or 〈x, y〉. For a matrix A, the i th row of A179

is denoted by Ai . For a differentiable function f : Rn → Rm , the Jacobian matrix of f at180

x̄ is denoted by ∇ f (x̄). The p-norm of x is denoted ||x ||p and the Euclidean norm of x is181

denoted by ||x ||. ∇aφ(a, b) and ∇bφ(a, b) denote the partial derivatives of φ with respect to182

the first variable and the second variable, respectively.183

The author in Tawhid (2008) introduced the concepts of relatively monotonicity, P0-184

property and their variants for functions to minimize nonsmooth generalized complementarity185

problem under certain conditions.186

Now we recall the following definitions from Tawhid (2008).187

Definition 2.1 For functions f, g : ℜn → ℜn , we say that f and g are:188

(a) Relatively monotone if189

〈 f (x) − f (y), g(x) − g(y)〉 ≥ 0 for all x, y ∈ ℜn .190

(b) Relatively strictly monotone if191

〈 f (x) − f (y), g(x) − g(y)〉 > 0 for all x, y ∈ ℜn .192

(c) Relatively strongly monotone if there exists a constant µ > 0 such that193

〈 f (x) − f (y), g(x) − g(y)〉 ≥ µ‖x − y‖2 for all x, y ∈ ℜn .194

(d) Relatively P0(P)-functions if for any x �= y in ℜn ,195

max
i :xi �=yi

[ f (x) − f (y)]i [g(x) − g(y)]i ≥ (>)0.196

(e) Relatively uniform P-functions if there exists a constant η > 0 such that for any x, y ∈197

ℜn ,198

max
1≤i≤n

[ f (x) − f (y)]i [g(x) − g(y)]i ≥ η‖x − y‖2.199

Note that relatively strongly monotone functions are relatively strictly monotone, and rela-200

tively strictly monotone functions are relatively monotone. Also we note that every relatively201

monotone (strictly monotone) functions are relatively P0(P)-functions.202

The following Lemma (Tawhid 2008) is needed in our subsequent analysis.203

Lemma 2.1 Suppose that f, g : ℜn → ℜn and g is one-to-one and onto. Define h : ℜn →204

ℜn where h := f ◦ g−1. The following hold:2 205

123

Journal: 40314 Article No.: 0328 TYPESET DISK LE CP Disp.:2016/2/26 Pages: 26 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

A descent algorithm for generalized complementarity problems. . .

(a) f and g are relatively (strictly) monotone if and only if h is (strictly) monotone.206

(b) If g is Lipschitz continuous, and f and g are relatively strongly monotone then h is207

strongly monotone.208

(c) f and g are relatively P0(P)-functions if and only if h is P0(P)-function.209

(d) If g is Lipschitz continuous, and f and g are relatively uniform P-functions, then h is210

uniform P-function.211

The following is a well-known result, see Harker and Pang (1990).212

Proposition 2.1 Let f : Rn → Rn and f is C1 function,213

(a) f is monotone if and only if ∇ f (x) is a positive semi-definite Jacobian for all x ∈ Rn .214

(b) f is strictly monotone if ∇ f (x) is a positive definite Jacobian for all x ∈ Rn .215

Remark. Note that the converse of part (b) in Proposition 2.1 is not true in general.216

3 Minimizing the merit function217

Our objective in this article is to study GCP functions based on the NCP functions defined218

in Sect. 1.2. For given C1- functions f : Rn → Rn and g : Rn → Rn , we consider the219

associated GCP function � and the corresponding merit function220

�∗(x̄) :=
1

2
‖�∗(x̄)‖2 =

n
∑

i=1

ψ∗( fi (x̄), gi (x̄)), (3.1)221

where222

�∗(x̄) :=

⎛

⎜

⎝

φ∗( f1(x̄), g1(x̄))
...

φ∗( fn(x̄), gn(x̄))

⎞

⎟

⎠
, (3.2)223

and224

ψ∗(a, b) :=
1

2
φ∗(a, b)2, (3.3)225

with ∗ ∈ {{1, p}, 1, 2, 3, 4, {θ, p}}.226

Now we let ψα,θ,p(a, b) = φα,θ,p(a, b) and denote the corresponding merit function as227

�α,θ,p(x) :=
n

∑

i=1

φα,θ,p( fi (x), gi (x)) =
n

∑

i=1

ψα,θ,p( fi (x), gi (x)). (3.4)228

It should be recalled that229

�∗(x̄) = 0 ⇔ �∗(x̄) = 0 ⇔ bar x solves GCP( f, g).230

The authors in Gu and Tawhid (2014) used the concepts of relatively P0(P)-functions,231

relatively monotone, relatively strictly monotone in Definition 2.1 and the result in Lemma232

2.1 to find the local/global minimum of �∗ (or a ‘stationary point’ of �∗) which leads to a233

solution of the given generalized complementarity problem.234

To weaken the hypotheses in the results in Gu and Tawhid (2014), we need to generalize235

the concept of a regular (strictly regular) point in Facchinei and Kanzow (1997), Ferris and236

Ralph (1995), Luca et al. (1996).237
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For given continuously differentiable functions f, g, and x∗ ∈ ℜn , we define the following238

index subsets of I = {1, 2, . . . , n} :239

C(x∗) := {i ∈ I : fi (x∗) ≥ 0, gi (x∗) ≥ 0, fi (x∗)gi (x∗) = 0}, R(x∗) := I\C(x∗),
P(x∗) := {i ∈ R(x∗) : fi (x∗) > 0, gi (x∗) > 0}, N (x∗) := R(x∗)\P(x∗).

240

Definition 3.1 Consider f, g, x∗ and the index sets as above. Suppose that f and g are241

continuously differentiable and ∇g(x∗) is a nonsingular matrix. A vector x∗ ∈ ℜn is called242

relatively regular (strictly relatively regular) with respect f and g if for every nonzero vector243

z ∈ ℜn such that244

zC = 0, zP > 0, zN < 0, (3.5)245

there exists a nonzero vector s ∈ ℜn such that246

sC = 0, sP ≥ 0, sN ≤ 0, and sT (∇g(x∗)−1∇ f (x∗))z ≥ 0(> 0). (3.6)247

Theorem 3.1 Suppose f : ℜn → ℜn and g : ℜn → ℜn are continuously differentiable.248

Assume ∇g(x) is nonsingular for all x ∈ Rn . Suppose �∗ is a GCP function of f and g249

satisfying the following conditions:250

i ∈ P ⇒ �i (x∗) > 0,

i ∈ N ⇒ �i (x∗) < 0,

i ∈ C ⇒ �i (x∗) = 0.

(3.7)251

Suppose �∗ := 1
2
‖�∗‖2 satisfies:252

(i) �∗ is continuously differentiable,253

(ii) (∇aψ∗( fi (x), gi (x))) > 0, (∇bψ∗( fi (x), gi (x))) > 0, whenever �∗i (x) > 0;254

and (∇aψ∗( fi (x), gi (x))) < 0, (∇bψ∗( fi (x), gi (x))) < 0, whenever �∗i (x) < 0,255

(iii) ∇aψ∗( fi (x), gi (x)) = ∇bψ∗( fi (x), gi (x)) = 0 whenever �∗i (x) = 0.256

Suppose that x∗ is a relatively regular point of f and g, then x∗ is a stationary point of �∗257

if and only if x∗ is a solution of GC P( f, g).258

Proof “⇐” Suppose that x∗ is a solution of GC P( f, g), then �∗(x∗) = 0, and from the259

property (iii), we have260

∇�∗(x∗) =
n

∑

n=1

(∇ fi (x∗)∇aψ∗( fi (x), gi (x)) + ∇gi (x∗)∇bψ∗( fi (x), gi (x))) = 0,261

that is, x∗ is a stationary point of �∗.262

“⇒” Suppose that x∗ is a stationary point of �, i.e.,263

∇�∗(x∗) =
n

∑

n=1

(∇ fi (x∗)∇aψ∗( fi (x), gi (x)) + ∇gi (x∗)∇bψ∗( fi (x), gi (x))) = 0264

then by denoting265

∇aψ∗(F(x∗), G(x∗)) = (. . . ,∇aψ∗(Fi (x∗), Gi (x∗)), . . .)T ,266

and similarly,267

∇bψ∗(F(x∗), G(x∗)) = (. . . ,∇bψ∗(Fi (x∗), Gi (x∗)), . . .)T ,268

123

Journal: 40314 Article No.: 0328 TYPESET DISK LE CP Disp.:2016/2/26 Pages: 26 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

A descent algorithm for generalized complementarity problems. . .

we have269

∇F(x∗)∇aψ∗(F(∗, G(x∗)) + G(x∗)∇bψ∗(F(∗, G(x∗)) = 0. (3.8)270

Now multiply by ∇G(x∗)−1,271

∇G(x∗)−1∇F(x∗)∇aψ∗(F(x∗), G(x∗)) + ∇bψ∗(F(x∗), G(x∗)) = 0. (3.9)272

Denote z := ∇aψ∗(F(x∗), G(x∗)) and y := ∇bψ∗(F(x∗), G(x∗)), then for any s ∈ ℜn , we273

have274

sT ∇G(x∗)−1∇F(x∗)z + sT y = 0. (3.10)275

We want to prove that x∗ is a solution of GC P( f, g), that is, �(x∗) = 0. Suppose not, i.e.,276

�(x∗) �= 0, then R(x∗) �= ∅ and zC = 0, zP > 0, zN < 0. Since x∗ is a relatively regular277

point, the property (ii) holds, thus y and z have the same sign, by taking s satisfying (3.6),278

we have279

sT ∇G(x∗)−1∇F(x∗)z ≥ 0 and sT y > 0, (3.11)280

which contradicts (3.10). The proof is complete. ⊓⊔281

Theorem 3.2 Suppose f : ℜn → ℜn and g : ℜn → ℜn are continuously differentiable.282

Suppose �∗ is a GCP function of f and g satisfying the following conditions:283

i ∈ P ⇒ �∗i (x̄) > 0,

i ∈ N ⇒ �∗i (x̄) < 0,

i ∈ C ⇒ �∗i (x̄) = 0.

(3.12)284

Suppose �∗ := 1
2
‖�∗‖2 satisfies:285

(i) �∗ is continuously differentiable,286

(ii) ∇aψ∗( fi (x), gi (x)) > 0,∇bψ∗( fi (x), gi (x)) ≥ 0, whenever �∗i (x) > 0;287

and ∇aψ∗( fi (x), gi (x)) < 0,∇bψ∗( fi (x), gi (x)) ≤ 0, whenever �∗i (x) < 0,288

(iii) ∇aψ∗( fi (x), gi (x)) = ∇bψ∗( fi (x), gi (x)) = 0 whenever �∗i (x) = 0.289

Suppose that x∗ is a strictly regular point of f and g, then x∗ is a stationary point of �∗ if290

and only if x∗ is a solution of GC P( f, g).291

Proof By a similar proof with Theorem 3.6, we can easily get the results. ⊓⊔292

Remark 3.1 Since GCP functions in (1.5)–(1.11) satisfy the assumptions of Theorems 3.1293

and 3.2, therefore the results of Theorems 3.1 and 3.2 are valid for these GCP functions, i.e.,294

Theorem 3.1 and Theorem 3.2 are applicable to GCP functions in (1.5)–(1.11).295

4 A descent direction algorithm296

For the context nonlinear complementarity problem NCP, when f is C1, Yamashita and297

Fukushima (1995), Geiger and Kanzow (1996), Chen and Pan (2008) proposed a descent298

method for minimizing the implicit Lagrangian function, square Fischer-Burmeister function299

and generalized Fischer-Burmeister, respectively, which does not require to compute the300

derivative of f and �.301

In this section, we present a descent algorithm for generalized complementarity prob-302

lem based on the generalized Fischer-Burmeister function and its related merit function. In303

addition, we prove the global convergence of the algorithm. We assume that f and g are304

continuously differentiable and ∀x ∈ ℜn , ∇g(x) is a nonsingular matrix.305
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Algorithm 4.1 Step 0 Given a GCP function �∗, and x0 ∈ ℜn . Choose σ ∈ (0, 1) and306

β ∈ (0, 1). Set k := 1.307

Step 1: If �∗(xk) = 0, then stop, otherwise go to Step 2.308

Step 2: Consider the search direction as309

dk := −(∇g(xk)−1)T ∇aψ∗( f (xk), g(xk)) (4.1)310

Step 3: Compute a step-size βmk where mk is the smallest nonnegative integer m satisfying311

the Armijo-type condition:312

�∗(xk + βmdk) ≤ (1 − σβ2m)�∗(xk). (4.2)313

Step 4: Set xk+1 := xk + βmk dk , k := k + 1 and go to Step 1.314

By the following Lemma, dk is a descent direction of �∗(xk) at xk when ∇g(x)−1 ∇ f (x)315

is a positive semi-definite matrix.316

Lemma 4.1 Let f and g be continuously differentiable. Suppose that ∀x ∈ ℜn , ∇g(x) is a317

nonsingular matrix and ∇g(x)−1 ∇ f (x) is a positive semi-definite matrix.318

Then as long as xk is not a solution of the GCP, the direction defined as (4.1) satisfies the319

descent condition:320

∇�∗(xk)T dk < 0.321

Proof Assume that xk not a solution of the GCP, then there exists a index subset U ⊆322

{1, 2, . . . , n}, such that �∗i (xk) �= 0,∀i ∈ U . By Proposition 3.1 in Gu and Tawhid (2014),323

we have ∇aψ∗( fi (x), gi (x))∇bψ∗( fi (x), gi (x)) > 0,∀i ∈ U , then324

∇�∗(xk)T dk = −(∇ f (xk)∇aψ∗( f (xk), g(xk))325

+∇g(xk)∇bψ∗( f (xk), g(xk)))T (∇g(xk)−1)T ∇aψ∗( f (xk), g(xk))326

= −∇aψ∗( f (xk), g(xk))T [∇g(xk)
−1 ∇ f (xk)]

T
∇aψ∗( f (xk), g(xk))327

−
n

∑

i=1

∇aψ∗( fi (x), gi (x))∇bψ∗( fi (x), gi (x))328

≤ −
∑

i∈U

∇aψ∗( fi (x), gi (x))∇bψ∗( fi (x), gi (x))329

< 0. (4.3)330

Note that we get the first inequality because ∇g(x)−1 ∇ f (x) is a positive semi-definite331

matrix. The proof is complete. ⊓⊔332

Remark 4.1 It is known that if the map is monotone, its Jacobian is positive semi-definite333

(see, e.g., Ortega and Rheinboldt 1970, p. 142). In view of Lemma 2.1 and Proposition 2.1,334

we get the following Corollary, dk is a descent direction of �∗(xk) at xk under monotonicity335

assumptions.336

In view of Part (a) in Lemma 2.1, Part (a) in Proposition 2.1 and Lemma 4.1, we have the337

following result.338

Corollary 4.1 Let f and g be continuously differentiable. Suppose that ∀x ∈ ℜn , ∇g(x) is339

a nonsingular matrix. Assume f and g are relatively monotone.340

Then as long as xk is not a solution of the GCP, the direction defined as 4.1 satisfies the341

descent condition:342

∇�∗(xk)T dk < 0.343
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Lemma 4.2 Let f and g be continuously differentiable. Suppose that ∀x ∈ ℜn , ∇g(x) is344

a nonsingular matrix and ∇g(x)−1 ∇ f (x) is a positive semi-definite matrix. Then Step 3 is345

well defined.346

Proof It is sufficient to show that there exists a nonnegative integer mk in Step 3 of Algorithm347

4.1 whenever xk is not a solution. Assume that the conclusion does not hold. Then for any348

m > 0,349

�∗(xk + βmdk) − �∗(xk) > −σβ2m�∗(xk).350

Dividing by βm on two sides and taking m → +∞, then we have351

〈∇�∗(xk), dk〉 ≥ 0.352

This contradicts Lemma 4.1. Hence, we can find an integer mk in Step 3. ⊓⊔353

From Lemmas 4.1 and 4.2, we have Algorithm 4.1 is well defined. By Remark 4.1, we354

have the following.355

Corollary 4.2 Let f and g be continuously differentiable. Suppose that ∀x ∈ ℜn , ∇g(x) is356

a nonsingular matrix. Assume f and g are relatively monotone. Then Step 3 is well defined.357

The next Proposition is a global convergence result for Algorithm 4.1.358

Proposition 4.1 Let f and g be continuously differentiable. Assume the assumptions359

of Theorem 3.1 are satisfied. Suppose that ∀x ∈ ℜn , ∇g(x) is a nonsingular matrix360

and ∇g(x)−1 ∇ f (x) is a positive semi-definite matrix. Further assume that the level set361

L(�, γ ) := {x ∈ ℜn : �∗(x) ≤ γ } is bounded for any γ . Then the sequence {xk} gener-362

ated by Algorithm 4.1 has at least one accumulation point and any accumulation point is a363

solution of the GCP.364

Proof We first show that the sequence {xk} generated by Algorithm 4.1 has at least one365

accumulation point. By the descent property of Algorithm 4.1, the sequence {�(xk)} is366

decreasing. Since the level set L(�∗, �∗(x0)) is bounded, then we have the sequence {xk}367

is bounded. Thus {xk} has at least one accumulation point.368

Next, we prove that every accumulation point is a solution of the GCP. Let x∗ be an369

arbitrary accumulation point of the generated sequence {xk}. Then there exists a subsequence,370

for simplicity, denoted by {xk} which converges to x∗. Since �∗ and g are continuously371

differentiable, ∇�∗(·) and ∇g(·) are continuous. Thus372

dk → d∗ as k → ∞. Now in our proof, we will consider two cases:373

Case (a): If there exists a constant β̄ such that βmk ≥ β̄ > 0 for all k ∈ {1, 2, . . .}. Then,374

from step 3, we have for all k ∈ {1, 2, . . .},375

0 ≤ �∗(xk+1) ≤ (1 − σ β̄2)�∗(xk)376

≤ (1 − σ β̄2)k�∗(x0)377

→ 0,378

by σ ∈ (0, 1) and β̄ ∈ (0, 1). Thus, we have �∗(x∗) = 0 which implies x∗ is a solution of379

GCP.380

Case (b): We consider the other case where there exists a further subsequence such that381

βmk → 0. From Step 3, we have382

�∗(xk + βmk−1dk) − �∗(xk) > −σβ2mk−1�∗(xk).383
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Dividing both sides by βmk−1 and passing to the limit on the subsequence, we get384

〈∇�∗(x∗), d∗〉 ≥ 0,385

which implies x∗ is a solution of GCP. ⊓⊔386

In view of Remark 4.1, we have the following.387

Corollary 4.3 Let f and g be continuously differentiable. Suppose that ∀x ∈ ℜn , ∇g(x)388

is a nonsingular matrix. Assume f and g are relatively monotone. Further assume that the389

level set L(�∗, γ ) := {x ∈ ℜn : �∗(x) ≤ γ } is bounded for any γ . Then the sequence {xk}390

generated by Algorithm 4.1 has at least one accumulation point and any accumulation point391

is a solution of the GCP.392

5 Numerical experiments393

In the following, we implement Algorithm 4.1 for GCP( f, g) where f and g are continuously394

differentiable. All numerical experiments are done by a Windows PC using MatLab with CPU395

of 1.90 GHz and RAM of 8.00 GB. The values of σ and β were set to 1.0 × 10−10 and 0.2,396

respectively. These settings were found to work well on average across the different test397

problems. We terminate Algorithm 4.1 if one of the following conditions is satisfied:398

1. �∗(xk) ≤ 10−9 and dk ≤ 10−3;399

2. the steplength is less than 10−9;400

3. the number of iterations is more than 100,000.401

To test the effectiveness of the to test the descent direction algorithm, 4 test problems were3 402

used. Each of the 7 types of GCP functions was used as �∗(x) with several different values of403

p, α, and θ . In the resulting tables we show results for p ∈ {1.5, 2, 3}, α ∈ {0.01, 0.1, 1, 10},404

and θ ∈ {0.25, 0.5, 0.75}.405

Test Problem 1: (Implicit complementarity problems) (Outrata and Zowe 1995)406

We define this problems as follows: Find x∗ ∈ ℜ5 such that407

f (x∗) = x∗ − m(x∗) ≥ 0, g(x∗) ≥ 0, and 〈 f (x∗), g(x∗)〉 = 0,408

where409

g(x) :=

⎛

⎜

⎜

⎜

⎝

2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2

⎞

⎟

⎟

⎟

⎠

x +

⎛

⎜

⎜

⎜

⎝

1

1

1

1

⎞

⎟

⎟

⎟

⎠

410

and m(x) = π(g(x)) : ℜn → ℜn is twice continuously differentiable. The followings are411

two choices of function π(·):412

(a) Linear case: πi (t) = −0.5 − ti , i = 1, 2, 3, 4;413

(b) Non-Linear case: πi (t) = −0.5 − 1.5ti + 0.25t2
i , i = 1, 2, 3, 4.414

We implement Algorithm 4.1 using the following three initial (starting) points:415

(a) (0.0, 0.0, 0.0, 0.0)T ,416

(b) (−0.5,−0.5,−0.5,−0.5)T ,417

(c) (−1.0,−1.0,−1.0,−1.0)T .418
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Table 1 Numerical results for GCP function φ1 for the linear case of test problem 1

Type ST α p = 1.5 p = 2 p = 3

RES IT RES IT RES IT

φ1 (a) 0.01 7.05E−08 18 1.08E−07 13 1.21E−07 14

(a) 0.1 4.81E−09 13 6.63E−08 14 4.22E−08 16

(a) 1 2.47E−04 3 4.67E−03 3 2.96E−03 4

(a) 10 1.96E−08 16 1.67E−08 15 1.19E−08 13

(b) 0.01 2.64E−07 10 5.21E−08 15 1.26E−07 11

(b) 0.1 4.30E−08 13 2.20E−07 10 6.04E−08 8

(b) 1 5.26E−06 9 2.67E−05 14 2.64E−07 20

(b) 10 1.95E−07 26 2.01E−07 88 1.94E−07 75

(c) 0.01 5.58E−08 14 9.12E−08 10 2.21E−07 15

(c) 0.1 2.40E−01 2 3.50E−07 17 5.39E−08 15

(c) 1 2.70E−05 10 1.46E−05 17 5.56E−08 20

(c) 10 1.86E−07 49 2.04E−07 103 1.22E−07 32

Table 2 Numerical results for GCP function φ1 for the nonlinear case of test problem 1

Type ST α p = 1.5 p = 2 p = 3

RES IT RES IT RES IT

φ1 (a) 0.01 7.71E−08 23 6.31E−07 17 1.30E−07 19

(a) 0.1 3.35E−07 17 5.49E−07 18 2.94E−07 18

(a) 1 3.28E−04 3 5.69E−03 4 2.87E−08 27

(a) 10 5.97E−09 15 4.40E−08 16 2.03E−09 17

(b) 0.01 6.86E−08 16 7.60E−08 15 2.75E−07 14

(b) 0.1 8.98E−08 8 4.17E−07 9 2.61E−07 10

(b) 1 5.06E−07 11 3.29E−04 8 1.73E−02 5

(b) 10 1.79E−07 18 8.40E−08 35 1.12E−07 28

(c) 0.01 6.75E−07 14 6.48E−08 10 3.25E−07 16

(c) 0.1 2.37E−01 2 1.26E−07 15 2.02E−07 15

(c) 1 5.06E−07 9 2.70E−07 26 2.98E−07 80

(c) 10 5.38E−08 43 3.97E−08 12 1.18E−08 13

Test Problem 2: (Nash equilibrium problem)419

The Nash equilibrium problem is a part of the MCPLIB library of problems (Dirkse and420

Ferris 1994). Here n = 10. The function f is a P-function on the strictly positive orthant,421

but not twice differentiable.422

F(x) = ∇C(x) − p(ξ) − ∇ p(ξ)x,423

G(x) = x .424

For details on the functions C(x), p(ξ) please refer to the MCPLIB problem set (Dirkse425

and Ferris 1994) which is publicly available.426
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Table 3 Average number of

iterations to reach solution for

GCP functions in test problem 1

GCP

Function type

Example 1

(linear)

Example 1

(non-linear)

ITER ITER

1 18.11 15.78

2 20.41 17.39

3 23.11 16.89

4 12.36 13.06

5 12.36 13.06

6 15.93 16.78

7 16.29 18.13

In this example we use the following two starting points:427

(a) (0.0, . . . , 0.0)T ,428

(b) (1, . . . , 1)T .429

Test Problem 3: (Kojima-Shindo problem) (Dirkse and Ferris 1994)430

Here n = 4 and the function F is not a P0-function such that431

F(x) :=

⎡

⎢

⎢

⎢

⎣

3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6

2x2
1 + x2

2 + x1 + 10x3 + 2x4 − 2

3x1 + x1x2 + 2x2
2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

⎤

⎥

⎥

⎥

⎦

432

and433

G(x) :=
[

x1 x2 x3 x4

]T
.434

Two starting points are used: 4435

(a) (0.0, . . . , 0.0)T ,436

(b) (1, . . . , 1)T ,437

Test Problem 4: (Mathiesen problem) (Dirkse and Ferris 1994)438

We consider Mathiesen’s small example of a Walrasian equilibrium model where n = 4,439

and440

F(x) =

⎡

⎢

⎢

⎢

⎣

−x2 + x3 + x4

x1 − α(b2x3 + b3x4)/x2

b2 − x1 − (1 − α)(b2x3 + b3x4)/x3

b3 − x1

⎤

⎥

⎥

⎥

⎦

,441

and442

G(x) :=
[

x1 x2 x3 x4

]T
.443

Two starting points are used:444

(a) (0.0, . . . , 0.0)T ,445

(b) (1, . . . , 1)T ,446
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M. A. Tawhid et al.

Table 4 Numerical results for Algorithm 4.1 based on the GCP functions for the linear case of test problem 1

Type ST θ α p = 1.5 p = 2 p = 3

RES IT RES IT RES IT

φp (a) – – 7.0E−10 24 1.82E−10 17 3.32E−10 20

(b) – – 2.99E−10 16 1.83E−10 17 9.48E−10 15

(c) – – 4.16E−10 19 9.32E−10 15 6.23E−10 20

φ1 (a) – 0.01 7.05E−08 18 1.08E−07 13 1.21E−07 14

(a) – 0.1 4.81E−09 13 6.63E−08 14 4.22E−08 16

(a) – 1 2.47E−04 3 4.67E−03 3 2.96E−03 4

(a) – 10 1.96E−08 16 1.67E−08 15 1.19E−08 13

(b) – 0.01 2.64E−07 10 5.21E−08 15 1.26E−07 11

(b) – 0.1 4.30E−08 13 2.20E−07 10 6.04E−08 8

(b) – 1 5.26E−06 9 2.67E−05 14 2.64E−07 20

(b) – 10 1.95E−07 26 2.01E−07 88 1.94E−07 75

(c) – 0.01 5.58E−08 14 9.12E−08 10 2.21E−07 15

(c) – 0.1 2.40E−01 2 3.50E−07 17 5.39E−08 15

(c) – 1 2.70E−05 10 1.46E−05 17 5.56E−08 20

(c) – 10 1.86E−07 49 2.04E−07 103 1.22E−07 32

φ2 (a) – 0.01 7.05E−08 18 1.08E−07 13 1.21E−07 14

(a) – 0.1 4.81E−09 13 6.63E−08 14 4.22E−08 16

(a) – 1 2.47E−04 3 4.67E−03 3 2.96E−03 4

(a) – 10 1.88E−07 105 1.16E−07 17 3.38E−09 19

(b) – 0.01 2.64E−07 10 5.21E−08 15 1.26E−07 11

(b) – 0.1 4.30E−08 13 2.20E−07 10 6.04E−08 8

(b) – 1 5.26E−06 9 2.67E−05 14 2.64E−07 20

(b) – 10 1.95E−07 26 2.01E−07 88 1.94E−07 75

(c) – 0.01 5.58E−08 14 9.12E−08 10 2.21E−07 15

(c) – 0.1 2.40E−01 2 3.50E−07 17 5.39E−08 15

(c) – 1 2.70E−05 10 1.46E−05 7 5.56E−08 20

(c) – 10 1.86E−07 49 2.04E−07 103 1.22E−07 32

φ3 (a) – 0.01 2.47E−08 16 1.52E−07 13 4.07E−07 13

(a) – 0.1 2.86E−07 13 5.80E−08 15 8.17E−08 14

(a) – 1 1.51E−07 12 6.28E−07 12 1.16E−07 16

(a) – 10 9.54E−08 14 1.17E−07 14 7.77E−08 14

(b) – 0.01 4.15E−07 9 4.77E−08 15 2.19E−07 11

(b) – 0.1 1.99E−07 9 6.86E−08 11 1.79E−09 7

(b) – 1 6.11E−07 10 1.39E−07 12 4.39E−07 10

(b) – 10 7.62E−08 12 1.38E−07 11 1.04E−07 12

(c) – 0.01 1.55E−07 14 3.12E−07 11 2.58E−07 15

(c) – 0.1 1.99E−07 11 6.67E−08 13 9.64E−08 15

(c) – 1 6.87E−08 14 2.3E−07 12 7.79E−07 10

(c) – 10 6.10E−08 12 3.35E−08 10 6.32E−08 13
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A descent algorithm for generalized complementarity problems. . .

Table 5 Numerical results for Algorithm 4.1 based on the GCP functions for the linear case of test problem 1

Type ST θ α p = 1.5 p = 2 p = 3

RES IT RES IT RES IT

φ4 (a) – 0.01 2.74E−08 16 1.52E−07 13 4.07E−07 13

(a) – 0.1 2.86E−07 13 5.80E−08 15 8.17E−08 14

(a) – 1 1.51E−07 12 6.28E−07 12 1.16E−07 16

(a) – 10 9.54E−08 14 1.17E−07 14 7.77E−08 14

(b) – 0.01 4.15E−07 9 4.77E−08 15 2.19E−07 11

(b) – 0.1 1.99E−07 9 6.86E−08 11 1.79E−09 7

(b) – 1 6.11E−07 10 1.39E−07 12 4.39E−07 10

(b) – 10 7.62E−08 12 1.38E−07 11 1.04E−07 12

(c) – 0.01 1.55E−07 14 3.12E−07 11 2.58E−07 15

(c) – 0.1 1.99E−07 11 6.67E−08 13 9.64E−08 15

(c) – 1 6.87E−08 14 2.3E−07 12 7.79E−07 10

(c) – 10 6.10E−08 12 3.35E−08 10 6.32E−08 13

φθ,p (a) 0.25 – 7.53E−09 21 3.47E−08 19 6.92E−09 21

(a) 0.5 – 1.06E−08 19 8.36E−09 16 5.27E−09 15

(a) 0.75 – 2.66E−07 16 4.29E−07 13 2.69E−07 13

(b) 0.25 – 9.11E−09 19 1.23E−08 20 4.47E−09 20

(b) 0.5 – 1.07E−08 16 7.14E−09 18 9.84E−09 18

(b) 0.75 – 4.66E−07 10 3.06E−07 9 7.09E−08 6

(c) 0.25 – 5.35E−09 19 8.60E−09 19 1.27E−08 19

(c) 0.5 – 6.62E−09 16 6.34E−09 17 7.23E−09 17

(c) 0.75 – 5.32E−07 9 3.81E−07 13 4.95E−07 12

Tables 1 and 2 show the results of our numerical tests for the test problems 1a and 1b.447

In these tables, the first column lists GCP functions mentioned in Examples 1–7, the second448

column shows the staring points, and the third column indicates various values for α. RES449

indicates the value of the merit function, and the number of iterations is shown in IT. We used450

the algorithm to solve 5 different test problems in total including 2 instances of test problem 1.451

The GCP functions include a few parameters which can be set. These parameters are p,452

α, and θ . We tested several different combinations within the range of permissible values453

for each parameter. In our numerical results there was a general trend that decreasing p454

leads to faster convergence. This can be seen both versions of test problem 1, test problem455

3 and test problem 4. Examples of iteration count when p is increased can be found in Fig.456

1. The value of p can be any value ∈ (1,∞) and although not every test cases showed457

quick convergence to the optimal solution, our numerical tests indicate increasing p does not458

improve performance. In Fig. 1 on the right the RES is also shown and it was found that the459

value of p did not greatly impact the quality of the final solution found in terms RES. For460

this reason we chose to use p ∈ {1.5, 2, 3} as our initial test parameters in our algorithm. For461

the parameter α, there was no clear trend for which value tended to provide the best solution.462

Different combinations of α in conjunction with different GCP functions can improve the463

final result of the algorithm. For this reason the range α ∈ {0.01, 0.1, 1, 10} is used.464
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Table 6 Numerical results for Algorithm 4.1 based on the GCP functions for the linear case of test problem 1

Type ST θ α p = 1.5 p = 2 p = 3

RES IT RES IT RES IT

φα,θ,p (a) 0.25 0.01 9.01E−09 21 3.24E−09 19 7.61E−09 21

(a) 0.5 0.01 1.28E−08 17 7.22E−09 14 5.91E−09 16

(a) 0.75 0.01 3.24E−07 14 6.23E−07 14 2.46E−07 14

(a) 0.25 0.1 1.77E−08 19 1.08E−08 21 1.46E−08 22

(a) 0.5 0.1 8.27E−09 18 6.03E−09 19 6.73E−09 18

(a) 0.75 0.1 6.47E−07 12 3.68E−08 8 3.65E−07 12

(a) 0.25 1 3.04E−09 21 7.01E−09 19 1.90E−08 16

(a) 0.5 1 1.15E−08 30 1.37E−08 27 1.50E−08 25

(a) 0.75 1 6.19E−08 9 7.51E−08 13 1.89E−07 13

(a) 0.25 10 2.99E−10 14 6.48E−11 14 8.49E−10 13

(a) 0.5 10 1.89E−08 20 5.30E−09 21 6.74E−09 21

(a) 0.75 10 2.10E−09 16 2.49E−09 15 3.88E−09 14

(b) 0.25 0.01 8.82E−09 19 1.25E−08 20 4.93E−09 20

(b) 0.5 0.01 1.25E−08 16 8.33E−09 18 1.15E−08 18

(b) 0.75 0.01 3.12E−07 10 6.43E−07 8 3.38E−08 7

(b) 0.25 0.1 6.44E−09 19 4.41E−09 20 2.55E−08 19

(b) 0.5 0.1 5.66E−09 18 7.70E−09 19 1.02E−08 19

(b) 0.75 0.1 4.29E−09 7 4.14E−07 8 3.63E−07 11

(b) 0.25 1 1.15E−08 18 1.58E−08 18 2.19E−08 17

(b) 0.5 1 1.93E−08 24 1.74E−08 24 1.76E−08 24

(b) 0.75 1 2.07E−07 10 2.11E−07 9 4.98E−07 8

(b) 0.25 10 4.55E−09 13 5.73E−11 13 4.90E−10 13

(b) 0.5 10 4.55E−09 19 7.35E−09 19 8.49E−09 19

(b) 0.75 10 1.76E−09 14 1.95E−09 13 2.12E−09 12

(c) 0.25 0.01 5.20E−09 19 8.36E−09 19 1.23E−08 19

(c) 0.5 0.01 6.74E−09 16 6.33E−09 17 7.06E−09 17

(c) 0.75 0.01 4.30E−07 14 3.53E−07 13 4.67E−07 12

(c) 0.25 0.1 3.83E−09 19 6.56E−09 19 9.67E−09 19

(c) 0.5 0.1 5.53E−09 16 8.51E−09 16 6.96E−09 16

(c) 0.75 0.1 5.11E−07 13 5.88E−07 12 2.86E−07 12

(c) 0.25 1 6.33E−09 16 7.31E−09 15 1.95E−08 13

(c) 0.5 1 1.52E−08 30 1.72E−08 30 1.82E−08 30

(c) 0.75 1 3.34E−07 9 1.26E−07 10 6.28E−08 10

(c) 0.25 10 3.16E−10 12 3.00E−09 9 1.85E−09 9

(c) 0.5 10 2.04E−08 18 2.62E−09 21 4.71E−09 18

(c) 0.75 10 9.39E−10 14 3.78E−09 12 2.62E−09 12

In this paper, 7 different GCP functions were tested. It is of interest to see which GCP465

function type performs best. In Table 3 the average number of iterations taken to reach the5 466

stopping criteria for the test problems 1a, 1b across the range of different values of p, α, and θ467

is given. The GCP functions corresponding to type 4 and 5 were lowest which indicates faster468
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A descent algorithm for generalized complementarity problems. . .

Table 7 Numerical results for Algorithm 4.1 based on the GCP functions for the nonlinear case of test

problem 1

Type ST θ α p = 1.5 p = 2 p = 3

RES IT RES IT RES IT

φp (a) – – 6.23E−07 19 2.13E−07 17 2.98E−07 19

(b) – – 8.25E−08 15 5.79E−07 14 5.40E−07 14

(c) – – 3.11E−07 16 1.49E−07 13 5.55E−07 15

φ1 (a) – 0.01 7.17E−08 23 6.31E−07 17 1.30E−07 19

(a) – 0.1 3.35E−07 17 5.49E−07 18 2.94E−07 18

(a) – 1 3.28E−04 3 5.69E−03 4 2.87E−08 27

(a) – 10 5.97E−09 15 4.40E−08 16 2.03E−09 17

(b) – 0.01 6.86E−08 16 7.60E−08 15 2.75E−07 14

(b) – 0.1 8.98E−08 8 4.17E−07 9 2.61E−07 10

(b) – 1 5.06E−07 11 3.29E−04 8 1.73E−02 5

(b) – 10 1.79E−07 18 8.40E−08 35 1.12E−07 28

(c) – 0.01 6.75E−07 14 6.48E−08 10 3.25E−07 16

(c) – 0.1 2.37E−01 2 1.26E−07 15 2.02E−07 15

(c) – 1 5.06E−07 9 2.70E−07 26 2.98E−07 80

(c) – 10 5.38E−08 43 3.97E−08 12 1.18E−08 13

φ2 (a) – 0.01 7.17E−08 23 6.31E−07 17 1.30E−07 19

(a) – 0.1 3.35E−07 17 5.49E−08 18 2.94E−07 18

(a) – 1 3.28E−04 3 5.69E−03 4 2.87E−08 27

(a) – 10 6.79E−08 25 5.25E−07 14 5.08E−07 23

(b) – 0.01 6.86E−08 16 7.60E−08 15 2.75E−07 14

(b) – 0.1 8.98E−08 8 4.17E−07 9 2.61E−07 10

(b) – 1 5.06E−07 11 3.29E−05 8 1.73E−02 5

(b) – 10 5.45E−09 16 6.03E−07 19 3.54E−08 14

(c) – 0.01 6.75E−07 14 6.48E−08 10 3.25E−07 16

(c) – 0.1 2.37E−01 2 1.26E−07 15 2.02E−07 15

(c) – 1 5.06E−07 9 2.70E−05 26 2.98E−07 80

(c) – 10 5.38E−08 43 3.97E−07 12 1.18E−08 13

φ3 (a) – 0.01 1.55E−08 19 4.70E−07 17 9.94E−07 16

(a) – 0.1 1.11E−08 14 3.88E−07 12 1.18E−06 15

(a) – 1 7.21E−07 14 1.56E−06 13 7.59E−07 20

(a) – 10 5.70E−08 14 4.06E−08 14 7.28E−08 13

(b) – 0.01 3.24E−07 15 6.54E−07 13 3.00E−07 14

(b) – 0.1 3.89E−07 11 9.37E−07 11 4.85E−07 12

(b) – 1 1.95E−07 10 1.15E−06 16 4.50E−07 17

(b) – 10 6.48E−08 13 3.50E−08 12 1.12E−07 11

(c) – 0.01 2.05E−08 13 2.58E−07 10 2.82E−07 16

(c) – 0.1 4.61E−07 11 7.10E−07 15 4.38E−07 10

(c) – 1 2.10E−07 9 7.13E−07 8 8.33E−07 6

(c) – 10 6.94E−08 13 7.92E−09 11 4.45E−07 12
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Table 8 Numerical results for Algorithm 4.1 based on the GCP functions for the nonlinear case of test

problem 1

Type ST θ α p = 1.5 p = 2 p = 3

RES IT RES IT RES IT

φ4 (a) – 0.01 1.55E−08 19 4.70E−07 17 9.94E−07 16

(a) – 0.1 1.11E−08 14 3.88E−07 12 1.18E−06 15

(a) – 1 7.21E−07 14 1.56E−06 13 7.59E−07 20

(a) – 10 5.70E−08 14 4.06E−08 14 7.28E−08 13

(b) – 0.01 3.24E−07 15 6.54E−07 13 3.00E−07 14

(b) – 0.1 3.89E−07 11 9.37E−07 11 4.58E−07 12

(b) – 1 1.95E−07 10 1.15E−06 16 4.50E−07 17

(b) – 10 6.48E−08 13 3.50E−08 12 1.12E−07 11

(c) – 0.01 2.05E−08 13 2.58E−07 10 2.82E−07 16

(c) – 0.1 4.61E−07 11 7.10E−07 15 4.38E−07 10

(c) – 1 2.10E−07 9 7.13E−07 8 8.33E−07 6

(c) – 10 6.94E−08 13 7.92E−09 11 4.45E−07 12

φθ,p (a) 0.25 – 4.24E−09 19 6.27E−09 20 3.51E−09 20

(a) 0.5 – 1.33E−08 25 1.55E−08 26 1.52E−08 22

(a) 0.75 – 2.73E−07 15 2.24E−07 13 4.47E−07 10

(b) 0.25 – 4.44E−09 15 5.47E−09 18 6.74E−09 18

(b) 0.5 – 1.49E−08 16 1.28E−08 24 1.61E−08 24

(b) 0.75 – 1.81E−07 10 2.27E−07 9 1.49E−07 8

(c) 0.25 – 3.43E−09 17 7.33E−09 17 4.69E−09 17

(c) 0.5 – 1.34E−08 21 1.29E−08 17 1.12E−08 22

(c) 0.75 – 2.94E−07 11 1.88E−07 8 2.68E−07 11

convergence. This suggests without choosing a specific set of values for p, α and θ these469

2 GCP functions would on average give a reasonable final solution. The numerical results470

also show that the range of results can vary greatly depending on the selected problem, GCP6 471

function and parameters of the algorithm. Choosing specific φ and optimizing the value of472

p, α, and θ for a specific problem can improve performance. For example, from Tables 1 and473

2, we could see that φ1 is best with p = 1.5 and α = 1. The results for φ1, φ2, φ3 and φ4 are474

quite similar from the results shown in Tables 4, 5, 6, 7 and 8. Also from Tables 5 and 8, when475

θ = 0.75 and p = 1.5, φθ,p performs particularly well for those examples. Finally, φα,θ,p476

appears to work best for test problems 1a and 1b when θ = 0.75, and p = 1.5 (Table 9).477

Test problems 1a and 1b were solvable in all test cases within our specified stopping478

criteria and a good approximation to the optimal solution was reached. For test problems 2,479

3 and 4 there was a wider range of convergence behavior and in some cases the algorithm480

failed to converge to the optimal solution. Figures 2 and 3 show some examples of parameter481

settings for the different examples where convergence was rapid. The convergence behaviors482

in Figs. 2, 3 suggest that the algorithm may linear convergence. Similar behavior was also483

observed in other test cases. How to find the optimal parameters for individual problems is a484

point that merits further research. The starting point is an important determinant for the rate485

of convergence of the algorithm. The starting points for the problems were taken from the486

problem references where available.487
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Table 9 Numerical results for Algorithm 4.1 based on the GCP functions for the nonlinear case of test

problem 1

Type ST θ α p = 1.5 p = 2 p = 3

RES IT RES IT RES IT

φα,θ,p (a) 0.25 0.01 2.11E−08 19 2.18E−09 21 2.03E−08 19

(a) 0.5 0.01 1.18E−08 21 1.45E−08 28 1.71E−08 21

(a) 0.75 0.01 4.94E−07 15 3.01E−07 11 1.90E−07 10

(a) 0.25 0.1 3.16E−09 20 4.40E−09 16 2.42E−08 16

(a) 0.5 0.1 1.40E−08 25 1.68E−08 22 1.32E−08 21

(a) 0.75 0.1 2.91E−07 13 2.15E−07 11 4.50E−08 11

(a) 0.25 1 5.30E−09 18 6.60E−09 17 4.16E−09 17

(a) 0.5 1 1.55E−08 45 1.91E−08 43 2.29E−08 42

(a) 0.75 1 1.78E−08 12 2.63E−07 12 3.66E−07 11

(a) 0.25 10 5.42E−09 14 2.28E−09 13 2.77E−09 13

(a) 0.5 10 4.46E−10 20 2.16E−09 19 2.88E−09 19

(a) 0.75 10 1.83E−08 16 3.63E−09 15 9.07E−09 15

(b) 0.25 0.01 1.03E−08 15 5.19E−09 18 5.57E−09 18

(b) 0.5 0.01 9.59E−09 20 1.03E−08 25 1.62E−08 22

(b) 0.75 0.01 1.35E−07 11 1.24E−07 9 3.20E−07 7

(b) 0.25 0.1 2.36E−09 19 6.24E−09 17 5.43E−09 18

(b) 0.5 0.1 1.02E−08 24 1.32E−08 23 1.60E−08 28

(b) 0.75 0.1 1.95E−07 9 3.58E−07 7 4.31E−07 7

(b) 0.25 1 1.37E−09 18 3.11E−09 16 1.62E−09 15

(b) 0.5 1 1.59E−08 45 1.76E−08 46 1.80E−08 46

(b) 0.75 1 1.05E−07 11 2.73E−07 9 1.50E−07 9

(b) 0.25 10 1.46E−07 9 2.39E−09 15 3.93E−08 13

(b) 0.5 10 3.60E−08 17 1.19E−09 17 1.38E−09 17

(b) 0.75 10 3.61E−09 16 5.89E−09 13 8.44E−09 13

(c) 0.25 0.01 4.22E−08 15 7.12E−09 17 4.06E−09 17

(c) 0.5 0.01 1.64E−08 21 1.58E−08 8 1.28E−08 21

(c) 0.75 0.01 1.90E−07 11 6.56E−08 7 3.87E−07 11

(c) 0.25 0.1 3.21E−09 17 4.86E−09 17 2.43E−09 15

(c) 0.5 0.1 1.04E−08 24 1.06E−08 25 1.36E−08 24

(c) 0.75 0.1 1.57E−07 10 2.58E−07 11 2.01E−07 11

(c) 0.25 1 3.51E−09 16 2.93E−09 15 2.95E−08 16

(c) 0.5 1 1.47E−08 44 2.34E−08 46 1.56E−08 47

(c) 0.75 1 2.90E−08 7 9.41E−10 9 6.32E−09 6

(c) 0.25 10 1.80E−18 18 1.41E−08 18 3.26E−08 17

(c) 0.5 10 1.52E−09 19 2.03E−08 17 1.98E−08 17

(c) 0.75 10 1.83E−09 15 5.45E−09 13 9.56E−10 13

The GCP functions allow for the reformulation of the GCP into a global minimization488

problem. Therefore, it should be possible to make use of existing global optimization algo-489

rithms to solve the merit functions. How the parameters p, α and θ affect the results of other490

algorithms is something that can be explored in future works.491
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Final remarks492

In this paper, starting with C1 functions, we give the sufficient conditions on the functions493

f and g so that we can guarantee that stationary points of the merit function solve the494

generalized complementarity problem GCP( f, g).495

For continuously differentiable functions, the nonsingularity of {∇g} is very important496

in an algorithmic point of view and studying the error bounds for GCP( f, g). Thus, the497

nonsingularity of {∇g} is not restrictive.498

We consider a generalized complementarity problem based on generalized Fischer-499

Burmeister function and its generalizations corresponding to C1 functions, with an associated500

GCP function � and a merit function �∗(x) = 1
2
||�∗||2. We show under certain regularity501

conditions the global/local minimum or a stationary point of �∗ is a solution of GCP( f, g).502

Our results give various results for generalized complementarity problem when p-norm503

replaces by 2-norm (or when p is an integer greater than 2). Also, when g(x) = x , our results504

further give a unified/generalization treatment of such results for the nonlinear complemen-505

tarity problem based on generalized Fischer-Burmeister function and its generalizations.506

Moreover, we present a descent algorithm for GCP( f, g) and show a result on the global507

convergence of a descent algorithm for solving generalized complementarity problem. Fur-508

thermore, we present some preliminary numerical results. The numerical results suggest that509

different combinations of GCP functions and parameters p, α, and θ can yield improved510

performance in the descent direction algorithm presented in this paper. The two measure-511

ments of the effectiveness of the algorithm include the number of iterations taken to find a512

solution and the final value of the merit function at the end of the algorithm. The numerical7 513

results suggested that having a lower p parameter may improve convergence behavior and514

that GCP functions 3 and 4 perform best across our test problem set. To the best of our515

knowledge, solving GCP( f, g) on the basis of generalized Fischer-Burmeister function and516

its generalizations seems to be new.517

It should be pointed out that our implementation is still in an early stage. The following518

directions in the future research can be pursued to improve the current implementation:519

• Apply a quasi-Newton method for GCP functions based on generalized Fischer function.520

• Apply a conjugate gradient method with descent direction to GCP based on generalized521

Fischer function.522

• Can we establish the convergence of quasi-Newton method and conjugate gradient523

method?524

• Implement a descent method, conjugate gradient and quasi-Newton method to more525

examples for GCP from Andreani et al. (2002), Jiang et al. (1998).526
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