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The period polynomial rf (z) for an even weight k≥4 newform
f ∈Sk(Γ0(N)) is the generating function for the critical values of
L(f , s). It has a functional equation relating rf (z) to rf (− 1

Nz). We
prove the Riemann hypothesis for these polynomials: that the
zeros of rf (z) lie on the circle jzj= 1=

ffiffiffiffi
N

p
. We prove that these zeros

are equidistributed when either k or N is large.

modular forms | period polynomials | Riemann hypothesis

Let f ∈ SkðΓ0ðNÞÞ be a newform (1, 2) of even weight k and
level N. Associated to f is its L-function Lðf , sÞ, which has

been normalized so that the completed L-function,

Λðf , sÞ :=
 ffiffiffiffi

N
p

2π

!s

ΓðsÞLðf , sÞ,

satisfies the functional equation Λðf , sÞ= eðf ÞΛðf , k− sÞ, with
eðf Þ=±1. Recall that the completed L-function arises as a period
integral of the newform f:

Λðf , sÞ=Ns=2
Z ∞

0
f ðiyÞys dy

y
. [1.1]

The focus of this paper is the period polynomial associated to f,
the degree k− 2 polynomial

rf ðzÞ :=
Z i∞

0
f ðτÞðτ− zÞk−2dτ. [1.2]

Expanding ðτ− zÞk−2, and using Eq. 1.1, we may also express the
period polynomial by

rf ðzÞ= ik−1N−k−1
2  
Xk−2
n=0

   

�
k− 2
n

�� ffiffiffiffi
N

p
iz
�n

Λðf , k− 1− nÞ, [1.3]

or equivalently as

rf ðzÞ=−
ðk− 2Þ!
ð2πiÞk−1

   
Xk−2
n=0

   
ð2πizÞn

n!
Lðf , k− n− 1Þ. [1.4]

In other words, rf ðzÞ is a generating function for the critical values
Lðf , 1Þ, Lðf , 2Þ, . . ., Lðf , k− 1Þ. For general facts on period polyno-
mials, the reader is encouraged to see refs. 3–7; other papers
broadly related to the themes of this paper are refs. 8 and 9.
Using the functional equation Λðf , sÞ= eðf ÞΛðf , k− sÞ in Eq. 1.3,

we find that

rf ðzÞ=−ikeðf Þ
� ffiffiffiffi

N
p

z
�k−2

2
rf

�
−
1
Nz

�
,

so that if ρ is a zero of rf ðzÞ then so is −1=ðNρÞ. In analogy with
the Riemann hypothesis, we may ask whether all of the zeros of

rf ðzÞ lie on the circle jρj= 1=
ffiffiffiffi
N

p
. For Hecke eigenforms on SL2ðZÞ,

this was recently established by El-Guindy and Raj (10), who
showed that the zeros of rf ðzÞ (for N = 1) are all on the unit circle
jzj= 1. Their work was inspired by the previous work by Conrey
et al. (11), who proved an analogous result for odd period polyno-
mials again for full level. We show that this “Riemann hypothesis”
holds in general for all newforms of weight at least 4 and any level.

Theorem 1.1. For any even integer k at least 4, and any level N, all of
the zeros of the period polynomial rf ðzÞ are on the circle jzj= 1=

ffiffiffiffi
N

p
.

Remark: Period polynomials for weight 2 newforms f are constant
multiples of Lðf , 1Þ.

Example 1: The period polynomial for the normalized Hecke
eigenform ΔðzÞ∈ S12ðΓ0ð1ÞÞ is

rΔðzÞ=ω+
Δ r

+
Δ ðzÞ+ω−

Δ r
−
Δ ðzÞ≈ 0.114379i

×
�
36
691

z10 − z8 + 3z6 − 3z4 + z2 −
36
691

�
 

+ 0.00926927
�
4z9 − 25z7 + 42z5 − 25z3 + 4z

�
.

All 10 zeros of rΔðzÞ are on jzj= 1.
Example 2: For the unique weight 4 newform f ðzÞ= q− 4q3 −

2q5 +⋯ on Γ0ð8Þ, we have

Lðf , 1Þ≈ 0.3545006 . . . ,      
Lðf , 2Þ≈ 0.6900311 . . . ,      
Lðf , 3Þ≈ 0.8746953 . . . ,

which in turn implies that rf ðzÞ≈ 0.0564205361iz2 + 0.0349573870z−
0.00705256701815496i. The roots are ≈±0.17037672+ 0.30979311i,
and their norms are ≈ 1=ð2 ffiffiffi

2
p Þ.

Remark: Manin (12) has used the work of Conrey et al. (11) to
construct zeta functions that satisfy the Riemann hypothesis. He
suggests that these polynomials arise from non-Tate motives and
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geometric objects lying below Spec  Z but not over F1. Using
the Pf ðzÞ defined below, one obtains further such polynomials
mutatis mutandis.
If the weight or level is large enough, then the zeros of rf are

regularly spaced on the circle jzj= 1=
ffiffiffiffi
N

p
. To state this conveniently,

and for our later work, we shall put m := ðk− 2Þ=2 throughout
and define

Pf ðzÞ= 1
2

�
2m
m

�
Λ
�
f ,
k
2

�
+
Xm
j=1

�
2m
m+ j

�
Λ
�
f ,
k
2
+ j
�
z j. [1.5]

Then, using the functional equation, we see that

rf

�
z

i
ffiffiffiffi
N

p
�
= ik−1N−k−1

2 eðf Þzm
�
Pf ðzÞ+ eðf ÞPf

�
1
z

��
. [1.6]

Therefore, to understand the zeros of rf , it is enough to un-
derstand the zeros of Pf ðzÞ+ eðf ÞPf ð1=zÞ, and Theorem 1.1 states
that this function has all its zeros on the unit circle jzj= 1. If
we restrict to the unit circle jzj= 1, then Pf ðzÞ+ eðf ÞPf ð1=zÞ is
either a trigonometric cosine or a trigonometric sine polynomial
[depending on whether eðf Þ equals 1 or −1], and our proof of
Theorem 1.1 proceeds by finding the right number of sign
changes as z varies over the unit circle. If k or N is large enough,
the proof allows us to establish the following result on the lo-
cation of the roots.

Theorem 1.2. The following are true.

i) Suppose that k= 4. If eðf Þ=−1, then the zeros of rf ðzÞ are ±i=
ffiffiffiffi
N

p
.

If eðf Þ= 1 and N is sufficiently large, then the zeros of rf ðzÞ are

located at ±ð1+OðN−1
4+eÞÞ	 ffiffiffiffi

N
p

.

ii) If k≥ 6 and either N or k is large enough, then the roots of rf ðzÞ
may be written as

1
i
ffiffiffiffi
N

p exp
�
iθℓ +O

�
1

2k
ffiffiffiffi
N

p
��

,

where for 0≤ ℓ≤ 2m− 1 we denote by θℓ the unique solution in
½0,2πÞ to the equation

mθℓ −
2πffiffiffiffi
N

p sin  θℓ =

8<
:

π

2
+ ℓπ if   eðf Þ= 1

ℓπ if   eðf Þ=−1.

Our arguments readily allow us to quantify the results in
Theorem 1.2. For example, the arguments in section 6 give that
in part ii above, the implied O-constant may be taken as 109,
although this is a gross overestimate. The arguments in section
5 locate sign changes even if the values of k or N are only
moderately large.
Suppose that eðf Þ= 1. By counting sign changes, one conse-

quence of Theorem 1.1 is that Pf ð−1Þ has sign ð−1Þm. In other
words, if eðf Þ= 1, then we must have

1
2

�
2m
m

�
ð−1ÞmΛ

�
f ,
k
2

�
+
Xm−1

j=0

ð−1Þj
�

2m
2m− j

�
Λðf , k− 1− jÞ> 0.

[1.7]

For any weight k, this inequality is clear for large enough N
because the term j= 0 above dominates all other terms. How-
ever, it is interesting that such an inequality holds for all small

weights and small level as well, and we wonder whether it has any
other significance. In section 4 we give a proof of this inequality in
the weight 6 case based on the Hadamard factorization formula.
We also give there a more illuminating proof of this inequality
based on the Riemann hypothesis for Λðf , sÞ.
2. Preliminaries
Here we collect preliminary facts about L-functions that we shall
find useful. The completed L-function Λðf , sÞ is an entire func-
tion of order 1. Its zeros all lie in the strip



ReðsÞ− k
2



< 1
2, with the

Riemann hypothesis predicting that all zeros lie on the line
ReðsÞ= k

2. Recall also that the central value Λ
�
f , k2
�
is known to be

nonnegative by the work of Waldspurger (13).
Hadamard’s factorization formula applies to the entire func-

tion Λðf , sÞ, and we may write

Λðf , sÞ= eA+Bs
Y
ρ

�
1−

s
ρ

�
es=ρ. [2.1]

Here the product is over all of the zeros of Λðf , sÞ [that is, the
nontrivial zeros of Lðf , sÞ], and A and B are constants. Note that
if ρ is a zero then so too are ρ and k− ρ. Because Λðf , sÞ is real-
valued on the real line, and in view of the functional equation, we
have that B is real-valued and

B=−
X
ρ

Re
1
ρ
=−

X
ρ

ReðρÞ
jρj2 .

These considerations also show that for real s

Λðf , sÞ= eA
Y
ρ∈R

�
1−

s
ρ

� Y
ImðρÞ>0





1− s
ρ






2

, [2.2]

where we have paired the complex conjugate roots together so
that the product is convergent.

Lemma 2.1. The function Λðf , sÞ is monotone increasing for s≥ k
2+

1
2.

Moreover, we have

0≤Λ
�
f ,
k
2

�
≤Λ
�
f ,
k
2
+ 1
�
≤Λ
�
f ,
k
2
+ 2
�
≤ . . . .

If eðf Þ is −1, then Λ
�
f , k2
�
= 0 and

0≤Λ
�
f ,
k
2
+ 1
�
≤
1
2
Λ
�
f ,
k
2
+ 2
�
≤
1
3
Λ
�
f ,
k
2
+ 3
�
≤ . . . .

Monotonicity results such as Lemma 2.1 are familiar in the
literature; for example, the Riemann hypothesis for L-functions
is equivalent to the monotonicity of the absolute value of the
completed L-function along horizontal lines starting from the
critical line. In a different context Stark and Zagier (14) observed
a similar result.

Proof: Because all of the zeros lie in


ReðsÞ− k

2



< 1
2, we see that

j1− s=ρj is increasing for s≥ k
2+

1
2. So, by Eq. 2.2 it follows that

Λðf , sÞ is increasing in ReðsÞ≥ k
2+

1
2. Further, we have



1− k=2

ρ





≤




1− k=2+ 1

ρ





,
and so Λðf , k=2Þ≤Λðf , k=2+ 1Þ. When eðf Þ=−1, we apply the
same reasoning and now take into account that there must be
a zero of odd order at k=2.
We record a useful inequality for L-values in the range of ab-

solute convergence.
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Lemma 2.2. If 0< a< b and k is the weight of f, then we have

L
�
f , k+ 1

2 + a
�

L
�
f , k+ 1

2 + b
�≤ ζð1+ aÞ2

ζð1+ bÞ2.

Proof: The Euler product for Lðf , sÞ gives rise to

−
L′
L
ðf , sÞ=

X∞
n=1

Λf ðnÞ
ns

,

where


Λf ðnÞ



≤ 2n
k−1
2 ΛðnÞ for all n. Here ΛðnÞ is the usual von

Mangoldt function, and this estimate is an alternative way of
encoding the Ramanujan bounds established by Deligne (15)
[see also Li (2) for the Euler factors at primes dividing the level].
The point is that for prime powers n= pr we have Λf ðnÞ=
ðαrp + βrpÞlog p, where the p th Fourier coefficient of f satisfies
aðpÞ= αp + βp. Therefore, we have

L
�
f , k+ 1

2 + a
�

L
�
f , k+ 1

2 + b
�= exp

�Z b

a
−
L′
L

�
f , k+ 1

2 + t
�
dt
�

≤ exp
�
2
Z b

a
−
ζ′
ζ
ð1+ tÞdt

�
=
ζð1+ aÞ2
ζð1+ bÞ2.

3. The Weight 4 Case
If f is a form of weight k= 4 [so m= ðk− 2Þ=2= 1], then Pf ðzÞ=
Λðf , 2Þ+Λðf , 3Þz. If eðf Þ=−1, then the roots of Pf ðzÞ−Pf ð1=zÞ=
Λðf , 3Þðz− 1=zÞ are at z=±1 and so the period polynomial has roots
at ±i=

ffiffiffiffi
N

p
.

If eðf Þ= 1, then with z= eiθ we have Pf ðzÞ+Pf ð1=zÞ= 2Λðf , 2Þ+
2Λðf , 3Þcos θ. Because Λðf , 2Þ<Λðf , 3Þ by Lemma 2.1, the above
equation has two solutions for θ∈ ½0,2πÞ, namely, θ satisfying
cos θ=−Λðf , 2Þ=Λðf , 3Þ. This completes the proof of Theorem 1.1
for weight 4.
Note that Λðf , 3Þ � N

3
2 for large N, whereas the Phrágmen–

Lindelöf principle gives Λðf , 2Þ≤maxt∈R



Λ�f , 52+ e+ it

�


� N
5
4+e

(this is the “convexity bound” for L-functions). Therefore, the
ratio Λðf , 2Þ=Λðf , 3Þ is small (precisely � N−1

4+e), and hence the
corresponding values of θ tend to π=2 and 3π=2. Thus, for large
level, the zeros of the period polynomial [in the eðf Þ= 1 case] are
located at ±ð1+OðN−1

4+eÞÞ	 ffiffiffiffi
N

p
.

4. The Weight 6 Case
If f is a form of weight k= 6 (so that m= 2) then

Pf ðzÞ= 3Λðf , 3Þ+ 4Λðf , 4Þz+Λðf , 5Þz2.

If eðf Þ=−1, then we are interested in the roots of

Pf ðzÞ−Pf ð1=zÞ=
�
z−

1
z

��
4Λðf , 4Þ+Λðf , 5Þ

�
z+

1
z

��
.

Clearly there are two solutions z=±1. Because eðf Þ=−1, we
know that 2Λðf , 4Þ<Λðf , 5Þ by Lemma 2.1, and so there are
two solutions in ½0,2πÞ to cos θ=−2Λðf , 4Þ=Λðf , 5Þ. Thus, we have
shown Theorem 1.1 in this case. Moreover, if N is large, then
Λðf , 4Þ=Λðf , 5Þ is small and θ tends to π=2 or 3π=2. So, for large N
(and odd sign) the period polynomial has two zeros exactly
at ±i=

ffiffiffiffi
N

p
and the other two zeros are very near ±1=

ffiffiffiffi
N

p
.

It remains now to consider when eðf Þ= 1. With z= eiθ we must
show that

Pf ðzÞ+Pf ð1=zÞ= 2 cosð2θÞΛðf , 5Þ+ 8 cos θ Λðf , 4Þ+ 6Λðf , 3Þ
[4.1]

has two zeros in ½0, π� (and therefore four zeros in ½0,2πÞ). Differ-
entiating the above with respect to θ gives −8 sin θðΛðf , 4Þ+
cos θ  Λð5ÞÞ so that there are critical points at θ= 0, π, and at the
solution θ0 ∈ ð0, πÞ to cos θ=−Λðf , 4Þ=Λðf , 5Þ. We would like the
quantity in Eq. 4.1 to be positive at θ= 0, negative at θ0, and positive
again at θ= π, which would ensure two zeros in ð0, πÞ (and note that
these conditions are also necessary for the period polynomial to
have all zeros on a circle).
The value at θ= 0 is clearly positive. That the value should be

positive at π is equivalent to

Λðf , 5Þ+ 3Λðf , 3Þ> 4Λðf , 4Þ. [4.2]

The condition that the value should be negative at θ0 is equiv-
alent to

Λðf , 5Þ2 + 2Λðf , 4Þ2 ≥ 3Λðf , 3ÞΛðf , 5Þ. [4.3]

Lemma 4.1. Suppose a1, a2, b1, b2, and c1, c2 are all positive with
ai ≥maxðbi, ciÞ. Suppose that ai + γci ≥ ð1+ γÞbi, where γ is positive.
Then a1a2 + γc1c2 ≥ ð1+ γÞb1b2.

Proof: Multiply the relation a1 + γc1 ≥ ð1+ γÞb1 by b2. It suffices
to show that

a1a2 + γc1c2 ≥ a1b2 + γc1b2;

or, rearranging that a1ða2 − b2Þ≥ γc1ðb2 − c2Þ. Because ða2 − b2Þ≥ 0,
and a1 ≥ c1, the left-hand side above is at least c1ða2 − b2Þ
which is ≥γc1ðb2 − c2Þ.

Proof of 4.2: We use Lemma 4.1 suitably, together with the
Hadamard factorization formula (Eqs. 2.1 and 2.2), proceeding zero
by zero. We use the Hadamard formula for Λðf , 3Þ, Λðf , 4Þ, and
Λðf , 5Þ; note that at all these values Λ is known to be nonnegative
(this is clear for 4 and 5, and work of Waldspurger for 3), so we can
also assume that the products are taken with absolute values.
Suppose first that ρ= 3+ z is a real zero, and then 6− ρ= 3− z

is also a real zero. (Note that even if ρ= 3, we get zeros of
even multiplicity at the center, which may be paired.) Then
note that this pair of zeros contributes to Λðf , 5Þ the amount
a= ð4− z2Þ=ð9− z2Þ, to Λðf , 4Þ the amount b= ð1− z2Þ=ð9− z2Þ,
and to Λðf , 3Þ the amount c= z2=ð9− z2Þ (using here the absolute
value remark). Note that with γ = 3 we have the inequality
a+ 3c≥ 4b.
Now consider a zero ρ= 3+ iy on the critical line, and pair it

with its conjugate 3− iy. These contribute to Λðf , 5Þ the amount
a= ð4+ y2Þ=ð9+ y2Þ, to Λðf , 4Þ the amount b= ð1+ y2Þ=ð9+ y2Þ
and to Λðf , 3Þ the amount c= y2=ð9+ y2Þ, and we check again that
a+ 3c≥ 4b (and indeed equality holds).
Finally consider a zero ρ= 3+ z not on the critical line with

z= x+ iy. This comes in a set of four zeros 3± x± iy. Note that
these four zeros contribute (multiply through by jρj2j6− ρj2) to
Λðf , 5Þ an amount a=



4− z2


2, to Λðf , 4Þ an amount b=



1− z2


2,

and to Λðf , 3Þ the amount c=


z2

2. We can check again that

a+ 3c≥ 4b.
Thus, when grouped as above, each group of zeros appearing

in the Hadamard formula satisfies a version of 4.2. By Lemma
4.1, taking products of these groups of zeros we again obtain
a version of 4.2. Letting these products run over all zeros and
taking the limit, we obtain 4.2.

Proof of 4.3: This proof is similar, appealing to Lemma 4.1 with
γ = 2 and using Hadamard’s formula and grouping zeros as before.
The inequality 4.2 is implied by the usual Riemann hypothesis

for Λðf , sÞ. Note that the Riemann hypothesis for Λðf , sÞ implies
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also that the derviatives ΛðjÞðf , sÞ satisfy the Riemann hypothesis.
Moreover, at the central point one sees that ΛðjÞðf , 3Þ= 0 for all
odd j, and that ΛðjÞðf , 3Þ≥ 0 for all even j. Therefore, taking
Taylor expansions around 3, we see that

Λðf , 5Þ+ 3Λðf , 3Þ= 4Λðf , 3Þ+
X∞
j=1

Λð2jÞðf , 3Þ
ð2jÞ! 22j ≥ 4Λðf , 3Þ

+ 4
X∞
j=1

Λð2jÞðf , 3Þ
ð2jÞ! = 4Λðf , 4Þ.

This reasoning in general explains why the period polynomial has
the right sign at π (see 1.7).

5. Weights Between 8 and 14: Applications of Results of
Pólya and Szegö
Classic work of Pólya (16) and Szegö (17) considers trigonometric
polynomials

uðθÞ= a0 + a1 cos θ+ a2 cosð2θÞ+ . . . + an cosðnθÞ,
vðθÞ= a1 sin θ+ a2 sinð2θÞ+ . . . + an sinðnθÞ.

If 0≤ a0 ≤ a1 ≤ a2 . . . ≤ an−1 < an, then Szegö (17) showed that u
and v both have exactly n zeros in ½0, πÞ and that these zeros are
simple. Each interval

�
ℓ− 1

2
n+ 1

2
π, ℓ+

1
2

n+ 1
2
π
�
for ℓ= 1, . . ., n has precisely

one zero of u, and apart from θ= 0, each interval
�

ℓ
n+ 1

2
π, ℓ+ 1

n+ 1
2
π
�

for 1≤ ℓ≤ n− 1 has exactly one zero of v. His proof is a simple
sign change argument using the positivity of the Fejér kernel.
When the level is suitably large, these results apply and provide

a quick proof of Theorem 1.1. For weight k, for Szegö’s theorem to
apply we must verify the criteria

�
2m
m

�
Λ
�
f ,
k
2

�
≤ 2
�

2m
m+ 1

�
Λ
�
f ,
k
2
+ 1
�
, [5.1]

and for all 1≤ j≤m− 1 that

�
2m
m+ j

�
Λ
�
f ,
k
2
+ j
�
≤
�

2m
m+ j+ 1

�
Λ
�
f ,
k
2
+ j+ 1

�
. [5.2]

Because Λ
�
f , k2
�
≤Λ
�
f , k2+ 1

�
, the condition 5.1 is immediate

for all k≥ 4. Now suppose k≥ 6. Using the definition of Λ, and
simplifying a little, the condition 5.2 becomes (for 1≤ j≤m− 1)

ffiffiffiffi
N

p
≥

2π
ðk=2− j− 1Þ

L
�
f , k2+ j

�
L
�
f , k2+ j+ 1

�,

and by Lemma 2.2 we conclude that our criterion (5.2) is met if

N ≥ max
1≤j≤k=2−2

�
2π

k=2− j− 1

�2ζðj+ 1=2Þ4
ζðj+ 3=2Þ4

. [5.3]

For any given k, we can compute the bound (5.3). Thus, for
k= 8, it suffices to take N ≥ 142; for k= 10 it suffices to have
N ≥ 64; for k= 12 it suffices to have N ≥ 45; for k= 14 it suffices
to have N ≥ 42. We have used sage to check 5.2 for those new-
forms not covered by 5.3 for weights 8≤ k≤ 14. The zeros of
those newforms that do not satisfy 5.2 still lie on jzj= 1=

ffiffiffiffi
N

p
.

Remark: Eventually, this cannot furnish a bound better than 4π2
for N, and so we must turn to another approach for large k and
small N, which we carry out in the next section.

6. Larger Weights: A Second Approach
Here we consider larger weights by reformulating the previous
approach of refs. 11 and 10. Recast the definition (Eq. 1.5) of
Pf ðzÞ as

Pf ðzÞ= ð2mÞ!
 ffiffiffiffi

N
p

2π

!2m+1

Lðf , 2m+ 1ÞQf ðzÞ,

where

Qf ðzÞ= zm
Xm−1

j=0

1
j!

�
2π
z
ffiffiffiffi
N

p
�jLðf , 2m+ 1− jÞ

Lðf , 2m+ 1Þ

+
1

2ðm!Þ2
�

2πffiffiffiffi
N

p
�2m+1 Λ

�
f , k2
�

Lðf , 2m+ 1Þ.

[6.1]

We wish to show that on the unit circle jzj= 1, the real and
imaginary parts of Qf ðzÞ (which correspond to the even and
odd signs of the functional equation) have exactly 2m zeros.
Now let us write

Qf ðzÞ= zm exp
�

2π
z
ffiffiffiffi
N

p
�
+ S1ðzÞ+ S2ðzÞ+ S3ðzÞ,

with

S1ðzÞ= zm
Xm−1

j=1

1
j!

�
2π
z
ffiffiffiffi
N

p
�j�Lðf , 2m+ 1− jÞ

Lðf , 2m+ 1Þ − 1
�
,

S2ðzÞ=−zm
X∞
j=m

1
j!

�
2π
z
ffiffiffiffi
N

p
�j

,

and

S3ðzÞ= 1

2ðm!Þ2
�

2πffiffiffiffi
N

p
�2m+1 Λ

�
f , k2
�

Lðf , 2m+ 1Þ.

For z= eiθ on the unit circle, the argument of zmexpð2π=ðz ffiffiffiffi
N

p ÞÞ is
mθ− 2πðsin  θÞ= ffiffiffiffi

N
p

, which is monotone increasing as θ varies from
0 to 2π, and changes by 2πm overall. Therefore, the real and imag-
inary parts of zmexpð2π=ðz ffiffiffiffi

N
p ÞÞ both have exactly 2m zeros. More

precisely, consider first the real part of zm expð2π=ðz ffiffiffiffi
N

p ÞÞ=
cosðm  θ− 2πðsin θÞ= ffiffiffiffi

N
p Þexpð2πðcos θÞ= ffiffiffiffi

N
p Þ, and clearly we can

find m values of θ with cosðm  θ− 2πðsin  θÞ= ffiffiffiffi
N

p Þ= 1 and m
interlacing values where it is −1. Between two such interlacing
values there must be a zero of the real part. Further, because
expð2πðcos θÞ= ffiffiffiffi

N
p Þ≥ expð−2π= ffiffiffiffi

N
p Þ for all θ, if

jS1ðzÞ+ S2ðzÞ+ S3ðzÞj< exp
�
−
2πffiffiffiffi
N

p
�
, [6.2]

then the real part of Qf ðzÞ will also have sign changes and thus
a zero in these intervals. A similar argument applies to the imag-
inary part of Qf ðzÞ, and so it suffices to check the criterion 6.2.
Now by Lemma 2.2 we see that Lðf , 2m+ 1− jÞ=Lðf , 2m+ 1Þ−

1≤ ζ
�
1
2+m− j

�2 − 1 so that

jS1ðzÞ+ S2ðzÞj≤
Xm−1

j=1

1
j!

�
2πffiffiffiffi
N

p
�j
 
ζ

�
1
2
+m− j

�2

− 1

!
+
X∞
j=m

1
j!

�
2πffiffiffiffi
N

p
�j

.

For the term j=m− 1, note that ζ
�
3
2

�2 − 1≤ 35
6 by direct compu-

tation. Note that for 2x
�
ζ
�
1
2+ x

�2 − 1
�
is decreasing in x≥ 2 and so
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may be bounded by 4ðζð5=2Þ2 − 1Þ≤ 16
5 . Using this observation for

smaller values of j, we obtain

jS1ðzÞ+ S2ðzÞj≤ 16
5

Xm−1

j=1

1
j!

�
2πffiffiffiffi
N

p
�j 2j

2m
+
17
4

1
ðm− 1Þ!

�
2πffiffiffiffi
N

p
�m−1

+
X∞
j=m

1
j!

�
2πffiffiffiffi
N

p
�j 2j

2m
.

Combining the first and third terms, we conclude that

jS1ðzÞ+ S2ðzÞj≤ 16
5
2−m

�
exp
�

4πffiffiffiffi
N

p
�
− 1
�
+
17
4

1
ðm− 1Þ!

�
2πffiffiffiffi
N

p
�m−1

.

[6.3]

To bound S3ðzÞ, note that Λ
�
f , k2
�
≤Λ
�
f , k2+ 1

�
≤� ffiffiffi

N
p
2π

�m+2ðm+ 1Þ!ζ�32�2, so for m≥ 7 we have

jS3ðzÞj≤m+ 1
2ðm!Þ

�
2πffiffiffiffi
N

p
�m−1

ζ

�
3
2

�2

≤
4

ðm− 1Þ!
�

2πffiffiffiffi
N

p
�m−1

.

Combining this with 6.3, we conclude that

jS1ðzÞj+ jS2ðzÞj+ jS3ðzÞj≤ 16
5

1
2m

�
exp
�

4πffiffiffiffi
N

p
�
− 1
�

+
33
4

1
ðm− 1Þ!

�
2πffiffiffiffi
N

p
�m−1

. [6.4]

Thus, to verify the condition 6.2, we need only ensure that

16
5

1
2m

�
exp
�

4πffiffiffiffi
N

p
�
− 1
�
+
33
4

1
ðm− 1Þ!

�
2πffiffiffiffi
N

p
�m−1

< exp
�
−
2πffiffiffiffi
N

p
�
.

[6.5]

For values of m at least as large as the figure in the first row,
the table below gives a bound NðmÞ such that estimate 6.5 holds
for all N ≥NðmÞ:
m 29 21 18 16 14 13 12 11 10 9 8 7

NðmÞ 1 2 3 4 5 6 7 9 11 14 20 28

We used sage to confirm Theorem 1.1 for the finitely many
newforms missed by 6.5.

7. Proof of Theorem 1.2
The weight 4 case was already treated in section 3. For m≥ 2
(that is, weights k≥ 6), the argument in section 6 shows that for
z= eiθ on the unit circle we have

Qf ðzÞ= exp
�
im  θ+

2πffiffiffiffi
N

p e−iθ
�
+O

�
1

2m
ffiffiffiffi
N

p
�
.

Thus, we have that

Re
�
Qf ðzÞ

�
= exp

�
2πffiffiffiffi
N

p cos  θ
�
cos
�
m  θ−

2πffiffiffiffi
N

p sin  θ
�
+O

�
1

2m
ffiffiffiffi
N

p
�
.

For θ∈ ½0,2πÞ the first term above vanishes when mθ− 2πðsin θÞ=ffiffiffiffi
N

p
= π

2+ ℓπ with 0≤ ℓ≤ 2m− 1. For such a point θℓ, if we consider

the values at θℓ −C=ð2m ffiffiffiffi
N

p Þ and θℓ +C=ð2m ffiffiffiffi
N

p Þ for a suitable
constant C> 0 (and if 2m

ffiffiffiffi
N

p
is large enough) then ReðQf ðzÞÞ

has differing signs at these points, and hence a zero in be-
tween. When eðf Þ= 1, the zeros of the period polynomial
rf ðzÞ are located at 1=ði ffiffiffiffiNp Þ times the zeros of ReðQf ðzÞÞ,
and this proves Theorem 1.2 in this case. The case when
eðf Þ=−1 corresponds to ImðQf ðzÞÞ, and a similar argument
applies here.

8. Remarks on the Calculations
In the previous sections we proved Theorem 1.1 for k= 4,6 and
k≥ 42. For 8≤ k≤ 40 finitely many newforms remain to complete
the proof (see the discussions after 5.3 and 6.5). We used in-
equality (5.3) for 8≤ k≤ 14. The most levels remain for weight
k= 8; we are left to consider those newforms with N ≤ 141. For
weights 16≤ k≤ 40 we used 6.5. The table after 6.5 gives the
remaining levels. The most levels remain for weight k= 16; we
are left with N ≤ 27.
Using sage we confirmed Theorem 1.1 for these remaining

newforms. Running the commands CuspForms and newforms
on a laptop, we had no difficulty computing these newforms.
We then used Dokchitser’s sage L-functions calculator to
compute the values Λðf , 1Þ, . . . ,Λðf , k− 1Þ to very high pre-
cision. We tested inequality 5.2 and found that it held for
many of the remaining newforms. However, 5.2 fails for some
newforms with low weight and level. For example, 5.2 fails for
some weight k= 8 newforms with N ∈ f2,3,5− 17,19g.
For the forms that do not satisfy (5.2), we computed the

trigonometric polynomials and checked that on the unit disk that
they have the required number of sign changes for the truth of
Theorem 1.1. As an example, consider the unique newform
f ∈ S10ðΓ0ð12ÞÞ. We have that

Lðf , 1Þ≈ 343.041936898889,Lðf , 2Þ≈ 140.422365373567,
Lðf , 3Þ≈ 32.9164131544840,Lðf , 4Þ≈ 6.41626479306637,
Lðf , 5Þ≈ 1.71889934464323, . . . ,

which in turn implies for z= eiθ that

�
Pf ðzÞ+ eðf ÞPf ð1=zÞ

�	
2≈ 189.128932153817

cosð4θÞ+ 341.466246468159 cosð3θÞ+ 308.910589184567
cosð2θÞ+ 199.188643773093 cosðθÞ+ 73.5501402820398.

This has four zeros for θ∈ ½0, πÞ as required, and they are in the
intervals

�
4π
20

,
5π
20

�
,
�
10π
20

,
11π
20

�
,
�
14π
20

,
15π
20

�
,
�
18π
20

,
19π
20

�
.

ACKNOWLEDGMENTS. The authors thank YoungJu Choie, Yuri Manin, Ram
Murty, Ken Ribet, Drew Sutherland, and Don Zagier for useful comments
and discussions. S.J. thanks the Korea Institute for Advanced Study for
its generous support. W.M. thanks the China Scholarship Council for
its generous support. K.O. acknowledges the support of the Asa Griggs
Candler Fund and the National Science Foundation (NSF). K.S. acknowl-
edges the support of the NSF and the Simons Foundation for a Simons
Investigator Grant.

1. Atkin AOL, Lehner J (1970) Hecke operators on Γ0ðmÞ. Math Ann 185:134–160.
2. Li W (1975) Newforms and functional equations. Math Ann 212:285–315.
3. Choie Y, Park YK, Zagier D Periods of modular forms on Γ0ðNÞ and products of Jacobi

theta functions, in press.
4. Knopp M (1974) Some new results on the Eichler cohomology of automorphic forms.

Bull Am Math Soc 80:607–632.

5. Kohnen W, Zagier D (1984) Modular forms with rational periods. Modular Forms.

Mathematics and Its Applications (Horwood, Chichester, UK), pp 197–249.
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