NONDEGENERACY OF HALF-HARMONIC MAPS $F R O M \mathbb{R}$ INTO \mathbb{S}^{1}

YANNICK SIRE, JUNCHENG WEI, AND YOUQUAN ZHENG

Abstract

We prove that the standard half-harmonic $\operatorname{map} U: \mathbb{R} \rightarrow \mathbb{S}^{1}$ defined by $$
x \rightarrow\left(\frac{\frac{x^{2}-1}{x^{2}+1}}{\frac{x^{2}}{x^{2}+1}}\right)
$$ is nondegenerate in the sense that all bounded solutions of the linearized half-harmonic map equation are linear combinations of three functions corresponding to rigid motions (dilation, translation and rotation) of U.

1. Introduction

Due to their importance in geometry and physics, the analysis of critical points of conformal invariant Lagrangians has attracted much attention since 1950s. A typical example is the Dirichlet energy which is defined on two-dimensional domains and its critical points are harmonic maps. This definition can be generalized to even-dimensional domains whose critical points are called polyharmonic maps. In recent years, people are very interested in the analog of Dirichlet energy in odd-dimensional case, for example, [2], [3], [4], [5], [13], [14] and the references therein. Among these works, a special case is the so-called half-harmonic maps from \mathbb{R} into \mathbb{S}^{1} which are defined as critical points of the line energy

$$
\begin{equation*}
\mathcal{L}(u)=\frac{1}{2} \int_{\mathbb{R}}\left|\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{4}} u\right|^{2} d x \tag{1.1}
\end{equation*}
$$

Note that the functional \mathcal{L} is invariant under the trace of conformal maps keeping invariant the half-space \mathbb{R}_{+}^{2} : the Möbius group. Halfharmonic maps have close relations with harmonic maps with partially free boundary and minimal surfaces with free boundary, see [12] and [13]. Computing the associated Euler-Lagrange equation of (1.1), we obtain that if $u: \mathbb{R} \rightarrow \mathbb{S}^{1}$ is a half-harmonic map, then u satisfies the
following equation,

$$
\begin{equation*}
\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}} u(x)=\left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{2}} d y\right) u(x) \text { in } \mathbb{R} \tag{1.2}
\end{equation*}
$$

It was proved in [13] that
Proposition 1.1. ([13]) Let $u \in \dot{H}^{1 / 2}\left(\mathbb{R}, \mathbb{S}^{1}\right)$ be a non-constant entire half-harmonic map into \mathbb{S}^{1} and u^{e} be its harmonic extension to \mathbb{R}_{+}^{2}. Then there exist $d \in \mathbb{N}, \vartheta \in \mathbb{R},\left\{\lambda_{k}\right\}_{k=1}^{d} \subset(0, \infty)$ and $\left\{a_{k}\right\}_{k=1}^{d} \subset \mathbb{R}$ such that $u^{e}(z)$ or its complex conjugate equals to

$$
e^{i \vartheta} \prod_{k=1}^{d} \frac{\lambda_{k}\left(z-a_{k}\right)-i}{\lambda_{k}\left(z-a_{k}\right)+i} .
$$

Furthermore,

$$
\mathcal{E}(u, \mathbb{R})=[u]_{H^{1 / 2}(\mathbb{R})}^{2}=\frac{1}{2} \int_{\mathbb{R}_{+}^{2}}\left|\nabla u^{e}\right|^{2} d z=\pi d
$$

This proposition shows that the map $U: \mathbb{R} \rightarrow \mathbb{S}^{1}$

$$
x \rightarrow\binom{\frac{x^{2}-1}{x^{2}+1}}{\frac{-2 x}{x^{2}+1}}
$$

is a half-harmonic map corresponding to the case $\vartheta=0, d=1, \lambda_{1}=1$ and $a_{1}=0$. In this paper, we prove the nondegeneracy of U which is a crucial ingredient when analyzing the singularity formation of halfharmonic map flow. Note that U is invariant under translation, dilation and rotation, i.e., for $Q=\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \in O(2), q \in \mathbb{R}$ and $\lambda \in \mathbb{R}^{+}$, the function

$$
Q U\left(\frac{x-q}{\lambda}\right)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) U\left(\frac{x-q}{\lambda}\right)
$$

still satisfies (1.2). Differentiating with α, q and λ respectively and then set $\alpha=0, q=0$ and $\lambda=1$, we obtain that the following three functions

$$
\begin{equation*}
Z_{1}(x)=\binom{\frac{2 x}{x^{2}+1}}{\frac{x^{2}-1}{x^{2}+1}}, \quad Z_{2}(x)=\binom{\frac{-4 x}{\left(x^{2}+1\right)^{2}}}{\frac{2\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}}, \quad Z_{3}(x)=\binom{\frac{-4 x^{2}}{\left(x^{2}+1\right)^{2}}}{\frac{2 x\left(1-x^{2}\right)}{\left(x^{2}+1\right)^{2}}} \tag{1.3}
\end{equation*}
$$

satisfy the linearized equation at the solution U of (1.2) defined as

$$
\begin{aligned}
\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}} v(x)= & \left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{|U(x)-U(y)|^{2}}{|x-y|^{2}} d y\right) v(x) \\
& +\left(\frac{1}{\pi} \int_{\mathbb{R}} \frac{(U(x)-U(y)) \cdot(v(x)-v(y))}{|x-y|^{2}} d y\right) U(x)
\end{aligned}
$$

for $v: \mathbb{R} \rightarrow T_{U} \mathbb{S}^{1}$. Our main result is

Theorem 1.1. The half-harmonic map $U: \mathbb{R} \rightarrow \mathbb{S}^{1}$

$$
x \rightarrow\left(\frac{\frac{x^{2}-1}{x^{2}+1}}{\frac{-2 x}{x^{2}+1}}\right)
$$

is nondegenerate in the sense that all bounded solutions of equation (1.4) are linear combinations of Z_{1}, Z_{2} and Z_{3} defined in (1.3).

In the case of harmonic maps from two-dimensional domains into \mathbb{S}^{2}, the non-degeneracy of bubbles was proved in Lemma 3.1 of [7]. Integro-differential equations have attracted substantial research in recent years. The nondegeneracy of ground state solutions for the fractional nonlinear Schrödinger equations has been proved by Frank and Lenzmann [10], Frank, Lenzmann and Silvestre [11], Fall and Valdinoci [9], and the corresponding result in the case of fractional Yamabe problem was obtained by Dávila, del Pino and Sire in [6].

2. Proof of Theorem 1.1

The rest of this paper is devoted to the proof of Theorem 1.1. For convenience, we identify \mathbb{S}^{1} with the complex unite circle. Since Z_{1}, Z_{2} and Z_{3} are linearly independent and belong to the space $L^{\infty}(\mathbb{R}) \cap$ $\operatorname{Ker}\left(\mathcal{L}_{0}\right)$, we only need to prove that the dimension of $L^{\infty}(\mathbb{R}) \cap \operatorname{Ker}\left(\mathcal{L}_{0}\right)$ is 3 . Here the operator \mathcal{L}_{0} is defined as

$$
\begin{aligned}
\mathcal{L}_{0}(v)= & \left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}} v(x)-\left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{|U(x)-U(y)|^{2}}{|x-y|^{2}} d y\right) v(x) \\
& -\left(\frac{1}{\pi} \int_{\mathbb{R}} \frac{(U(x)-U(y)) \cdot(v(x)-v(y))}{|x-y|^{2}} d y\right) U(x),
\end{aligned}
$$

for $v: \mathbb{R} \rightarrow T_{U} \mathbb{S}^{1}$. Let us come back to equation (1.4), for $v: \mathbb{R} \rightarrow$ $T_{U} \mathbb{S}^{1}, v(x) \cdot U(x)=0$ holds pointwisely. Using this fact and the definition of $\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}}$ (see [8]), we have

$$
\begin{aligned}
\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}} v(x)= & \left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{|U(x)-U(y)|^{2}}{|x-y|^{2}} d y\right) v(x) \\
& +\left(\frac{1}{\pi} \int_{\mathbb{R}} \frac{(U(x)-U(y)) \cdot(v(x)-v(y))}{|x-y|^{2}} d y\right) U(x) \\
= & \left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{|U(x)-U(y)|^{2}}{|x-y|^{2}} d y\right) v(x) \\
& +\left(\frac{1}{\pi} \int_{\mathbb{R}} \frac{(U(x)-U(y))}{|x-y|^{2}} d y \cdot v(x)\right) U(x) \\
& +\left(\frac{1}{\pi} \int_{\mathbb{R}} \frac{(v(x)-v(y))}{|x-y|^{2}} d y \cdot U(x)\right) U(x) \\
= & \left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{|U(x)-U(y)|^{2}}{|x-y|^{2}} d y\right) v(x) \\
& +\left(\frac{1}{\pi} \int_{\mathbb{R}} \frac{(v(x)-v(y))}{|x-y|^{2}} d y \cdot U(x)\right) U(x) \\
= & \left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{|U(x)-U(y)|^{2}}{|x-y|^{2}} d y\right) v(x) \\
& +\left(\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}} v(x) \cdot U(x)\right) U(x) .
\end{aligned}
$$

Therefore equation (1.4) becomes to

$$
\begin{align*}
\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}} v(x) & =\left(\frac{1}{2 \pi} \int_{\mathbb{R}} \frac{|U(x)-U(y)|^{2}}{|x-y|^{2}} d y\right) v(x)+\left(\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}} v(x) \cdot U(x)\right) U(x) \\
& =\frac{2}{x^{2}+1} v(x)+\left(\left(-\Delta_{\mathbb{R}}\right)^{\frac{1}{2}} v(x) \cdot U(x)\right) U(x) \tag{2.1}
\end{align*}
$$

Next, we will lift equation (2.1) to \mathbb{S}^{1} via the stereographic projection from \mathbb{R} to $\mathbb{S}^{1} \backslash\{$ pole $\}$:

$$
\begin{equation*}
S(x)=\binom{\frac{2 x}{x^{2}+1}}{\frac{1-x^{2}}{x^{2}+1}} . \tag{2.2}
\end{equation*}
$$

It is well known that the Jacobian of the stereographic projection is

$$
J(x)=\frac{2}{x^{2}+1} .
$$

For a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, define $\tilde{\varphi}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\varphi(x)=J(x) \tilde{\varphi}(S(x)) \tag{2.3}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
{\left[\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{\varphi}\right](S(x)) } & =\frac{1}{\pi} \int_{\mathbb{R}} \frac{\tilde{\varphi}(S(x))-\tilde{\varphi}(S(y))}{|S(x)-S(y)|^{2}} d S(y) \\
& =\frac{1}{\pi} \int_{\mathbb{R}} \frac{\frac{1+x^{2}}{2} \varphi(x)-\frac{1+y^{2}}{2} \varphi(y)}{\frac{4(x-y)^{2}}{\left(x^{2}+1\right)\left(y^{2}+1\right)}} \frac{2}{1+y^{2}} d y \\
& =\frac{1+x^{2}}{4 \pi} \int_{\mathbb{R}} \frac{\left(1+x^{2}\right) \varphi(x)-\left(1+y^{2}\right) \varphi(y)}{(x-y)^{2}} d y \\
& =\frac{1+x^{2}}{2}\left(-\Delta_{\mathbb{R}}\right)^{1 / 2}\left[\frac{x^{2}+1}{2} \varphi(x)\right] \\
& =\frac{1+x^{2}}{2}\left(-\Delta_{\mathbb{R}}\right)^{1 / 2}[\tilde{\varphi}(S(x))]
\end{aligned}
$$

Therefore,

$$
\left(-\Delta_{\mathbb{R}}\right)^{1 / 2}[\tilde{\varphi}(S(x))]=J(x)\left[\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{\varphi}\right](S(x))
$$

Denote $v=\left(v_{1}, v_{2}\right)$ and let $\tilde{v}_{1}, \tilde{v}_{2}$ be the functions defined by (2.3) respectively. Then the linearized equation (2.1) becomes

$$
\left\{\begin{array}{l}
J(x)\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{1}=J(x) \tilde{v}_{1}+\frac{x^{2}-1}{x^{2}+1} \frac{x^{2}-1}{x^{2}+1} J(x)\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{1}+\frac{x^{2}-1}{x^{2}+1} \frac{-2 x}{x^{2}+1} J(x)\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{2}, \\
J(x)\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{2}=J(x) \tilde{v}_{2}+\frac{-2 x}{x^{2}+1} \frac{x^{2}-1}{x^{2}+1} J(x)\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{1}+\frac{-2 x}{x^{2}+1} \frac{-2 x}{x^{2}+1} J(x)\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{2} .
\end{array}\right.
$$

Since $J(x)>0$ and set $U=(\cos \theta, \sin \theta)$, we get

$$
\left\{\begin{array}{l}
\left(-\Delta_{\mathbb{S}^{1}} \frac{1}{2} \tilde{v}_{1}=\tilde{v}_{1}+\cos ^{2} \theta\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{1}+\cos \theta \sin \theta\left(-\Delta_{\mathbb{S}^{1}} \frac{1}{2} \tilde{v}_{2},\right.\right. \\
\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{2}=\tilde{v}_{2}+\cos \theta \sin \theta\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{1}+\sin ^{2} \theta\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{2},
\end{array}\right.
$$

which is equivalent to

$$
\left\{\begin{array}{l}
\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{1}=2 \tilde{v}_{1}+\cos 2 \theta\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{1}+\sin 2 \theta\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{2} \\
\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{2}=2 \tilde{v}_{2}+\sin 2 \theta\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{1}-\cos 2 \theta\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \tilde{v}_{2} .
\end{array}\right.
$$

Set $w=\tilde{v}_{1}+i \tilde{v}_{2}, z=\cos \theta+i \sin \theta$, then we have

$$
\begin{equation*}
\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} w=2 w+z^{2}\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \bar{w} \tag{2.4}
\end{equation*}
$$

Here \bar{w} is the conjugate of w.
Since $v \in L^{\infty}(\mathbb{R}), w$ is also bounded, so we can expand w into fourier series

$$
w=\sum_{k=-\infty}^{\infty} a_{k} z^{k} .
$$

Note that all the eigenvalues for $\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}}$ are $\lambda_{k}=k, k=0,1,2, \cdots$, see [1]. Using (2.4), $\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} z^{k}=k z^{k}$ and $\left(-\Delta_{\mathbb{S}^{1}}\right)^{\frac{1}{2}} \bar{z}^{k}=k \bar{z}^{k}$, we obtain

$$
\left\{\begin{array}{l}
(-k-2) a_{k}=(2-k) \bar{a}_{2-k}, \text { if } k<0 \\
(k-2) a_{k}=(2-k) \bar{a}_{2-k}, \text { if } 0 \leq k \leq 2 \\
a_{k}=\bar{a}_{2-k}, \text { if } k \geq 3
\end{array}\right.
$$

Furthermore, from the orthogonal condition $v(x) \cdot U(x)=0$ (so $\left(\tilde{v}_{1}, \tilde{v}_{2}\right)$. $(\cos \theta, \sin \theta)=0$), we have

$$
a_{k}=-\bar{a}_{2-k}, \quad k=\cdots-1,0,1, \cdots .
$$

Thus

$$
a_{k}=0, \text { if } k<0 \text { or } k \geq 3
$$

and

$$
a_{0}=-\bar{a}_{2}, \quad a_{1}=-\bar{a}_{1}
$$

hold, which imply that

$$
w=-\bar{a}_{2}+a_{1} z+a_{2} z^{2}=a(i z)+b\left[\frac{i}{2}(z-1)^{2}\right]+c \frac{\left(z^{2}-1\right)}{2} .
$$

Here a, b, c are real numbers and satisfy relations

$$
i(a-b)=a_{1}, \quad \frac{c}{2}+\frac{i}{2} b=a_{2} .
$$

And it is easy to check that $i z, \frac{i}{2}(z-1)^{2}$ and $\frac{\left(z^{2}-1\right)}{2}$ are respectively Z_{1}, Z_{2} and Z_{3} under stereographic projection (2.2). By the one-to-one correspondence of w and v, we know that the dimension of $L^{\infty}(\mathbb{R}) \cap$ $\operatorname{Ker}\left(\mathcal{L}_{0}\right)$ is 3 . This completes the proof.

References

[1] Sun-Yung A. Chang and Paul C. Yang. Extremal metrics of zeta function determinants on 4-manifolds. Ann. of Math. (2), 142(1):171-212, 1995.
[2] Francesca Da Lio. Fractional harmonic maps into manifolds in odd dimension $n>1$. Calc. Var. Partial Differential Equations, 48(3-4):421-445, 2013.
[3] Francesca Da Lio. Compactness and bubble analysis for $1 / 2$-harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire, 32(1):201-224, 2015.
[4] Francesca Da Lio and Tristan Rivière. Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps. Adv. Math., 227(3):1300-1348, 2011.
[5] Francesca Da Lio and Tristan Rivière. Three-term commutator estimates and the regularity of $\frac{1}{2}$-harmonic maps into spheres. Anal. PDE, 4(1):149-190, 2011.
[6] Juan Dávila, Manuel del Pino and Yannick Sire. Nondegeneracy of the bubble in the critical case for nonlocal equations. Proc. Amer. Math. Soc., 141(11):3865-3870, 2013.

NONDEGENERACY OF HALF-HARMONIC MAPS FROM \mathbb{R} INTO $\mathbb{S}^{1} 7$

[7] Juan Dávila, Manuel del Pino and Juncheng Wei. Singularity formation for the two-dimensional harmonic map flow into S^{2}. Preprint.
[8] Eleonora Di Nezza, Giampiero Palatucci and Enrico Valdinoci. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math., 136(5):521-573, 2012.
[9] Mouhamed Moustapha Fall and Enrico Valdinoci. Uniqueness and nondegeneracy of positive solutions of $(-\Delta)^{s} u+u=u^{p}$ in \mathbb{R}^{N} when s is close to 1 . Comm. Math. Phys., 329(1):383-404, 2014.
[10] Rupert L. Frank and Enno Lenzmann. Uniqueness of non-linear ground states for fractional Laplacians in \mathbb{R}. Acta Math., 210(2):261-318, 2013.
[11] Rupert L. Frank, Enno Lenzmann and Luis Silvestre. Uniqueness of radial solutions for the fractional Laplacian. Comm. Pure Appl. Math., 69(9):16711726, 2016.
[12] Ailana Fraser and Richard Schoen. Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math., 203(3):823-890, 2016.
[13] Vincent Millot and Yannick Sire. On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres. Arch. Ration. Mech. Anal., 215(1):125210, 2015.
[14] Armin Schikorra. Regularity of $n / 2$-harmonic maps into spheres. J. Differential Equations, 252(2):1862-1911, 2012.

Johns Hopkins University, Department of mathematics, Krieger Hall, Baltimore, MD 21218, USA

E-mail address: sire@math.jhu.edu
Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2

E-mail address: wei@math.cuhk.edu.hk
School of Science, Tianjin University, 92 Weijin Road, Tianjin 300072, P.R. China

E-mail address: zhengyq@tju.edu.cn

