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Abstract. A real symmetric tensor is said to be copositive if the associated homogeneous
form is greater than or equal to zero over the nonnegative orthant. The problem of detecting
tensor copositivity is NP-hard. This paper proposes a complete semidefinite relaxation algorithm for
detecting the copositivity of a symmetric tensor. If it is copositive, the algorithm can get a certificate
for the copositivity. If it is not, the algorithm can get a point that refutes the copositivity. We show
that the detection can be done by solving a finite number of semidefinite relaxations for all tensors.
As a special case, the algorithm can also be applied to detect matrix copositivity.
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1. Introduction. A real symmetric matrix A ∈ Rn×n is said to be copositive if

xTAx ≥ 0 ∀x ∈ Rn+,

where Rn+ is the nonnegative orthant (i.e., the set of nonnegative vectors). If xTAx > 0
for all 0 6= x ∈ Rn+, then A is said to be strictly copositive. The set of all n×n copositive
matrices is a cone in Rn×n, which is denoted by COPn. Copositive matrices were
introduced in [39]. They have broad applications, e.g., in quadratic programming [8],
dynamical systems and control theory [34, 38], graph theory [13, 21], complementarity
problems and variational inequalities [24]. We refer the reader to [4, 22] for surveys
on copositive optimization.

A basic problem in optimization is the detection of copositive matrices. Let Sn+
be the cone of n× n real symmetric positive semidefinite (PSD) matrices and Nn

+ be
the cone of n× n real symmetric matrices whose entries are all nonnegative. Clearly,
it holds that

(1.1) Sn+ +Nn
+ ⊆ COPn.

For n ≤ 4, the above inclusion is an equality; for n ≥ 5, the equality does not hold
any more [16]. For instance, the Horn matrix [27] is copositive, but it is not a sum
of PSD and nonnegative matrices. Checking membership of the cone COPn is NP-
hard [19, 41]. As shown in [36], a matrix A is copositive if and only if it does not have
a principal submatrix that has a negative eigenvalue with a positive eigenvector. To
apply this testing, one needs to check eigenvalues for all principal submatrices, which
grow exponentially in the dimension. For the n = 5 case, when the diagonal entries
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DETECTING COPOSITIVE MATRICES AND TENSORS 2903

are all ones, A is copositive if and only if the polynomial ‖x‖2(
∑5
i,j=1Aijx

2
ix

2
j ) is a

sum of squares [17]. When off-diagonal entries are nonpositive, A is copositive if and
only if A is positive semidefinite [31]. When a matrix is tridiagonal or acyclic, its
copositivity can be detected in linear time [3, 33]. For testing copositivity for general
matrices, there exist methods based on simplicial partition [6, 58]. Another approach
for testing copositivity is to use the difference of convexity [5, 23]. A survey about
existing results and open problems for copositive matrices can be found in [2].

The matrix copositivity can be detected by solving a linear program (LP). Gad-
dum [25] showed that a symmetric matrix A ∈ Rn×n is copositive if and only if for
every subset ∅ 6= J ⊆ {1, . . . , n}, there exists a vector xJ ∈ RJ such that

AJJxJ ≥ 0, xJ ≥ 0, eT|J|xJ = 1.

In the above, AJJ denotes the principal submatrix of A whose row and column indices
are from J , and e|J| denotes the vector of all ones with length |J |. Based on this, De
Klerk and Pasechnik [15] proposed an LP reformulation for testing matrix copositivity.
Let v be the optimal value of the LP:

(1.2)


max λ

subject to (s.t.) AJJxJ − λe|J| ≥ 0,

xJ ≥ 0, eT|J|xJ = 1
(
J ⊆ {1, . . . , n}

)
.

Then A is copositive if and only if the optimal value v ≥ 0. The linear program (1.2)
can detect matrix copositivity exactly, because LP problems can be solved exactly in
computation [26]. The size of (1.2) grows exponentially in n. Recently, Dickinson [18]
proposed a new certificate for matrix copositivity. It gives a new algorithm to carry
out the detection by checking finitely many linear inequalities. The size of linear
inequalities also grows exponentially. Testing matrix copositivity is equivalent to
solving a nonconvex quadratic program. The finite branch-and-bound algorithm in
[7] can be applied to test matrix copositivity. It requires one to solve finitely many
semidefinite relaxations.

1.1. Copositive tensors. The concept of copositivity can be naturally gener-
alized to tensors, as in Qi [48]. An n-dimensional tensor of order-m is an array

A := (Ai1...im),

with indices in the range 1 ≤ i1, . . . , im ≤ n. The entries of the form Ajj...j are called
diagonal, while the other entries are called off-diagonal. Such an A is called an n-
dimensional tensor of order m. Clearly, vectors are tensors of order 1 and matrices are
tensors of order 2. In some applications, we often have symmetric tensors. The tensor
A is symmetric if Ai1i2...im = Aj1j2...jm whenever (i1, i2, . . . , im) is a permutation of
(j1, j2, . . . , jm). We denote by Sm(Rn) the space of symmetric tensors of order m over
the vector space Rn. For A ∈ Sm(Rn) and x ∈ Rn, define the polynomial

(1.3) A(x) :=
∑

1≤i1,i2,··· ,im≤n

Ai1i2···imxi1xi2 · · ·xim .

Clearly, A(x) is a form (i.e., a homogeneous polynomial) of degree m in the variable
x := (x1, . . . , xn). If A(x) ≥ 0 for all x ∈ Rn, A is said to be positive semidefinite
(PSD). If A(x) ≥ 0 for all x ∈ Rn+, A is said to be copositive. Similarly, if A(x) > 0
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2904 JIAWANG NIE, ZI YANG, AND XINZHEN ZHANG

for all 0 6= x ∈ Rn+, A is said to be strictly copositive. Denote by COPm,n the cone of
all copositive tensors in Sm(Rn). Clearly, when the order m = 2, positive semidefinite
(resp., copositive) tensors are the same as positive semidefinite (resp., copositive)
matrices. To be PSD, a tensor must have even order. An odd order nonzero tensor
can never be PSD, but it is possibly copositive. For instance, every nonzero tensor with
zero diagonal entries and nonnegative off-diagonal ones is copositive, but not PSD.

Copositive tensors have broad applications. For instance, some complementar-
ity problems can be formulated by using copositive tensors [9, 56, 57]. The coclique
number of a hypergraph can be bounded by tensor copositivity [10]; see Example 4.6.
Copositive tensors are useful in vacuum stability [35]. The spectral radius of a nonneg-
ative tensor can be obtained by copositive tensor optimization [61]; see Example 4.7.
Moreover, some polynomial optimization problems can be formulated as linear conic
programs about copositive tensors [46]. We refer the reader to [11, 48, 55, 56] for
more applications of copositive tensors.

Detecting tensor copositivity is also a mathematically challenging problem. It is
also NP-hard, because testing matrix copositivity is a special case. If the off-diagonal
entries of a symmetric tensor A are nonpositive, then A is copositive if and only if A is
PSD [48]. There also exists a characterization of copositive tensors by the eigenpairs
of its principal subtensors [55]. Like the matrix case, tensor copositivity can also be
tested by algorithms based on simplicial partition. Typically, when a tensor lies in
the interior of the copositive cone, the copositivity can be detected by these kinds of
algorithms. However, if it lies on the boundary, they usually have difficulties. We
refer the reader to [6, 10, 11, 58] for related work.

1.2. Contributions. This paper focuses on the detection of copositive tensors.
In the prior existing methods for detecting copositivity, most of them complete the
detection if a tensor lies in the interior of the copsitive cone COPm,n, or if it lies
outside COPm,n. If a tensor lies on the boundary of COPm,n, then these methods
typically have difficulty in detecting copositivity. Moreover, when a tensor is close
to the boundary of COPm,n, these methods often rapidly become more expensive for
carrying out detection.

In this paper, we propose a new algorithm for detecting tensor copositivity. It is
based on Lasserre-type semidefinite programming (SDP) relaxations and optimality
conditions of polynomial optimization. To be precise, we construct a hierarchy of
semidefinite relaxations for checking copositivity. The construction uses semidefinite
relaxation techniques that are developed in the recent work [45]. If a tensor A is
copositive, we can get a certificate for the copositivity. If it is not, we can compute
a point u ∈ Rn+ such that A(u) < 0; such a point u refutes the copositivity of A.
This is implemented in Algorithm 3.1. No matter whether a tensor is copositive or
not, the copositivity can be detected by Algorithm 3.1 in finitely many iterations.
Even if a tensor lies on the boundary of the copositive cone, Algorithm 3.1 can also
do the detection in finitely many iterations. In other words, for every tensor, its
copositivity can be detected by solving a finite number of semidefinite programming
relaxations. This is why we call Algorithm 3.1 a complete semidefinite algorithm for
detecting copositivity. As a special case, matrix copositivity can also be detected
by Algorithm 3.1 in finitely many iterations. We would like to remark that there
already exists an LP reformulation, e.g., (1.2), which can detect matrix copositivity
exactly [15]. However, to the best of the authors’ knowledge, for tensors of order 3 or
higher, we give the first semidefinite programming algorithm that can detect tensor
copositivity in finitely many iterations.
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DETECTING COPOSITIVE MATRICES AND TENSORS 2905

The paper is organized as follows. Section 2 reviews some preliminaries in polyno-
mial optimization. Section 3 gives the complete semidefinite algorithm and proves its
properties. Section 4 presents numerical experiments using the algorithm. Section 5
makes conclusions and discussions.

2. Preliminaries. The symbol N stands for the set of nonnegative integers, and
R for the real field. For x := (x1, . . . , xn) ∈ Rn and α := (α1, . . . , αn) ∈ Nn, define

xα := xα1
1 · · ·xαn

n , |α| := α1 + · · ·+ αn.

For an integer m > 0, define the set

Nnm := {α ∈ Nn| |α| ≤ m}.

The symbol R[x] denotes the ring of polynomials in x with real coefficients, and R[x]k
denotes the space of polynomials in R[x] with degrees at most k. For a symmetric
matrix X, the inequality X � 0 means that X is positive semidefinite. The superscript
T denotes the transpose of a matrix or vector. We use [x]m to denote the column
vector of all monomials in x and of degrees at most m (they are ordered in the graded
lexicographical ordering), i.e.,

[x]m := [1, x1, . . . , xn, x
2
1, x1x2, . . . , xn−1x

m−1
n , xmn ]T .

For a vector x, ‖x‖ denotes its Euclidean norm. In the space Rn, e denotes the vector
of all ones, while ei denotes the ith unit vector in the canonical basis. For a real
number t, dte (resp., btc) denotes the smallest integer not smaller than t (resp., the
biggest integer not bigger than t).

The set RNn
d is the space of all real vectors that are labeled by α ∈ Nnd . That is,

every y ∈ RNn
d can be labeled as

y = (yα)α∈Nn
d
.

Such a y is called a truncated multisequence of degree d [44]. For a polynomial f ∈
R[x]r that is written as

f =
∑
|α|≤Nn

r

fαx
α,

with r ≤ d, we define the operation

(2.1) 〈f, y〉 =
∑
|α|≤Nn

r

fαyα.

Note that 〈f, y〉 is linear in y for fixed f , and is linear in f for fixed y. For a polynomial
q ∈ R[x]2k and the integer t = k − ddeg(q)/2e, the outer product q(x)[x]t[x]Tt is a
symmetric matrix of length

(
n+t
t

)
. It can be expanded as

q(x)[x]t[x]Tt =
∑
α∈Nn

2k

xαQα

for constant symmetric matrices Qα. For y ∈ RNn
2k , define the symmetric matrix

(2.2) L(k)
q [y] :=

∑
α∈Nn

2k

yαQα.
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2906 JIAWANG NIE, ZI YANG, AND XINZHEN ZHANG

It is called the kth localizing matrix of q and is generated by y. For given q, L
(k)
q [y] is

linear in y. Clearly, if q(u) ≥ 0 and y = [u]2k, then

L(k)
q [y] = q(u)[u]t[u]Tt � 0.

For instance, if n = k = 2 and q = 1− x1 − x1x2, then

L(2)
q [y] =

y00 − y10 − y11 y10 − y20 − y21 y01 − y11 − y12

y10 − y20 − y21 y20 − y30 − y31 y11 − y21 − y22

y01 − y11 − y12 y11 − y21 − y22 y02 − y12 − y13

 .
When q = 1 (the constant one polynomial), the localizing matrix L

(k)
1 [y] reduces to a

moment matrix, which we denote by

Mk[y] := L
(k)
1 [y].

For instance, when n = 2, k = 3, the matrix M3[y] is

M3[y] =



y00 y10 y01 y20 y11 y02 y30 y21 y12 y03

y10 y20 y11 y30 y21 y12 y40 y31 y22 y13

y01 y11 y02 y21 y12 y03 y31 y22 y13 y04

y20 y30 y21 y40 y31 y22 y50 y41 y32 y23

y11 y21 y12 y31 y22 y13 y41 y32 y23 y14

y02 y12 y03 y22 y13 y04 y32 y23 y14 y05

y30 y40 y31 y50 y41 y32 y60 y51 y42 y33

y21 y31 y22 y41 y32 y23 y51 y42 y33 y24

y12 y22 y13 y32 y23 y14 y42 y33 y24 y15

y30 y13 y04 y23 y14 y05 y33 y24 y15 y06


.

In the following, we review semidefinite relaxations of semialgebraic sets. Consider
the semialgebraic set

(2.3) S := {x ∈ Rn : g1(x) ≥ 0, . . . , gt(x) ≥ 0}

for polynomials g1, . . . , gt ∈ R[x]. Define the degrees

(2.4) dj := ddeg(gj)/2e, d := max
j
dj .

For all k ≥ d and for all x ∈ S, we have

gj(x)
(
[x]k−dj

)(
[x]k−dj

)T � 0, j = 1, . . . , t.

This implies that if y = [u]2k and u ∈ S, then

L(k)
gj [y] � 0, j = 1, . . . , t.

Clearly, [x]k[x]Tk � 0 for all x ∈ Rn, so

Mk[y] � 0

for all y = [u]2k. So, S is always contained in the set

(2.5) Sk :=

x ∈ Rn
∣∣∣∣∣∣
∃y ∈ RNn

2k , y0 = 1, Mk[y] � 0,
x = (ye1 , . . . , yen),

L
(k)
gj [y] � 0 (j = 0, 1, . . . , t)
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DETECTING COPOSITIVE MATRICES AND TENSORS 2907

for all k ≥ d. Each Sk is the projection of a set in RNn
2k that is defined by linear

matrix inequalities. It is a semidefinite relaxation of S because S ⊆ Sk for all k ≥ d.
The following nested containment relation holds:

(2.6) S ⊆ · · · ⊆ Sk+1 ⊆ Sk ⊆ · · · ⊆ Sd.

3. A complete semidefinite algorithm. We discuss how to detect copositivity
of a given tensor. For a symmetric tensor A ∈ Sm(Rn), let A(x) be the homogeneous
polynomial defined as in (1.3). Clearly, A is copositive if and only if A(x) ≥ 0 for all
x belonging to the standard simplex

∆ = {x ∈ Rn : eTx = 1, x ≥ 0}.

Consider the optimization problem

(3.1)

{
v∗ := min A(x)

s.t. eTx = 1, (x1, . . . , xn) ≥ 0.

Clearly, A is copositive if and only if the minimum value v∗ ≥ 0. Therefore, testing
the copositivity of A is the same as determining the sign of v∗. Problem (3.1) is a
polynomial optimization problem. A standard approach for solving it is to apply clas-
sical Lasserre relaxations [37]. Since the feasible set is compact and the Archimedean
condition holds, its asymptotic convergence is always guaranteed. However, there are
still some issues in computation.

• The convergence of classical Lasserre relaxations may be slow for some ten-
sors. Since the computational cost grows rapidly as the relaxation order
increases, people often want faster convergence in practice.

• For some tensorsA, the classical hierarchy of Lasserre relaxations might fail to
have finite convergence. In other words, it may require one to solve infinitely
many semidefinite relaxations to detect copositivity. This is not practical in
some applications.

• Certifying convergence of Lasserre relaxations is a critical issue in detecting
copositivity. The flat extension or truncation condition is usually used for
certifying convergence [43]. However, it does not hold for all tensors, espe-
cially when (3.1) has infinitely many minimizers. For such cases, certifying
convergence is mostly an open question.

In this section, we construct a new hierarchy of semidefinite relaxations that can
address all the above issues.

As was recently proposed in [45], there exist tight relaxations for solving poly-
nomial optimization whose constructions are based on optimality conditions and La-
grange multiplier expressions. Since its feasible set is compact and nonempty, prob-
lem (3.1) must have a global minimizer, say, u. The constraints of (3.1) are all affine
linear functions. One can see that the linear independence constraint qualification
condition holds at u. So we have the following optimality conditions (the notation ∇
denotes the gradient):

(3.2)

{
∇A(u) = λ0e+

∑n
i=1 λiei,

λ1u1 = · · · = λnun = 0, λ1 ≥ 0, . . . , λn ≥ 0,

where λ0, λ1, . . . , λn are the Lagrange multipliers. By a simple algebraic computation
(also see [45]), one can show that (note that xT∇f(x) = mf(x) for all homogeneous
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polynomials f(x) of degree m, because xT∇xα = |α|xα)

(3.3)


λ0 = uT∇A(u) = mA(u),

λi =
∂A(u)

∂xi
−mA(u) (i = 1, 2, . . . , n).

Because of the above expressions, we define new polynomials:

(3.4) pi :=
∂A(x)

∂xi
−mA(x) (i = 1, 2, . . . , n).

Since every optimizer u must satisfy (3.2) and its norm ‖u‖ ≤ 1, the optimization
problem (3.1) is equivalent to

(3.5)

 min A(x)
s.t eTx− 1 = p1(x)x1 = · · · = pn(x)xn = 0,

1− ‖x‖2 ≥ 0, xi ≥ 0, pi(x) ≥ 0 (i = 1, . . . , n).

Then we apply Lasserre’s relaxations to solve (3.5). For the orders k = 1, 2, . . ., solve
the semidefinite relaxation problem:

(3.6)


vk := min 〈A(x), y〉

s.t y0 = 1, L
(k)

eT x−1
[y] = 0, L

(k)
xipi [y] = 0 (i = 1, . . . , n),

L
(k)
xi [y] � 0, L

(k)
pi [y] � 0 (i = 1, . . . , n),

L
(k)
1−‖x‖2 [y] � 0, Mk[y] � 0, y ∈ RNn

2k .

The ball constraint 1−‖x‖2 ≥ 0 is redundant in (3.5). There are two major advantages
for using it: (i) Adding the ball constraint results in tighter relaxations, i.e., (3.6) is
stronger than the one without using 1−‖x‖2 ≥ 0. (ii) If 1−‖x‖2 ≥ 0 is not used, there
exist numerical difficulties in solving the semidefinite relaxation (3.6). Example 4.9
shows the benefits of adding the ball constraint.

Note that v∗ is also the optimal value of (3.5). From the nested relation (2.6),
the feasible set of (3.5) is contained in the projection of that of (3.6), so the optimal
value vk of (3.6) satisfies

v1 ≤ v2 ≤ · · · ≤ v∗.

Clearly, if vk ≥ 0 for some k, then A is copositive. Combining the above, we can get
the following algorithm.

Algorithm 3.1. For a given tensor A ∈ Sm(Rn), let m0 := dm/2e and k := m0.
Choose a generic vector ξ ∈ RNn

m . Test the copositivity of A as follows.
Step 1: Solve the semidefinite relaxation (3.6). If its optimal value vk ≥ 0, then A is

copositive and stop. If vk < 0, go to Step 2.
Step 2: Solve the following semidefinite program

(3.7)


min 〈ξT [x]m, y〉

s.t L
(k)

eT x−1
[y] = 0, L

(k)
xi [y] � 0 (i ∈ [n]),

L
(k)
1−‖x‖2 [y] � 0, L

(k)
vk−A(x)[y] � 0,

y0 = 1, Mk[y] � 0, y ∈ RNn
2k .

If it is feasible, compute an optimizer ŷ. If it is infeasible, let k := k + 1 and
go to Step 1.
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Step 3: Let u = ((ŷ)e1 , . . . , (ŷ)en). If A(u) < 0, then A is not copositive and stop;
otherwise, let k := k + 1 and go to Step 1.

Remark. (i) In Algorithm 3.1, the vector ξ can be chosen as a random vector
obeying the normal distribution. In MATLAB, we can use the function randn to
generate each entry of ξ. In Step 1, the copositivity of A is justified by the relationship
v∗ ≥ vk for all k ≥ m0. In Step 3, the point u must belong to the simplex ∆. This is

because of the constraints L
(k)

eT x−1
[y] = 0 and L

(k)
xi [y] � 0.

(ii) The method of Algorithm 3.1 is not the same as the one in [45]. The major
difference is Step 2, where the optimization problem (3.7) does not appear in [45].
The reason for solving (3.7) is to resolve the difficulty of detecting convergence of the
hierarchy of (3.6). In Theorem 3.2, we show that vk = v∗ when k is sufficiently large,
but do not know how big such a k is. In practice, the optimal value v∗ is usually
not known. In [45, section 3.2], the flat extension/truncation condition (FETC)1 is
used to detect the value of k such that vk = v∗. However, the FETC might not hold
for some tensors. For instance, it fails to hold when A is the Horn matrix. A major
advantage of solving (3.7) is that we can avoid using FETC to detect convergence.
This is a key reason that Algorithm 3.1 can detect copositivity for all tensors in finitely
many iterations, even for cases in which the FETC fails to hold.

In the following, we show that Algorithm 3.1 must terminate within finitely many
iterations for all tensors A. In other words, the copositivity of every A can be de-
tected correctly by solving finitely many semidefinite relaxations. This is why we call
Algorithm 3.1 a complete semidefinite algorithm for detecting tensor copositivity.

Theorem 3.2. For all symmetric tensors A ∈ Sm(Rn), Algorithm 3.1 has the
following properties:

(i) For all k ≥ m0, the semidefinite relaxation (3.6) is feasible and achieves its
optimal value vk; moreover, vk = v∗ for all k sufficiently large.

(ii) For all k ≥ m0, the semidefinite program (3.7) has an optimizer if it is
feasible.

(iii) If A is copositive, then Algorithm 3.1 must stop with vk ≥ 0 when k is suffi-
ciently large.

(iv) If A is not copositive, then, for almost all ξ ∈ RNn
m (i.e., ξ ∈ RNn

m\Θ for
a subset Θ ⊆ RNn

m of zero Lebesgue measure), Algorithm 3.1 must return a
point u ∈ ∆ with f(u) < 0 when k is sufficiently large.

Proof. (i) The feasible set of (3.1) is compact, so it must have a minimizer, say,
u∗. Then, u∗ satisfies (3.2), and hence u∗ is a feasible point for (3.5). So, the feasible
set of (3.5) is nonempty. This implies that the semidefinite relaxation (3.6) is always
feasible. By the constraint L

(k)
1−‖x‖2 [y] � 0, we can show that the feasible set of (3.6)

is compact as follows. First, we can see that

1 = y0 ≥ y2e1 + · · ·+ y2en .

So, 0 ≤ y2ei ≤ 1 since each y2ei ≥ 0 (because Mk[y] � 0). Second, for all 0 < |α| ≤
k − 1, the (α, α)th diagonal entry of L

(k)
1−‖x‖2 [y] is nonnegative, so

(3.8) y2α ≥ y2α+2e1 + · · ·+ y2α+2en .

By choosing α = e1, . . . , en, the same argument can show that 0 ≤ y2β ≤ 1 for all
|β| ≤ 2. By repeatedly applying (3.8), one can further get that 0 ≤ y2β ≤ 1 for all

1See the rank condition (3.16) in [45].
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|β| ≤ k. Third, note that the diagonal entries of Mk[y] are precisely y2β with |β| ≤ k.
Since Mk[y] � 0, all the entries of Mk[y] must be between −1 and 1. This means that
y is bounded, and hence the feasible set of (3.6) is compact. Therefore, (3.6) must
achieve its optimal value vk.

To prove vk = v∗ for all k sufficiently large, note that (3.5) is the same as the
optimization

(3.9)

 min A(x)
s.t eTx− 1 = p1(x)x1 = · · · = pn(x)xn = 0,

xi ≥ 0, pi(x) ≥ 0, i = 1, . . . , n.

Its corresponding Lasserre relaxations are

(3.10)


v′k := min 〈A(x), y〉

s.t L
(k)

eT x−1
[y] = 0, L

(k)
xipi [y] = 0 (1 ≤ i ≤ n),

L
(k)
xi [y] � 0, L

(k)
pi [y] � 0 (1 ≤ i ≤ n),

y0 = 1, Mk[y] � 0, y ∈ RNn
2k

for the orders k = 1, 2, . . .. The optimal value of (3.9) is also v∗. The feasible set of
(3.6) is contained in that of (3.10), so

(3.11) v′k ≤ vk ≤ v∗, k = m0,m0 + 1, . . . .

Next, we show that the set of polynomials

F :=

(1− eTx)φ+

n∑
j=1

xj

(∑
`

s2
j,`

)
: φ ∈ R[x], sj,` ∈ R[x]


is Archimedean, i.e., there exists f ∈ F such that the inequality f(x) ≥ 0 defines a
compact set in Rn. This is true for f = 1− ‖x‖2, because of the identity

(3.12) 1− ‖x‖2 = (1− eTx)(1 + ‖x‖2) +

n∑
i=1

xi(1− xi)2 +
∑
i 6=j

x2
ixj .

By Theorem 3.3 of [45], we know that v′k = v∗ when k is sufficiently large. Hence, the
relation (3.11) implies that vk = v∗ for all k sufficiently large.

(ii) The semidefinite program (3.7) also has the constraint L
(k)
1−‖x‖2 [y] � 0. By

the same argument as in (i), we know that the feasible set of (3.7) is compact. So, it
must have an optimizer if it is feasible.

(iii) Clearly, A is copositive if and only if v∗ ≥ 0. By item (i), vk = v∗ for all k
big enough. Therefore, if A is copositive, we must have vk ≥ 0 for all k large enough.

(iv) If A is not copositive, then v∗ < 0. By item (i), there exists k1 ∈ N such that
vk = v∗ for all k ≥ k1. Hence, for all k ≥ k1, (3.7) is the same as

(3.13)


min 〈ξT [x]m, y〉

s.t L
(k)

eT x−1
[y] = 0, L

(k)
xi [y] � 0 (i ∈ [n]),

L
(k)
1−‖x‖2 [y] � 0, L

(k)
v∗−A(x)[y] � 0,

(y)0 = 1, Mk[y] � 0, y ∈ RNn
2k .

It is the kth Lasserre relaxation for the polynomial optimization

(3.14)

{
min ξT [x]m

s.t eTx− 1 = 0, x ≥ 0, v∗ −A(x) ≥ 0.
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The feasible set of (3.14) is clearly compact. There exists a subset Θ ⊆ RNn
m of zero

Lebesgue measure [53, section 2.2] such that for all ξ ∈ RNn
m\Θ problem (3.14) has a

unique optimizer, say, u∗. Hence, for almost all ξ ∈ RNn
m , u∗ is the unique optimizer.

For notational convenience, use ŷk to denote the optimizer of (3.7) with the relaxation
order k. Let uk = ((ŷk)e1 , . . . , (ŷ

k)en). By Corollary 3.5 of [54] or Theorem 3.3 of [43],
the sequence {uk}∞k=m0

must converge to u∗, the unique optimizer of (3.14). Since

A(u∗) ≤ v∗ < 0, we must have A(uk) < 0 when k is sufficiently large. Moreover, the

constraints L
(k)
xi [y] � 0 imply that uk ≥ 0, and L

(k)

eT x−1
[y] = 0 implies that eTuk = 1.

Therefore, uk ∈ ∆.

Remark 3.3. (i) In Step 1 of Algorithm 3.1, we need to test whether or not vk ≥ 0.
When the absolute value of vk is big, this test is easy. However, if its absolute value
is very small, then testing its sign might be difficult. Note that the semidefinite
relaxation (3.6) is often solved numerically, i.e., vk is accurate up to a tiny round-off
error. This difficulty is not because of theoretical properties of Algorithm 3.1, but due
to round-off errors, which occur in all numerical methods. In practice, if vk is positive
or close to zero (say, vk > −10−6), then we can reasonably claim the copositivity
of A.

(ii) The semidefinite relaxation programs (3.6) and (3.7) can be solved exactly
by quantifier elimination methods [49, 50, 51]. This is because they can be equiva-
lently reformulated as semialgebraic feasibility problems with quantifiers. We refer
the reader to [29, 47] for such exact methods and their complexity. Generally, such
methods are very expensive to use.

(iii) For computational efficiency, semidefinite programs are often solved numer-
ically by interior-point methods. Starting from interior points, for a given ε > 0,
interior-point methods can compute a primal-dual feasible pair such that the duality
gap is less than ε; this can be done in arithmetic operations whose number is polyno-
mial in the size of constraints and variables of (3.6) and in 1/ε. We refer the reader to
[14, 60] for interior-point methods and their complexity. Therefore, for all big k such
that vk = v∗ (this is guaranteed by Theorem 3.2), if interior-point methods compute
a feasible ỹ such that the duality gap is less than ε, then the copositivity of A can be
detected up to the accuracy parameter ε.

Remark 3.4. As shown in [15], the LP reformulation (1.2) is exact for detecting
matrix copositivity. Here, we compare it with Algorithm 3.1. The major advan-
tage of (1.2) is that it can detect copositivity for all matrices, because (1.2) can be
solved exactly in computation [26]. However, the size of the LP reformulation (1.2)
is exponential growing in n: it has 1 + 1

2n2n variables, n2n inequality constraints,
and 2n − 1 equality constraints. Algorithm 3.1 is based on solving the hierarchy of
semidefinite relaxations (3.6). Theorem 3.2 shows that (3.6) is able to detect copos-
itivity when the relaxation order k is large enough. For each k, the relaxation (3.6)
has

(
n+2k

2k

)
− 1 = O(n2k) variables. The number of equality constraints is(

n+ 2k − 1

2k − 1

)
+ n

(
n+ 2k − 2

2k − 2

)
= O(n2k−1).

Moreover, (3.6) has n+ 1 linear matrix inequality constraints. Each of them has the
length

(
n+k−1
k−1

)
= O(nk−1). For fixed k, the size of the relaxation (3.6) is polynomial

in n. The relaxation (3.7) is of similar size. However, it is not known when k is
big enough to complete the detection, which is an interesting future work. On the
other hand, Algorithm 3.1 is also able to detect copositivity for all tensors (including
matrices), while (1.2) is only for matrices.
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2912 JIAWANG NIE, ZI YANG, AND XINZHEN ZHANG

4. Numerical experiments. This section presents numerical experiments that
apply Algorithm 3.1 to detect matrix and tensor copositivity. The computation is
implemented in MATLAB R2016b, on a Lenovo Laptop with CPU@2.90 GHz and
16.0 GB RAM. Algorithm 3.1 can be implemented by using the software Gloptipoly 3
[28], which calls the semidefinite program solver SeDuMi [59]. For cleanness, we only
display 4 decimal digits. The computational time is reported in seconds (s). Recall
that vk is the optimal value of (3.6). We refer the reader to Remark 3.3(i) for the
determination of the sign condition vk ≥ 0.

4.1. Testing copositive matrices. First, we consider some copositive matrices
that are not a sum of PSD and nonnegative matrices.

Example 4.1. Consider the Horn matrix [27]

(4.1)


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 ,
the Hoffman–Pereira matrix [32]

(4.2)



1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1

1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1
−1 1 0 0 1 −1 1


,

and the Hildebrand matrix [30]
(4.3)

1 − cosψ4 cos(ψ4 + ψ5) cos(ψ2 + ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ1 + ψ5) cos(ψ3 + ψ4)
cos(ψ4 + ψ5) − cosψ5 1 − cosψ1 cos(ψ1 + ψ2)
cos(ψ2 + ψ3) cos(ψ1 + ψ5) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3 + ψ4) cos(ψ1 + ψ2) − cosψ2 1

 ,

where each ψi ≥ 0 and
∑5
i=1 ψi < π. Here, we choose the values

ψ1 = ψ2 = ψ3 = ψ4 = ψ5 = π/6.

All these matrices are copositive but are not a sum of PSD and nonnegative matri-
ces. We apply Algorithm 3.1 to test their copositivities. The lower bounds vk and
computational times are shown in Table 1. Their copositivities are all confirmed at
k = 3, up to tiny round-off errors.

Example 4.2. Consider the matrix

(4.4) Hγ :=


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 γ + 1

 ,D
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Table 1
Computational results for matrices in Example 4.1.

Horn Hoffman–Pereira Hildebrand

k vk Time (s) vk Time (s) vk Time (s)

1 −0.7889 0.59 −0.4503 0.58 −0.2218 0.61

2 −0.0472 0.35 −0.0250 0.60 −0.0153 0.32

3 −7.0× 10−8 1.68 −2.2× 10−7 24.85 −1.2× 10−8 1.11

which is obtained from the Horn matrix by adding a number γ to the (5, 5)-entry.
Since (e1 + e5)THγ(e1 + e5) = γ, Hγ is copositive if and only if γ ≥ 0. For each γ, let
v∗(γ) denote the optimal value of (3.1) corresponding to the matrix Hγ . With thanks
to an anonymous referee, it actually holds that

(4.5) v∗(γ) =

 0 if γ ≥ 0,
γ/(4 + γ) if −2 < γ < 0,
1 + γ if γ ≤ −2.

(The above can be shown as follows. For the point ξ = (0, 1/2, 1/2, 0, 0), ξTHγξ = 0,
so the formula is clearly true for γ ≥ 0. For −2 < γ < 0, after an enumeration of
all possible active constraints, v∗(γ) is the smallest of γ + 1, γ/(4 + γ), 1/(1 − γ),
1/(5 − r), so v∗(γ) = γ/(4 + γ). Similarly, for γ ≤ −2, v∗(γ) is the smallest of
1 + γ, 1/(1 − γ), 1/(5 − r), so v∗(γ) = 1 + γ.) We explore the performance of
Algorithm 3.1 for testing copositivity as γ varies from −0.1 to 0.1 (the increment is
0.005). For each k = 1, 2, 3, the lower bounds vk are plotted in Figure 1 and the line
represents the exact value v∗(γ). As we can see, v1, v2 do not change much as γ varies,
but v3 increases relatively faster. For k = 1, the biggest γ for which Algorithm 3.1
returns a point u ∈ ∆ refuting copositivity (i.e., uTHγu < 0) is −0.05. For k = 3,
the biggest γ for which Algorithm 3.1 returns a refuting u is −0.005. Indeed, for
γ ≤ −0.005, the lower bound v3 matches the exact value v∗(γ), as shown in Figure 1.
For k = 2, no refuting point u is returned by Algorithm 3.1, because (3.7) is infeasible
when k = 2. When γ ≥ 0, the lower bounds v3 are bigger than −10−6. When γ < 0,
the lower bounds v3 are smaller than −10−3. The computational results are accurate
for detecting copositivity, up to some tiny round-off errors.

Copositive matrices have applications in graph theory. Let G = (V,E) be a graph,
with V the set of vertices and E the set of edges. Its stability number α(G) is the
maximum number of pairwise disjoint vertices. As shown in [13, 40], it holds that

α(G)−1 = min
x∈∆

xT (AG + I)x,

where AG is the adjacency matrix of G. To determine α(G), it is enough to compute
the minimum value v∗ of (3.1) for the matrix A := AG + I.

Example 4.3. For each integer ` > 0, construct a graph G` as in [20, section 4.2.2]
as follows. LetK`+1,`+1 be the complete bipartite graph with vertex set {(−1, i), (1, i) :
i = 0, 1, . . . , `}. Its edges are ((−1, i), (1, j)) for i, j = 0, 1, . . . , `. For each i = 1, . . . , `,
add a vertex to the edge of the form ((−1, i), (1, i)), which we denote by (0, i), then
delete the old edge ((−1, i), (1, i)) from the graph and add two new ones ((−1, i), (0, i)),
((0, i), (1, i)). The resulting graph is G`. As mentioned in [20], α(G`) = ` + 1. For
the matrix A := AG + I, the optimal value v∗ of (3.1) is 1/(` + 1). We apply the
semidefinite relaxation (3.6) to compute α(G`)

−1. The lower bounds v2 and their
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-0.1 -0.05 0 0.05 0.1
parameter  =[-0.1:0.005:0.1]
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Fig. 1. Lower bounds v1, v2, v3 versus γ for Hγ in Example 4.2.

Table 2
Stability numbers for graphs G`.

` n = |G`| v2 |v2 − (`+ 1)−1|
∣∣∣ v2−(`+1)−1

(l+1)−1

∣∣∣ Time (s)

1 5 0.5000 9.2× 10−8 1.8× 10−7 0.53

2 8 0.3333 1.3× 10−7 3.9× 10−7 1.77

3 11 0.2500 1.5× 10−6 6.0× 10−6 10.47

4 14 0.2000 2.4× 10−6 1.2× 10−5 119.25

5 17 0.1667 5.5× 10−6 3.3× 10−5 901.23

6 20 0.1428 7.4× 10−6 5.2× 10−5 5186.80

7 23 0.1250 9.3× 10−6 7.4× 10−5 23205.84

absolute/relative errors are reported in Table 2. For k = 2, the lower bounds v2 are
quite accurate. For ` ≤ 4, it took a short time; for ` = 5, 6, 7, it took a while.

4.2. Testing copositive tensors.

Example 4.4. Consider three tensors A ∈ S3(R3) whose polynomials A(x) are
respectively given as

(4.6)


Motzkin: A(x) := x2

1x2 + x1x
2
2 + x3

3 − 3x1x2x3,
Robinson: A(x) := x3

1 + x3
2 + x3

3 − x2
1x2 − x1x

2
2 − x2

1x3

−x1x
2
3 − x2

2x3 − x2x
2
3 + 3x1x2x3,

Choi–Lam: A(x) := x2
1x2 + x2

2x3 + x2
3x1 − 3x1x2x3.
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When each xi is replaced by x2
i , the polynomials A(x) are respectively the Motzkin,

Robinson, and Choi–Lam polynomials (they are all nonnegative but not sums of
squares [52]). Hence, these tensors are all copositive. We detect their copositivities
via Algorithm 3.1. The computational results are shown in Table 3. For all these
tensors, their copositivities are confirmed for k = 3, up to tiny round-off errors.

Table 3
Computational results for tensors in Example 4.4.

A(x) Motzkin Robinson Choi–Lam

k vk Time (s) vk Time (s) vk Time (s)

2 −0.0045 0.78 −0.0208 0.76 −0.0129 0.77

3 −4.3× 10−8 0.45 −4.9× 10−8 0.23 −2.1× 10−8 0.37

Example 4.5. Consider the quartic tensor A ∈ S4(R4) such that

A(x) = (x1 + x2 + x3 + x4)4 − 16(x1x2 + x2x3 + x3x4)2.

It is copositive, because A(x) has the factorization(
(x1 − x2 + x3 − x4)2 + 4x1x4

)
·
(

(x1 + x2 + x3 + x4)2 + 4(x1x2 + x2x3 + x3x4)
)
.

For k = 2, we get v2 ≈ −0.3862, which took about 0.8 seconds. For k = 3, we get
v3 ≈ −1.4 × 10−7, which took about 0.6 seconds. The copositivity is confirmed for
k = 3, up to a round-off error.

Copositive tensors have applications in hypergraph theory [10]. A hypergraph
G = (V,E) has a vertex set V = {1, . . . , n} and an edge set E, such that each edge in
E is an unordered tuple (i1, . . . , i`), with i1, . . . , i` ∈ V . It is m-uniform if each edge
is an unordered m-tuple (i1, . . . , im), for distinct i1, . . . , im. Tensor copositivity can
be used to bound coclique numbers for hypergraphs.

Example 4.6. A coclique of an m-uniform hypergraph G is a subset K ⊆ V such
that any subset of K with cardinality m does not give an edge of G. The largest
cardinality of a coclique of G is called the coclique number of G, which we denote by
ω(G) [10]. Computing ω(G) is typically a challenging problem. However, we can get a
good upper bound for it by using tensor copositivity, as shown in [10]. The adjacency
tensor of an m-uniform hypergraph G = (V,E) is the symmetric tensor C ∈ Sm(Rn)
such that

Ci1...im =

{
1/(m− 1)!, (i1, . . . , im) ∈ E,
0 otherwise.

Let I be the identity tensor (i.e., Ii1...im = 1 if i1 = · · · = im and Ii1...im = 0
otherwise), and let E be the tensor of all ones. It is shown in [10] that ω(G)m−1 ≤ ρ
for all ρ such that ρ(I + C) − E is copositive. To get the smallest such ρ, we need
to compute the largest γ such that (I + C) − γE is copositive. Such a γ equals the
minimum value v∗ of (3.1) for the tensor A := I+C. Let vk be the lower bound given
by (3.6). Then

ω(G) ≤ (1/v∗)1/(m−1) ≤ (1/vk)1/(m−1).

Since ω(G) is an integer, the above implies that

(4.7) ω(G) ≤ b(1/vk)1/(m−1)c
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for all k = m0,m0 + 1, . . .. We test the above bounds for a class of 3-uniform hyper-
graphs. Let Gn = (Vn, En) be the hypergraph such that Vn = {1, . . . , n} and

En =
{

(i, i+ 1, i+ 2)
}n−2

i=1
.

Table 4
Coclique numbers of hypergraphs Gn.

n ω(Gn) (1/v2)
1

m−1 b(1/v2)
1

m−1 c Time (s)

3 2 2.1381 2 0.12

4 3 3.0000 3 0.13

5 4 4.0000 4 0.16

6 4 4.1631 4 0.26

7 5 5.0000 5 0.37

8 6 6.0000 6 0.63

9 6 6.2140 6 1.41

10 7 7.0041 7 3.07

11 8 8.0000 8 5.39

12 8 8.2657 8 15.61

13 9 9.0370 9 31.57

14 10 10.0000 10 72.08

15 10 10.3254 10 213.15

16 11 11.0836 11 282.55

17 12 12.0000 12 487.77

For these hypergraphs Gn, we solve the relaxation (3.6) for k = 2 and get v2,
which gives an upper bound for ω(Gn) by (4.7). The computational results are shown
in Table 4. For Gn in the table, the upper bounds given by (4.7) are tight. Indeed, for
n ≥ 3, one can verify that ω(Gn) = n− bn/3c. A coclique with maximum cardinality
for Gn (n ≥ 3) is the subset

{1 ≤ i ≤ n : mod(i, 3) 6= 0}.

Copositive tensors are useful in spectral theory for nonnegative tensors.

Example 4.7. The largest H-eigenvalue2 of a symmetric nonnegative tensor A is
related to tensor copositivity. Let (I denotes the identity tensor)

B(η) := ηI − A.

As shown in [61], when A is nonnegative, the tensor B(η) is copositive if and only
if η ≥ ρ(A), where ρ(A) is the spectral radius of A (i.e., the largest modulus of

2A number λ is an H-eigenvalue of A ∈ Sm(Cn) if there exists a nonzero vector u such that
∂
∂xi
A(u) = mλ(ui)

m−1 for each i = 1, . . . , n; see [10].
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H-eigenvalues of A). We verify this fact for the nonnegative tensor A ∈ S3(R5):

A(:, :, 1) =


1 1 0 1 1
1 1 0 0 1
0 0 0 0 0
1 0 0 0 0
1 1 0 0 1

 , A(:, :, 2) =


1 1 0 0 1
1 0 0 0 1
0 0 1 0 0
0 0 0 0 1
1 1 0 1 0

 ,

A(:, :, 3) =


0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 1 0

 , A(:, :, 4) =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 1 1 0 0

 ,

A(:, :, 5) =


1 0 0 0 0
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 1 1 0 0

 .

For a range of values of η, the computational results are shown in Table 5.

Table 5
Copositivity for B(η) with various ρ.

η v2 Time (s) Copositivity

8.41 1.2× 10−3 0.16 Yes

8.40 7.8× 10−4 0.17 Yes

8.39 3.5× 10−4 0.14 Yes

8.38 −7.8× 10−5 0.17 No

8.37 −5.1× 10−4 0.15 No

8.36 −9.4× 10−4 0.16 No

For all the cases, the order k = 2 is enough for detecting copositivity. Indeed,
the spectral radius ρ(A) ≈ 8.381829395789357, which can be computed by using the
method in [12]. For η = ρ(A), by Algorithm 3.1, for k = 2, we got v2 ≈ −1.2× 10−9,
which took about 0.28 seconds.

Example 4.8. For every tensor A ∈ Sm(Rn), there always exists a number γ such
that A + γe⊗m is copositive. The smallest such γ, which we denote by γmin, is the
negative of the optimal value v∗ of (3.1) for the tensorA. Clearly, A is copositive if and
only if γmin ≤ 0. This example explores the computational cost for computing γmin for
randomly generated cubic tensors A ∈ S3(Rn) for various n. Here, we generate each
Ai1i2i3 randomly, obeying the normal distribution (this can be done asAi1i2i3 = randn

in MATLAB). For all generated instances, we got −γmin = v2, i.e., the relaxation (3.6)
is tight for the order k = 2 (this is because rankM2[ŷ] = 1 for the optimal solution
ŷ). The computational time is reported in Table 6.

4.3. Some comparisons.

Benefits of the ball constraint. We would like to remark that adding the ball
constraint 1 − ‖x‖2 ≥ 0 in (3.5) can give better lower bounds and also improve the
computational efficiency. See the remark following (3.6).

D
ow

nl
oa

de
d 

10
/1

3/
18

 to
 2

02
.1

13
.1

76
.5

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2918 JIAWANG NIE, ZI YANG, AND XINZHEN ZHANG

Table 6
Computational time (in seconds) for random cubic tensors.

n 9 10 11 12 13 14
Time (s) 0.97 1.82 4.38 10.93 23.79 50.44

n 15 16 17 18 19 20
Time (s) 116.89 229.32 327.72 633.40 1109.81 2748.65

Example 4.9. Consider the Hoffman–Pereira matrix in Example 4.1. If the ball
constraint is not used, the computational results are shown in Table 7. It takes more
time to solve and the computed lower bounds are less accurate.

Table 7
Copositivity testing for the Hoffman–Pereira matrix without ball constraint.

k 2 3 4

vk −0.0250 −1.6× 10−4 −4.5× 10−4

Time (s) 1.26 35.31 2870.00

Classical Lasserre relaxations. Since (3.1) is a polynomial optimization prob-
lem, the classical Lasserre hierarchy of moment semidefinite relaxations [37] can be
applied to solve it. They are

(4.8)


min 〈A(x), y〉

s.t L
(k)

eT x−1
[y] = 0, L

(k)

1−xT x
[y] � 0,

L
(k)
xi [y] � 0 (1 ≤ i ≤ n),

y0 = 1, Mk[y] � 0, y ∈ RNn
2k

for k = m0,m0 + 1, . . .. Let νk be the optimal value of (4.8). Since the feasible
set is compact and the Archimedean condition holds, one can show that νk → v∗

as k → ∞. However, (4.8) is weaker than (3.6), because the feasible set of (3.6) is
properly contained in that of (4.8). So, νk ≤ vk ≤ v∗ for all k. The following is an
example of comparing the lower bounds νk and vk.

Example 4.10. Consider the tensor in Example 4.5. The comparison is reported
in Table 8. The optimal value v∗ = 0.

Table 8
A comparison of relaxations (3.6) and (4.8) for the tensor in Example 4.5.

k
Relaxation (3.6) Relaxation (4.8)

Time (s) vk Time (s) νk

2 0.83 −0.3862 0.22 −0.3862

3 0.55 −1.4× 10−7 0.44 −0.0010

4 1.55 −3.0× 10−7 1.88 −0.0002

5 8.03 −3.7× 10−7 10.80 −0.0001

For k = 2, vk = νk, but for k = 3, 4, 5, vk � νk. Indeed, Algorithm 3.1 terminates
at k = 3, and the copositivity is detected. In contrast, the convergence of νk to v∗ is
much slower.

High-accuracy SDP solver. In our numerical experiments, the package SeDuMi
[59] is used to solve the SDP relaxations. Generally, SeDuMi can solve SDPs accurately
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in the computational environment of double precision. However, if SDPs need to be
solved highly accurately, we might use high-accuracy solvers, e.g., SDPA-GMP [42].
Here, we report the experiment of using SDPA-GMP in Algorithm 3.1 to solve the SDP
relaxations. The matrices/tensors in Examples 4.1, 4.4, and 4.5 are tested. The
results are shown in Table 9. For k = 2, SDPA-GMP gets similar lower bounds as
SeDuMi does. However, for k = 3, SDPA-GMP obtains highly accurate lower bounds
compared to those in Tables 1 and 3 and Example 4.5. For the Hildebrand matrix, we
got v3 ≈ −1.2× 10−17; for other matrices/tensors, we got v3 in a magnitude of order
10−30. We do not know why the accuracy for the Hildebrand matrix is relatively lower.
A possible reason is that the Hildebrand matrix is given by cosine values, which might
cause extra round-off errors in the computation. The comparison also shows that
SDPA-GMP takes much more time to solve the SDPs. For Motzkin/Robinson/Choi–
Lam tensors, the time is much less than that for others. This is because the sizes
of their SDP relaxations are smaller. In some applications, if the copositivity testing
needs to be highly accurate, a high-accuracy SDP solver like SDPA-GMP might be
useful.

Table 9
Computational results by SDPA-GMP.

Matrix/tensor
k = 2 k = 3

v2 Time (s) v3 Time (s)

Horn −0.0472 7.28 −6.0× 10−29 303.33

Hoffman–Pereira −0.0250 76.83 −4.6× 10−29 12437.55

Hildebrand −0.0153 8.25 −1.2× 10−17 297.41

Motzkin −0.0448 0.34 −7.6× 10−31 4.94

Robinson −0.0208 0.37 −1.4× 10−30 3.90

Choi–Lam −0.0129 0.40 −7.7× 10−31 4.42

Example 4.5 −0.3862 1.34 −6.4× 10−29 43.48

5. Conclusions and discussions. This paper gives a complete semidefinite
algorithm for detecting tensor copositivity. If a tensor A is copositive, we can get a
certificate for that, i.e., a nonnegative lower bound for the optimal value v∗ of (3.1).
If it is not copositive, we can get a point that refutes the copositivity, i.e., a point
u ∈ ∆ such that A(u) < 0. For all A, the copositivity can be detected by solving a
finite number of semidefinite relaxations. This is shown in Theorem 3.2.

Algorithm 3.1 is able to detect copositivity for all symmetric tensors. It always
terminates after finitely many iterations. However, at the moment, no bound on k is
known for the termination. An interesting future work is to estimate the complexity
of Algorithm 3.1.

Acknowledgments. The authors would like to thank the associate editor and
two anonymous referees for their fruitful suggestions.
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