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Abstract: To eliminate the numerical oscillations appearing in the first-order symmetric smoothed
particle hydrodynamics (FO-SSPH) method for simulating transient heat conduction problems
with discontinuous initial distribution, this paper presents a second-order symmetric smoothed
particle hydrodynamics (SO-SSPH) method. Numerical properties of both SO-SSPH and FO-SSPH
are analyzed, including truncation error, numerical accuracy, convergence rate, and stability.
Experimental results show that for transient heat conduction with initial smooth distribution,
both FO-SSPH and SO-SSPH can achieve second order convergence rate, which is consistent with the
theoretical analysis. However, for one- and two-dimensional conduction with initial discontinuity,
the FO-SSPH method suffers from serious unphysical oscillations, which do not disappear over
time, and hence it only achieves a first-order convergence rate; while the present SO-SSPH method
can avoid unphysical oscillations and has second-order convergence rate. Therefore, the SO-SSPH
method is a feasible tool for solving transient heat conduction problems with both smooth and
discontinuous distributions, and it is easy to be extended to high dimensional cases.

Keywords: transient heat conduction; discontinuous distribution; smoothed particle hydrodynamics;
convergence rate

1. Introduction

Heat transfer is generally defined as the phenomenon where heat is spread from one system or one
part to another, and can be divided into three modes: heat conduction, heat convection, and thermal
radiation. As the main form of heat transfer in solids, heat conduction is applied in many industrial
fields, such as rubber vulcanization, steel forgings heating, and the design of thermal conductors and
insulation equipment. It is of high importance to industrial production to explore the inherent law of
heat conduction and to analyze the temperature distribution in heat conduction processes.

Theoretical methods cannot, in general, solve these complex heat transfer problems, while physical
experiments suffer from high measurement cost. Based on computational simulations the Numerical
Heat Transfer (NHT) technology [1] has been rapidly developed and the related theories have made
great progress. Numerical methods for solving heat transfer problems are mainly mesh-based methods,
such as finite difference methods (FDM) [2], finite volume methods (FVM), and finite element methods
(FEM) [3]. In recent years, due to the inherent advantages, meshless methods have received much
attention and experienced rapid development. The major difference between mesh-based methods
and meshless ones is that, in meshless methods, only node information is needed and the predefined
node connectivity is not necessary. Zhang et al. [4] applied the Lattice Boltzmann method (LBM) to
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solve the nonlinear heat conduction equation. Singh et al. [5] used the Element-Free Galerkin (EFG)
method to simulate transient heat conduction problems in isotropic homogeneous objects. As one of
the earliest and most powerful meshless methods, the smoothed particle hydrodynamics (SPH) [6,7]
method invented for astrophysical problems has been extended to complex fluid dynamics problems,
especially for those with free surface and moving interfaces. Excellent reviews of the development
of SPH and its diverse applications have been provided [6,8–14]. The development of SPH for heat
conduction problems was mainly completed after the 2000s; we review the relative works below. It is
worth noting that the SPH formulations for heat equations are by no means complete, and we will
focus on the most representative and promising ones. Although great success and diverse applications
have been achieved, there exist two inherent drawbacks [6] in the traditional SPH method: first,
the boundary deficiency due to truncated kernel support of particles close to the boundary and
second, accuracy degeneration when the particle distribution becomes highly irregular. The accuracy
degeneration problem is closely related to the lack of completeness of the SPH approximations [15].
To remedy these two drawbacks, several corrective techniques have been proposed, generating many
corrective methods such as the corrective smoothed particle method (CSPM) [16], modified smoothed
particle hydrodynamics (MSPH) [17] method, and moving least squares particle hydrodynamics
(MLSPH) [18] method.

As conduction is often involved in other processes (e.g., viscous flow), there have been only
a few attempts to entirely and exclusively solve the conduction problems using traditional SPH.
For the discretization of the heat equation, there are three different ways. A simple discretization
of the heat equation in SPH is obtained by firstly estimating the heat flux using the standard first
derivative approximation, and then estimating the divergence in a second step. This method was
originally used by Lucy [19] to simulate the thermal energy evaluation in the modeling of collapse
and fission of optical thick protostar. The numerical results indicated that the log of density agreed
to within approximately 1% of the exact solution. However, the disagreement between the exact
solution and the SPH estimate of the divergence of the flux increased by 25% for particles close
to the surface boundary. To remedy the boundary deficiency problem, Jeong et al. [20] deduced
consistent estimation of near-boundary corrections for system variables using the ghost particle
method and successfully verified this strategy against heat conduction tests. However, as shown by
Brookshaw [21], this method was sensitive to distorted particle distribution, which can be traced to
double differentiation of the kernel. Furthermore, another practical disadvantage is that, with an
intermediate variable, the heat flux needs to be computed and stored in a separate SPH loop.
The second method is the standard SPH kernel approximation of the second derivatives pioneered
by Takeda et al. [22], which is sensitive to particle disorder [20] and may lead to divergence of the
simulation. To remedy the divergence caused by distorted particle distributions, Chaniotis et al. [23]
developed a periodic re-initialization (remeshing) technique. They found that the SPH methodology
with remeshing procedure is capable of direct numerical simulation (DNS) quality simulations.
In the above two methods, either a double calculation of the first derivative or a calculation of
the second derivative of the kernel is needed. Both are sensitive to particle disorder that will most
likely occur in fluid flows. It is hence advantageous to use a simpler SPH approximation of the
Laplacian operator, which should only involve first-order derivatives of the kernel. This idea is
commonly used now for heat conduction in SPH [10–12,14,24–29]. Such a method was pioneered by
Brookshaw [21], further developed by Cleary [24,25], and its three-dimensional derivation was given by
Jubelgas et al. [26] and Rook et al. [27]. To take into account a discontinuous thermal conductively with
continuous heat flux across the material interfaces, Cleary and Monaghan [25] proposed to replace the
averaged conductivity by its harmonic mean, such that multiple materials with substantially different
conductivities and specific heat can be accurately simulated [28,29]. Based on Taylor series expansion
both for regular and irregular particle distributions, Fatehi and Manzari [30] analyzed the truncation
errors in the above three SPH approximations for second derivative and found that none of the three
schemes has the first-order completeness. A new scheme for second derivatives was proposed using a
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modified renormalization tensor and applied to heat conduction problem. The key idea is similar as
that in the MSPH method [17], where kernel derivatives are involved in the modifications. Recently,
Francomano and Paliaga [31] highlighted the numerical insights in MSPH approximations and found
that the request for greater accuracy needs kernel function derivatives with order up to the desired
accuracy order in approximating the function or higher for the derivatives.

For heat conduction problems, there are few related studies using the corrective SPH
methods. Early explorations are due to Chen et al. [16] and Zhang and Betra [17]. Recently,
Jiang et al. [32] presented the first-order symmetric smoothed particle hydrodynamics (FO-SSPH)
method (named because the Taylor series of the function is expanded up to first derivatives), which has
second-order accuracy and the symmetry property of the moment matrix. Furthermore, it does not
involve kernel derivatives and can be directly applied to mixed boundary conditions. Although the
FO-SSPH method can more effectively improve the numerical accuracy and stability than the standard
SPH [32], it can only approximate the first-order spatial derivatives directly. Therefore, heat flux
terms have to be introduced to transform the second-order heat equation into two first-order partial
differential equations. Similar to the Forward Time Central Space (FTCS) method [33], FO-SSPH is
only applicable for heat conduction problems with smooth temperature distribution. If the initial
distribution has a discontinuity, unphysical oscillations will be inevitable and they cannot damp out
naturally. This is because the temperature gradient at a discontinuous position tends to be infinite in
theory, while the approximated first derivative in Taylor expansion can only be a finite value, so the
introducing of the heat fluxes will magnify the error at this time. Therefore, it is difficult for FO-SSPH
to solve transient heat conduction problems with initial discontinuity. Jiang et al. [32] concluded
that the FO-SSPH has second-order convergence rate through numerical experiments. However,
through theoretical analysis and numerical tests, we found that it is true for transient heat conduction
problems with initial smooth distribution, but the FO-SSPH has only first-order convergence rate for
problems with initial discontinuity.

Based on the above discussion, a second-order symmetric smoothed particle hydrodynamics
(SO-SSPH) method (named because the Taylor series of the function is expanded up to second
derivatives) is proposed to approximate second-order spatial derivatives directly in this paper
to eliminate the unphysical oscillations. In this method, the second-order Taylor series is
used, and symmetric moment matrices are obtained. It can directly approximate second-order
derivatives. Numerical characteristics including truncation error, numerical accuracy, convergence
rate, and stability of both FO-SSPH and SO-SSPH are analyzed theoretically and numerically. One key
superiority of SO-SSPH to the MSPH method [17] and the scheme of Fatehi and Manzari [30]
is that no kernel derivatives are needed in the calculation and the moment matrix is symmetric.
This offers many numerical advantages including more choices for the kernel and saving computing
resources. Numerical results show that, for transient heat conduction with initial smooth distribution,
both FO-SSPH and SO-SSPH can achieve second order convergence rate, which is consistent with the
theoretical analysis. However, for both one- and two-dimensional transient heat conduction problems
with a discontinuous initial distribution, the FO-SSPH method has only a first-order convergence rate
due to numerical oscillations, while the SO-SSPH method avoids unphysical oscillations and achieves
second-order convergence.

2. Transient Heat Conduction Problem

In the Cartesian coordinate system, the governing equation for two-dimensional transient heat
conduction problems reads

ρcp
∂T
∂t

= kx
∂2T
∂x2 + ky

∂2T
∂y2 + G, in Ω (1)

where T is temperature, ρ is material density, cp is material specific heat capacity, G is source term,
Ω is the computational domain, kx and ky are thermal conductivity coefficients in x and y directions,
respectively. These coefficients are influenced by many factors, such as temperature and material.
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For simplicity, we assume that both of them are constants, meaning that the transient heat conduction
equation is linear.

To close Equation (1), the initial condition is

T(x, y, 0) = T0(x, y), in Ω (2)

and Dirichlet boundary condition as follows

T(t) = T1 , on ΓD (3)

and Neumann boundary condition as follows

q·n− bT = 0 , on ΓN (4)

where T0 is initial temperature distribution, T1 is boundary temperature, bT is heat source on the
boundary, q = (qx, qy) = (−kx

∂T
∂x ,−ky

∂T
∂y ) represents heat flux, n = (nx, ny)

T is the unit normal vector
on the boundary, ΓD ∪ ΓN = ∂Ω is the boundary of the domain, and ΓD ∩ ΓN = ∅.

If we further assume that there is no heat source, then Equation (1) reduces to

∂T
∂t

= κx
∂2T
∂x2 + κy

∂2T
∂y2 (5)

where κx = kx/ρcp and κy = ky/ρcp. Introducing the heat fluxes as intermediate variables,
the second-order heat conduction Equation (5) can be transformed into the following first-order
system as 

qx = −κx
∂T
∂x

qy = −κy
∂T
∂y

∂T
∂t = −∇·q

(6)

3. SO-SSPH Method

3.1. SPH Method

In SPH, the domain Ω is represented by a finite number of particles, each of which has density,
mass, temperature, and other relevant physical quantities. Kernel approximation and particle
approximation are the two key ideas in standard SPH method [6,7].

For any physical quantity f at position xi = (xi, yi), the SPH kernel approximation of its gradient
can be expressed as [7]

〈∇ fi〉 =
∫

Ω
f (x)∇Wdx− fi

∫
Ω
∇Wdx (7)

where fi = f (xi), 〈·〉 represents the approximation operator, W = W(xi − x, h) is the kernel function,
∇W is the kernel gradient, and h is the smoothing length. The kernel is required to own properties
of normalization, symmetry, compactness, and convergence to Dirac function [7]. The cubic spline
function is usually employed as the kernel.

Applying particle approximation to the integral terms in Equation (7), we obtain

〈∇ fi〉 = ∑
j
( f j − fi)∇iWji∆Vj (8)

where ∇iWji =
∂W(|xj−xi|,h)

∂xi
and ∆Vj is the volume of jth particle.
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3.2. SO-SSPH Method

The Taylor series for a function f (x, y) around point (xi, yi) in a two-dimensional domain gives

f (x, y) = fi + (x− xi) fi,x + (y− yi) fi,y +
1
2 (x− xi)

2 fi,xx

+ 1
2 (y− yi)

2 fi,yy + (x− xi)(y− yi) fi,xy + O(
∣∣∣x− xi

∣∣∣3) (9)

where fi,x := ∂ f
∂x |x=xi , fi,y := ∂ f

∂y |x=xi , fi,xx := ∂2 f
∂x2 |x=xi , fi,yy := ∂2 f

∂y2 |x=xi , fi,xy := ∂2 f
∂x∂y |x=xi .

We neglect the third- and higher-order derivatives and multiply both sides with a compactly
supported function Wk := Wk(|x− xi|, h), (k = 1, 2, · · · 5). Then, integrating over the computational
domain and approximating the integrals with Riemman sum, we can get a system with five unknowns
in matrix form as

M5×5u5×1 = b5×1 (10)

where M5×5 = (Mkl), b5×1 = (bk), u5×1 = (〈 fi,x〉,
〈

fi,y
〉
, 〈 fi,xx〉,

〈
fi,yy

〉
,
〈

fi,xy
〉
)

T , Mkl = ∑
j

PlWk∆Vj,

bk = ∑
j
( f j − fi)Wk∆Vj, k, l = 1, 2 · · · , 5.

Assume that Wk = PkWji and P1 = xji, P2 = yji, P3 = 1
2 xji

2, P4 = 1
2 yji

2, P5 = xjiyji,
where xji = xj − xi, yji = yj − yi. Then the second derivatives are approximated as

〈 fi,xx〉 = {0, 0, 1, 0, 0}M−1
5×5b5×1 and

〈
fi,yy

〉
= {0, 0, 0, 1, 0}M−1

5×5b5×1 (11)

As the function is expanded up to second derivatives, and the moment matrix M5×5 is symmetric,
it is referred to as second-order symmetric smoothed particle hydrodynamics (SO-SSPH) method.

When the function is expanded up to first derivatives, the resulting system becomes

M2×2u2×1 = b2×1 (12)

where M2×2 = (Mkl), b2×1 = (bk), u2×1 = (〈 fi,x〉,
〈

fi,y
〉
)

T , Mkl = ∑
j

PlWk∆Vj, bk = ∑
j
( f j − fi)Wk∆Vj,

k, l = 1, 2.
The first derivatives are approximated as

〈 fi,x〉 = {1, 0}M−1
2×2b2×1 and

〈
fi,y
〉
= {0, 1}M−1

2×2b2×1 (13)

This was referred to as the first-order symmetric smoothed particle hydrodynamics (FO-SSPH)
method by Jiang et al. [32].

To effectively solve heat conduction problems with discontinuous initial distributions,
different strategies for spatial derivative approximations are investigated in this paper. Approximating
the second-order spatial derivatives in Equation (5) using the SO-SSPH method, and approximating
the heat flux terms and their derivatives in Equation (6) using the FO-SSPH method were carried out.
In theory, time integration can be completed by any effective algorithm, and for convenience, we use
the Euler forward difference scheme herein.

4. Numerical Analysis

4.1. Truncation Error

To approximate the spatial derivatives, both FO-SSPH and SO-SSPH methods reserve the first
several terms and neglect the rest in Taylor series expansion. Obviously, this introduces deviation,
which is called truncation error [34,35] and denoted by TE.
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In the SO-SSPH method, the exact matrix form for the derivative approximations gives

M5×5u5×1 =
~
b5×1 (14)

where
~
b5×1 = (b̃k), b̃k = ∑

j
( f j − fi)Wk∆Vj + ∑

j
O(
∣∣xj − xi

∣∣3)Wk∆Vj, k = 1, 2 · · · , 5. Therefore,

the truncation error corresponding to the approximation of second-order spatial derivatives in
SO-SSPH method writes

TE = βx( fi,xx − 〈 fi,xx〉) + βy( fi,yy −
〈

fi,yy
〉
)

= βx{0, 0, 1, 0, 0}M−1
5×5(b5×1 −

~
b5×1) + βy{0, 0, 0, 1, 0}M−1

5×5(b5×1 −
~
b5×1)

(15)

where βx and βy are the coefficients of ∂2 f
∂x2 and ∂2 f

∂y2 , respectively.
In the FO-SSPH method, the exact matrix form for the derivatives gives

M2×2u2×1 =
~
b2×1 (16)

where
~
b2×1 = (b̃k), b̃k = ∑

j
( f j − fi)Wk∆Vj + ∑

j
O(
∣∣xj − xi

∣∣2) Wk∆Vj, k = 1, 2. Therefore, the truncation

error corresponding to the approximation of first-order derivatives writes

TE = αx( fi,x − 〈 fi,x〉) + αy( fi,y −
〈

fi,y
〉
)

= αx{1, 0}M−1
2×2(b2×1 −

~
b2×1) + αy{0, 1}M−1

2×2(b2×1 −
~
b2×1)

(17)

where αx and αy are the coefficients of ∂ f
∂x and ∂ f

∂y , respectively.

4.2. Numerical Accuracy

According to the definition of matrix M5×5 in Equation (10), every matrix element can be
represented as ∑

j
xα

jiy
β
jiWji∆Vj, (α, β ∈ N+). Considering the symmetry property of the kernel function,

the following conclusion can be drawn for evenly distributed particles as applied in this work.

∑
j

xα
jiy

β
jiWji∆Vj

{
6= 0, if α and β are even numbers
= 0, ohervise

(18)

As the magnitudes of particle distances are the same, we obtain

∑
j

xα
jiy

β
jiWji∆Vj = O(|h|α+β), (α and β are even numbers) (19)

where h = (∆x, ∆y)T . Therefore, the moment matrix satisfies

M5×5 =


O(
∣∣h∣∣2)

O(
∣∣h∣∣2)

O(
∣∣h∣∣4) O(

∣∣h∣∣4)
O(
∣∣h∣∣4) O(

∣∣h∣∣4)
O(
∣∣h∣∣4)

 (20)
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It can be seen that M5×5 belongs to a partitioned diagonal matrix, so its inverse matrix follows as

M−1
5×5 =


O(
∣∣h∣∣−2)

O(
∣∣h∣∣−2)

O(
∣∣h∣∣−4) O(

∣∣h∣∣−4)

O(
∣∣h∣∣−4) O(

∣∣h∣∣−4)

O(
∣∣h∣∣−4)

 (21)

Similarly,

b5×1 −
~
b5×1 =

(
O(
∣∣∣h∣∣∣4), O(

∣∣∣h∣∣∣4), O(
∣∣∣h∣∣∣6), O(

∣∣∣h∣∣∣6), O(
∣∣∣h∣∣∣6))T

(22)

Therefore, Equation (15) can be expressed as

TE = O
(∣∣∣h∣∣∣2) (23)

That is to say, using the SO-SSPH method to approximate second derivatives possesses
second-order accuracy.

According to the definition of matrix M2×2 in Equation (12) and similar analysis, we obtain

M−1
2×2 =

(
O(
∣∣h∣∣2) 0
0 O(

∣∣h∣∣2)
)−1

=

(
O(
∣∣h∣∣−2) 0

0 O(
∣∣h∣∣−2)

)
(24)

and
b2×1 −

~
b2×1 ==

(
O
(∣∣∣h∣∣∣4), O

(∣∣∣h∣∣∣4))T
(25)

Therefore, Equation (17) can be expressed as

TE = O
(∣∣∣h∣∣∣2) (26)

That is to say, using the FO-SSPH method to approximate first derivatives possesses second-order
accuracy too.

4.3. Convergence Rate

The convergence is theoretically defined to describe the degree of the closeness between numerical
solution and exact solution when (∆t, h)→ (0, 0) [36]. The actual convergence rates not only depend
on the discretization procedure, but also on the smoothness of the solution [37].

Assuming that the numerical error satisfies

E = O(|h|q) = C|h|q (27)

and after taking the logarithm, we obtain

log E = q log|h|+ log C (28)

Therefore, the function in Equation (28) represents a straight line in log-log coordinate system,
and its slope describes the convergence rate of the corresponding numerical method.
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4.4. Stability Analysis

Equation (11) gives the SO-SSPH discrete form to approximate second derivatives, which can also
be written as

〈 fi,xx〉 = ηi fi + ∑
j 6=i

ηj f j

〈 fi,yy〉 = φi fi + ∑
j 6=i

φj f j
(29)

with
ηi + ∑

j 6=i
ηj = 0

φi + ∑
j 6=i

φj = 0
(30)

Substituting Equation (29) for spatial derivatives and forward difference for time derivative in
Equation (5), we obtain

Tn+1
i = Tn

i + ∆tκx(ηi + ∑
j 6=i

ηje
iνThj)Tn

i + ∆tκy(φi + ∑
j 6=i

φje
iνThj)Tn

i (31)

where i is the imaginary unit and ν is the column vector of the wave number in the Fourier analysis
method [34,35], hj =

(
xj − xi

)T
=
(
∆xj, ∆yj

)T . Thus, the amplification factor is

G = 1 +∆t(κxηi + κyφi) + ∆t ∑
j 6=i

(κxηj + κyφj) cos νThj

+i∆t ∑
j 6=i

(κxηj + κyφj) sin νThj
(32)

Taking Equation (30) into consideration, it can be simplified to

G = 1− ∆t∑
j 6=i

(κyηj + κyφj)(1− cos νThj) + i∆t∑
j 6=i

(kyηj + kyφj) sin νThj (33)

According to the von Neumann stability criterion [38], if the discrete form is stable,
the amplification factor must satisfy the condition of |G| ≤ 1. For simplicity, we choose its necessary
condition |Re(G)| ≤ 1 in this paper, which leads to

0 < ∆t ≤ 1/|κxηi + κxφi| (34)

Equation (13) gives the FO-SSPH discrete form to approximate first derivatives, which also can be
written as

〈 fi,x〉 = λi fi + ∑
j 6=i

λj f j

〈 fi,y〉 = γi fi + ∑
j 6=i

γj f j
(35)

with
λi + ∑

j 6=i
λj = 0

γi + ∑
j 6=i

γj = 0
(36)
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Substituting Equation (35) for spatial derivatives and forward difference for time derivative in
Equation (6), we obtain

qn+1
x,i = −κx(λiTn

i + ∑
j

λjTn
j )

qn+1
y,i = −κy(γiTn

i + ∑
j

γjTn
j )

Tn+1
i −Tn

i
∆t = −(λiqn+1

x,i + ∑
j

λjqn+1
x,j )− (γiqn+1

y,i + ∑
j

γjqn+1
y,j )

(37)

which can be simplified to

Tn+1
i = Tn

i + ∆tκx(λi + ∑
j 6=i

λje
iνThj)

2
Tn

i + ∆tκy(γi + ∑
j 6=i

γje
iνThj)

2
Tn

i (38)

According to the Fourier analysis, together with Equation (36), the amplification factor follows

G = 1− κx∆t

[
∑
j 6=i

λj

(
1− cos νThj − i sin νThj

)]2

− κy∆t

[
∑
j 6=i

γj

(
1− cos νThj − i sin νThj

)]2

(39)

and further simplification leads to

G = 1 −κx∆t

(∑
j 6=i

λj
(
1− cos νThj

))2

−
(

∑
j 6=i

λj sin νThj

)2


−κy∆t

(∑
j 6=i

γj
(
1− cos νThj

))2

−
(

∑
j 6=i

γj sin νThj

)2


+2iκx∆t

(
∑
j 6=i

λj
(
1− cos νThj

))(
∑
j 6=i

λj sin νThj

)

+2iκy∆t

(
∑
j 6=i

γj
(
1− cos νThj

))(
∑
j 6=i

γj sin νThj

)
(40)

According to the von Neumann stability criterion [38], if the discrete form is stable,
the amplification factor must satisfy the condition of |G| ≤ 1. For simplicity, its necessary condition
|Re(G)| ≤ 1 is employed and we obtain

0 < ∆t ≤ 1

2

κx

(
∑
j 6=i

∣∣λj
∣∣)2

+ κy

(
∑
j 6=i

∣∣γj
∣∣)2

 (41)

5. Numerical Experiments

5.1. One-Dimensional Case

Considering the one-dimensional transient heat conduction problem

∂T
∂t

= κx
∂2T
∂x2 , Ω = [−L, L] (42)

with discontinuous initial condition

T(x, 0) =

{
T0, x ∈ [−a, a]
0, oherwise

(43)
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and boundary condition
T(−L, t) = 0, T(L, t) = 0 (44)

The exact solution is

T(x, t) =
T0

2

[
er f
(

a + x√
4tκx

)
+ er f

(
a− x√

4tκy

)]
(45)

in which er f is the error function defined as er f (x) = 2√
π

∫ x
0 e−µ2

dµ.

The parameters of L = 2 m, a = 0.5 m, κx = kx/ρcp = 0.01 m2/s, and T0 = 10 ◦C are used in the
simulation. The initial temperature distribution is given in Figure 1a. Both FO-SSPH and SO-SSPH use
the same parameters, particle distance ∆x = 0.1 m, and smoothing length h = 1.05 ∆x. According to
the stability analysis given above, the stability conditions of FO-SSPH and SO-SSPH are ∆t ≤ 2 s and
∆t ≤ 0.5 s, respectively. To avoid the influence of the time integration error on the subsequent spatial
convergence analysis, a sufficiently small time step of ∆t = 0.00005 s is chosen, and the simulation
time is 5 s.
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Figure 1. One-dimensional heat conduction with discontinuous initial temperature distribution: (a) 
initial condition; (b) results of FO-SSPH and SO-SSPH compared with exact solution; (c) SO-SSPH 
solutions at difference times; and (d) FTCS solutions for Equation (6) (with heat fluxes) and Equation 
(5) (without heat fluxes). 

Numerical oscillations appearing in the FO-SSPH solution are mainly due to the discontinuity 
in the initial temperature. The temperature gradient at the discontinuous position tends to infinity in 
theory, while the approximated first derivative in Taylor expansion can only be a finite value. This 

Figure 1. One-dimensional heat conduction with discontinuous initial temperature distribution:
(a) initial condition; (b) results of FO-SSPH and SO-SSPH compared with exact solution; (c) SO-SSPH
solutions at difference times; and (d) FTCS solutions for Equation (6) (with heat fluxes) and Equation
(5) (without heat fluxes).

Numerical results of FO-SSPH and SO-SSPH are shown in Figure 1b together with the exact
solution. It is seen that FO-SSPH [32] suffers from unphysical oscillations, which do not exist in the
SO-SSPH solution. Temperature distributions at four different times are shown in Figure 1c where
excellent agreements with exact solutions are observed as expected.

Numerical oscillations appearing in the FO-SSPH solution are mainly due to the discontinuity
in the initial temperature. The temperature gradient at the discontinuous position tends to infinity
in theory, while the approximated first derivative in Taylor expansion can only be a finite value.
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This leads to degeneration of numerical accuracy. Therefore, for transient heat conduction problems
with discontinuous initial distribution, the second-order spatial derivatives should be discretized
directly to reduce error accumulation.

For further verification, the forward time central space (FTCS) method [33] is also used to solve
this problem (first derivative is approximated by the central difference) and the results are shown as
Figure 1d. It demonstrates that FTCS with heat fluxes suffers from unphysical oscillations too, which is
consistent with the FO-SSPH results. However, without introducing the heat fluxes, FTCS (second
derivative is approximated by the central difference) gives solutions without oscillations (see Figure 1d).

To further analyze the properties of the methods, we define the relative numerical error as

E =
∑|Te − Tn|

∑ Te (46)

where Te is exact temperature, Tn is numerical temperature, and the summation is over all particles.
Varying the values of ∆x, six pairs of error data corresponding to FO-SSPH and SO-SSPH are calculated
and the results are shown in Table 1.

Table 1. Errors of FO-SSPH and SO-SSPH for one-dimensional heat conduction with discontinuous
initial distribution.

Method
∆x (m)

0.01 0.02 0.05 0.10 0.25 0.5

FO-SSPH 0.0089 0.0178 0.0445 0.0898 0.2297 0.3381
SO-SSPH 5.0103× 10−5 1.9993× 10−4 0.0013 0.0051 0.0379 0.1303

According to the data in Table 1, least-squares-based curve fitting is performed. Convergence rates
in double logarithmic coordinates are shown in Figure 2a. It is found that FO-SSPH can only achieve a
first-order convergence rate, while SO-SSPH has a second-order convergence rate. In Section 3, we have
proven that both FO-SSPH for first derivative approximation and SO-SSPH for second derivative
approximation possess second-order accuracy. It implies that the actual convergence rate depends not
only on the accuracy of the method, but also on the smoothness of the solution. This is consistent with
the Kuzmin’s conclusion for mesh-based methods [37].
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For further verification, and to more clearly explain the FO-SSPH defects when dealing with
heat conduction problems with discontinuous initial distribution, the performances of FO-SSPH and
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SO-SSPH methods to solve a heat conduction problem with smooth (Gaussian) initial distribution are
examined. The Gaussian initial distribution follows

T(x, 0) =
M√
2πσ0

exp

(
− x2

2σ2
0

)
, x ∈ [−15 m, 15 m] (47)

where M =
√

2πσ0 and σ0 = 2 m. The exact solution is written as

T(x, t) =
σ0√

σ2
0 + 2κxt

exp

(
− x2

2
(
σ2

0 + 2κxt
)) (48)

The corresponding errors are shown in Table 2, and the convergence rate curves of FO-SSPH
and SO-SSPH are drawn in Figure 2b. It is seen that FO-SSPH method can achieve second-order
convergence, which is in accordance with the theoretical analysis. Therefore, when the FO-SSPH
method is used to deal with heat conduction problems with discontinuous initial distributions,
the theoretical convergence rate cannot be achieved due to numerical oscillations.

Table 2. Errors of FO-SSPH and SO-SSPH for one-dimensional heat conduction with Gaussian
distribution.

Method
∆x (m)

0.1 0.25 0.5 1.0

FO-SSPH 2.848× 10−5 1.7465× 10−4 6.8262× 10−4 0.0024
SO-SSPH 7.706 × 10−6 4.522× 10−5 1.7967× 10−4 6.5431× 10−4

5.2. Two-Dimensional Case

Consider the two-dimensional transient heat Equation (5) with initial condition

T(x, y, 0) =

{
T0, (x, y) ∈ [−a, a]× [−b, b]
0, otherwise

(49)

and boundary condition

T(−L, y, t) = 0, T(L, y, t) = 0, T(x,−L, t) = 0, T(x, L, t) = 0 (50)

where a < L, b < L. The initial distribution is discontinuous and the exact solution is

T(x, y, t) =
T0

4

[
er f
(

a + x√
4tκx

)
+ er f

(
a− x√

4tκx

)] [
er f

(
b + y√

4tκy

)
+ er f

(
b− y√

4tκy

)]
(51)

The parameters L = 2 m, a = b = 0.5 m, κx = κy = 0.01 m2/s, and T0 = 10 ◦C are used in the
simulations. The initial temperature distribution is shown in Figure 3a. Both FO-SSPH and SO-SSPH
use the same simulation parameters: particle distances ∆x = ∆y = 0.1 m, smoothing length h = 1.1 ∆x,
time step ∆t = 0.001 s and simulation time 5 s.
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Figure 3. Two-dimensional heat conduction with discontinuous temperature distribution: (a) initial
condition and (b) results of FO-SSPH and SO-SSPH along y = 0.05 m compared with exact solution.

FO-SSPH and SO-SSPH are used to simulate this problem and the results at cross-section
y = 0.05 m are shown in Figure 3b together with the exact solution. It is seen that for two-dimensional
heat conduction with discontinuous initial distribution, the FO-SSPH method still suffers from
unphysical oscillations as might be the expected, but the proposed SO-SSPH does not.

To show the two-dimensional heat conduction process, temperature contours at five different
times are depicted in Figure 4a–e. It is seen that with increasing time, high temperature area expands
and amplitude decreases, which conforms to the law of heat conduction. In addition, each contour
line is smooth, which demonstrates that there is no unphysical oscillations in the SO-SSPH solution as
expected. This is more clear as shown in Figure 4f for the temperature distribution along y = 0.05 m.
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Varying the values of ∆x and ∆y, four pairs of error data corresponding to FO-SSPH and SO-SSPH
are listed in Table 3. The convergence rate curves of FO-SSPH and SO-SSPH are shown in Figure 5.
It is clear that similar to the one-dimensional case, FO-SSPH only achieves first-order convergence,
whereas SO-SSPH has second-order convergence.

Table 3. Errors of FO-SSPH and SO-SSPH for two-dimensional heat conduction with discontinuous
initial distribution.

Method
∆x = ∆y (m)

0.10 0.125 0.25 0.5

FO-SSPH 0.1548 0.1974 0.4263 0.6867
SO-SSPH 0.0098 0.0159 0.0773 0.2719

Processes 2018, 6, x FOR PEER REVIEW  14 of 18 

 

6.8469 5.868
8

4.8906

3.9125

2.9344 1.9563

0.97813

 

 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1

2

3

4

5

6
(e)

    
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

2

4

6

8

10

x (m)

T
 ( °

C
)

 

 

Exact solution

SO-SSPH

t = 4

(f) t = 1

t = 2

t = 3

t = 5

 

Figure 4. Temperature contours at different times: (a) t = 1 s; (b) t = 2 s; (c) t = 3 s; (d) t = 4 s; (e) t = 5 s; 
and (f) temperature distribution along y = 0.05 m compared with exact solutions. 

Varying the values of ∆x and ∆y, four pairs of error data corresponding to FO-SSPH and 
SO-SSPH are listed in Table 3. The convergence rate curves of FO-SSPH and SO-SSPH are shown in 
Figure 5. It is clear that similar to the one-dimensional case, FO-SSPH only achieves first-order 
convergence, whereas SO-SSPH has second-order convergence. 

Table 3. Errors of FO-SSPH and SO-SSPH for two-dimensional heat conduction with discontinuous 
initial distribution. 

Method 
∆x = ∆y (m) 

0.10 0.125 0.25 0.5 
FO-SSPH 0.1548 0.1974 0.4263 0.6867 
SO-SSPH 0.0098 0.0159 0.0773 0.2719 

10
-1

10
0

10
-2

10
-1

10
0

Log (|h|)

L
o

g
 (

E
)

 

 

FO-SSPH

E(Δx) = 1.012*|h| 0̂.93872

SO-SSPH

E(Δx) = 0.59781*|h| 2̂.0829

 

Figure 5. Convergence rate of FO-SSPH and SO-SSPH for solving two-dimensional heat conduction 
with discontinuous initial distribution. 
Figure 5. Convergence rate of FO-SSPH and SO-SSPH for solving two-dimensional heat conduction
with discontinuous initial distribution.



Processes 2018, 6, 215 15 of 18

6. Discussion and Conclusions

For transient heat conduction problems with discontinuous initial distribution, a second-order
symmetric smoothed particle hydrodynamics (SO-SSPH) method is proposed to approximate the
second-order spatial derivative terms directly. Compared with the simulation results of the FO-SSPH
method, the SO-SSPH method can effectively eliminate the unphysical oscillations in FO-SSPH. This is
mainly due to the initial temperature which is discontinuous such that the local gradient tends to
infinity, while the approximated first derivative can only be of a finite value. This implies that FO-SSPH
is incapable of approximating the second derivatives indirectly in essence. In addition, according to
the convergence analysis, it is found that for transient heat conduction problems with smooth initial
distributions, both FO-SSPH and SO-SSPH achieve second-order convergence rates. However, for heat
conduction problems with discontinuous initial distributions, FO-SSPH can only achieve first-order
convergence rate (rather than the theoretical second-order accuracy) due to numerical oscillations,
while our SO-SSPH method can achieve a second-order convergence rate. The actual convergence
rates of the meshless methods FO-SSPH and SO-SSPH depend not only on the accuracy of the method,
but also on the smoothness of the solution. The proposed SO-SSPH method can be applied to heat
conduction problems with and without discontinuous initial distributions.
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Nomenclature

Abbreviations

CSPM corrective smoothed particle method
DNS direct numerical simulation
EFG element-free Galerkin
FDM finite difference methods
FEM finite element methods
FO-SSPH first-order symmetric smoothed particle hydrodynamics
FTCS forward time central space
FVM finite volume methods
LBM lattice Boltzmann method
MLSPH moving least squares particle hydrodynamics
MSPH modified smoothed particle hydrodynamics
NHT Numerical Heat Transfer
SO-SSPH second-order symmetric smoothed particle hydrodynamics
SPH smoothed particle hydrodynamics

Symbols

bT the heat source on the boundary
cp material specific heat capacity
E numerical error
erf error function
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G amplification factor
G0 source term
h the smoothing length
h the vector of particle distance
i imaginary unit
kx the thermal conductivity coefficients in x direction
ky the thermal conductivity coefficients in y direction
n the unit normal vector on the boundary
q heat flux
T temperature
T0 initial temperature distribution
T1 boundary temperature
TE truncation error
Te the exact temperature
Tn the numerical temperature
v the column vector of the wave number in the Fourier analysis method
W kernel function
Wk compactly supported function
αx the coefficients of ∂f/∂x
αy the coefficients of ∂f/∂y
βx the coefficients of ∂2f/∂x2

βy the coefficients of ∂2f/∂y2

ΓD the Dirichlet boundary of the domain
ΓN the Neumann boundary of the domain
∆t the time step
∆Vj the volume of j th particle
∆x the particle distance in x direction
∆y the particle distance in y direction
κx kx/ρcp, m2/s
κy ky/ρcp, m2/s
ρ material density
Ω computational domain
〈·〉 approximation operator
∇W kernel gradient

References

1. Tao, W.Q. Numerical Heat Transfer, 2nd ed.; Xi’an Jiaotong University Press: Xi’an, China, 2003; pp. 10–18.
(In Chinese)

2. Chu, H.P.; Chen, C.L. Hybrid differential transform and finite difference method to solve the nonlinear heat
conduction problem. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1605–1614. [CrossRef]

3. Lewis, R.W.; Nithiarasu, P.; Seetharamu, K.N. Fundamentals of the Finite Element Method for Heat and Fluid
Flow; John Wiley and Sons Ltd.: Chicheste, UK, 2004; pp. 38–91.

4. Zhang, D.; Liu, F.; Zhang, J.; Rui, X. Nonlinear heat conduction equation solved with Lattice Boltzmann
method. Chin. J. Comput. Phys. 2010, 27, 699–704. (In Chinese)

5. Singh, I.V.; Sandeep, K.; Prakash, R. Meshless EFG method in transient heat conduction problems. Int. J.
Heat Technol. 2003, 21, 99–105.

6. Liu, G.R.; Liu, M.B. Smoothed particle hydrodynamics (SPH): An overview and recent development.
Arch. Comput. Meth. Eng. 2010, 17, 25–76. [CrossRef]

7. Liu, G.R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Mesh-free Particle Method; World Scientific: Singapore,
2003; pp. 26–52.

8. Monaghan, J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 1992, 30, 543–574.
[CrossRef]

9. Monaghan, J.J. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759. [CrossRef]

http://dx.doi.org/10.1016/j.cnsns.2007.03.002
http://dx.doi.org/10.1007/s11831-010-9040-7
http://dx.doi.org/10.1146/annurev.aa.30.090192.002551
http://dx.doi.org/10.1088/0034-4885/68/8/R01


Processes 2018, 6, 215 17 of 18

10. Monaghan, J.J. Smoothed particle hydrodynamics and its diverse applications. Annu. Rev. Fluid Mech. 2012,
44, 323–346. [CrossRef]

11. Liu, M.B.; Li, S.M. On the modeling of viscous incompressible flows with smoothed particle hydrodynamics.
J. Hydrodyn. Ser. B 2016, 28, 731–745. [CrossRef]

12. Zhang, A.M.; Sun, P.N.; Ming, F.R.; Colagrossi, A. Smoothed particle hydrodynamics and its applications in
fluid-structure interactions. J. Hydrodyn. Ser. B 2017, 29, 187–216. [CrossRef]

13. Rosswog, S. Astrophysical smooth particle hydrodynamics. New Astron. Rev. 2009, 53, 78–104. [CrossRef]
14. Springel, V. Smoothed particle hydrodynamics in astrophysics. Annu. Rev. Astron. Astrophys. 2010, 48,

391–430. [CrossRef]
15. Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C. On the completeness of meshfree methods. Int. J. Numer.

Methods Eng. 1998, 43, 785–819. [CrossRef]
16. Chen, J.K.; Beraun, J.E.; Carney, T.C. A corrective smoothed particle method for boundary value problems in

heat conduction. Int. J. Numer. Methods Eng. 1999, 46, 231–252. [CrossRef]
17. Zhang, G.M.; Batra, R.C. Modified smoothed particle hydrodynamics method and its application to transient

problems. Comput. Mech. 2004, 34, 137–146. [CrossRef]
18. Dilts, G.A. Moving least squares particle hydrodynamics I. Consistency and stability. Int. J. Numer.

Methods Eng. 2015, 44, 1115–1155. [CrossRef]
19. Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024.

[CrossRef]
20. Jeong, J.H.; Jhon, M.S.; Halow, J.S.; Van Osdol, J. Smoothed particle hydrodynamics: Applications to heat

conduction. Comput. Phys. Commun. 2003, 153, 71–84. [CrossRef]
21. Brookshaw, L. A method of calculating radiative heat diffusion in particle simulation. Publ. Astron. Soc. Aust.

1985, 6, 207–210. [CrossRef]
22. Takeda, H.; Miyama, S.; Sekiya, M. Numerical simulation of viscous flow by smoothed particle

hydrodynamics. Prog. Theor. Phys. 1994, 92, 939–960. [CrossRef]
23. Chaniotis, A.K.; Poulikakos, D.; Koumoutsakos, P. Remeshed smoothed particle hydrodynamics for the

simulation of viscous and heat conducting flows. J. Comput. Phys. 2002, 182, 67–90. [CrossRef]
24. Cleary, P.W. Modeling confined multi-material heat and mass flows using SPH. Appl. Math. Model. 1998, 22,

981–993. [CrossRef]
25. Cleary, P.W.; Monaghan, J.J. Conduction modeling using smoothed particle hydrodynamics. J. Comput. Phys.

1999, 148, 227–264. [CrossRef]
26. Jubelgas, M.; Springel, V.; Dolag, K. Thermal conduction in cosmological SPH simulations. Mon. Not. R.

Astron. Soc. 2004, 351, 423–435. [CrossRef]
27. Rook, R.; Yildiz, M.; Dost, S. Modeling transient heat transfer using SPH and implicit time integration.

Numer. Heat Transf. B 2007, 51, 1–23. [CrossRef]
28. Jiang, F.; Sousa, A.C.M. SPH numerical modeling for ballistic-diffusive heat conduction. Numer. Heat Transf. B

2006, 50, 499–515. [CrossRef]
29. Jiang, F.; Sousa, A.C.M. Effective thermal conductivity of heterogeneous multi-component materials: An SPH

implementation. Heat Mass Transf. 2007, 43, 479–491. [CrossRef]
30. Fatehi, R.; Manzari, M.T. Error estimation in smoothed particle hydrodynamics and a new scheme for second

derivatives. Comput. Math. Appl. 2011, 61, 482–498. [CrossRef]
31. Francomano, E.; Paliaga, M. Highlighting numerical insights of an efficient SPH method. Appl. Math. Comput.

2018, 339, 899–915. [CrossRef]
32. Jiang, T.; Ouyang, J.; Li, X.J.; Zhang, L.; Ren, J.L. The first order symmetric SPH method for transient heat

conduction problems. Acta Phys. Sin. 2010, 60, 090206. (In Chinese)
33. He, W.P.; Feng, G.L.; Dong, W.J.; Li, J.P. Comparison with solution of convection-diffusion by several

difference schemes. Acta Phys. Sin. 2004, 53, 3258–3264. (In Chinese)
34. Prieto, F.U.; Muñoz, J.J.B.; Corvinos, L.G. Application of the generalized finite difference method to solve the

advection-diffusion equation. J. Comput. Appl. Math. 2011, 235, 1849–1855. [CrossRef]
35. Benito, J.J.; Ureña, F.; Gavete, L. Solving parabolic and hyperbolic equations by the generalized finite

difference method. J. Comput. Appl. Math. 2007, 209, 208–233. [CrossRef]
36. Zhang, D.L. A Course in Computational Fluid Dynamics; Higher Education Press: Beijing, China, 2010; pp. 32–65.

(In Chinese)

http://dx.doi.org/10.1146/annurev-fluid-120710-101220
http://dx.doi.org/10.1016/S1001-6058(16)60676-5
http://dx.doi.org/10.1016/S1001-6058(16)60730-8
http://dx.doi.org/10.1016/j.newar.2009.08.007
http://dx.doi.org/10.1146/annurev-astro-081309-130914
http://dx.doi.org/10.1002/(SICI)1097-0207(19981115)43:5&lt;785::AID-NME420&gt;3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1097-0207(19990920)46:2&lt;231::AID-NME672&gt;3.0.CO;2-K
http://dx.doi.org/10.1007/s00466-004-0561-5
http://dx.doi.org/10.1002/(SICI)1097-0207(19990320)44:8&lt;1115::AID-NME547&gt;3.0.CO;2-L
http://dx.doi.org/10.1086/112164
http://dx.doi.org/10.1016/S0010-4655(03)00155-3
http://dx.doi.org/10.1017/S1323358000018117
http://dx.doi.org/10.1143/ptp/92.5.939
http://dx.doi.org/10.1006/jcph.2002.7152
http://dx.doi.org/10.1016/S0307-904X(98)10031-8
http://dx.doi.org/10.1006/jcph.1998.6118
http://dx.doi.org/10.1111/j.1365-2966.2004.07801.x
http://dx.doi.org/10.1080/10407790600762763
http://dx.doi.org/10.1080/10407790600646677
http://dx.doi.org/10.1007/s00231-006-0131-9
http://dx.doi.org/10.1016/j.camwa.2010.11.028
http://dx.doi.org/10.1016/j.amc.2018.07.060
http://dx.doi.org/10.1016/j.cam.2010.05.026
http://dx.doi.org/10.1016/j.cam.2006.10.090


Processes 2018, 6, 215 18 of 18

37. Kuzmin, D.; Möller, M. Algebraic Flux Correction I. Scalar Conservation Laws. In Flux-Corrected Transport;
Springer: Berlin, Germany, 2005; pp. 185–203.

38. Mitchell, A.R.; Griffiths, D.F. The Finite Difference Method in Partial Differential Equations; John Wiley and Sons
Ltd.: New York, NY, USA, 1980; pp. 76–78.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Transient Heat Conduction Problem 
	SO-SSPH Method 
	SPH Method 
	SO-SSPH Method 

	Numerical Analysis 
	Truncation Error 
	Numerical Accuracy 
	Convergence Rate 
	Stability Analysis 

	Numerical Experiments 
	One-Dimensional Case 
	Two-Dimensional Case 

	Discussion and Conclusions 
	References

