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In this paper, we give a new characterization for the boundedness of the weighted differentiation composition
operator from logarithmic Bloch spaces to Bloch-type spaces and calculate its essential norm in terms of the
n-th power of the induced analytic self-map on the unit disk. From which a sufficient and necessary condition
of compactness of the operator follows immediately.
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1 Introduction

Denote H(D) the space of all holomorphic functions on the unit disk D and S(D) the set of all self-maps on
D. Throughout this paper, log denotes the natural logarithm function. Given a bounded, continuous and strictly
positive function µ on D, we define the µ-Bloch space Bµ = Bµ(D), consisting of all f ∈ H(D) such that

‖f‖µ = sup
z∈D

µ(z)|f ′(z)| <∞.

The space Bµ is a Banach space under the norm

‖f‖Bµ = |f(0)|+ ‖f‖µ.

For α > 0 and µ : D → (0, 1) is defined by µ(z) = (1 − |z|2)α, then in this case, Bµ is denoted by Bα, the so-
called α-Bloch space on D. when α = 1, Bα is the classical Bloch space B. Moreover, let µ = vlog : D→ (0,∞)
be given by

vlog(z) = (1− |z|) log
(

3

1− |z|

)
,

then we obtain the log-Bloch space and denote Bvlog(D) by Blog. It is well-known that the log-Bloch space Blog
is a Banach space endowed with the norm

‖f‖Blog
= |f(0)|+ ‖f‖log,

where

‖f‖log = sup
z∈D

(1− |z|) log
(

3

1− |z|

)
|f ′(z)|.

We refer the readers to the book [22] by K. H. Zhu, which is excellent source for the development of the theory
of function spaces.
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For ϕ ∈ S(D), the composition operator Cϕ is defined by

Cϕ(f) = f ◦ ϕ, f ∈ H(D).

It is an interesting topic to provide function-theoretic characterizations of when ϕ induces a bounded or com-
pact composition operator on various holomorphic function spaces. For this theory, we refer the readers to the
books [4] by Cowen and MacCluer, and [14] by Shapiro.

As we all know the differentiation operator is defined asDf = f ′ for f ∈ H(D). For u ∈ H(D), the weighted
composition operator uCϕ is given by

(uCϕf)(z) = u(z)f(ϕ(z)), f ∈ H(D).

Now let m ∈ N, the weighted differentiation composition operator, denoted by Dm
ϕ,u, is defined as follows

(Dm
ϕ,uf)(z) = u(z).f (m)(ϕ(z)), f ∈ H(D).

When m = 0, then the operator Dm
ϕ,u becomes the weighted composition operator uCϕ. That’s the reason why

we call Dm
ϕ,u the weighted differentiation composition operator. If m = 0 and u(z) = 1, then Dm

ϕ,u = Cϕ. If
m = 1 and u(z) = 1, then Dm

ϕ,u = CϕD. If m = 1 and u(z) = ϕ′(z), then Dm
ϕ,u = DCϕ. For the operator

Dm
ϕ,u, we refer the readers to the papers [15, 16].
The essential norm of a continuous linear operator T : X → Y is the distance from T to the set of all compact

operators, that is,
‖T‖e = inf{‖T −K‖ : K is compact }.

Since ‖T‖e = 0 if and only if T is compact, so the estimates on ‖T‖e lead to conditions for T to be compact.
Recently there has been a great interest in the new characterizations for the essential norms of composition

operator and differentiation operator between Bloch-type spaces on the unit disk. In papers [10] and [11], we
respectively studied the new characterizations for the operators CϕDm : Bα → Bβ and DCϕ : Bα → Bβ .
Concerning the composition operator from the log-Bloch space to µ-Bloch space, we refer the readers to the pa-
pers [2,5]. Moreover, the papers [6–9,13,19–21] are also about the new subject, which are helpful for our study.
Based on the above foundations, the goal of this paper is to give the new characterizations for the weighted differ-
entiation operator Dm

ϕ,u : Blog → Bµ on the unit disk. In section 2, we list some lemmas. The characterizations
for the boundedness and essential norm of Dm

ϕ,u : Blog → Bµ are given in section 3 and section 4, respectively.
Throughout the remainder of this paper, the notations A � B, A � B, A � B mean that there maybe

different positive constants C such that B/C ≤ A ≤ CB, A ≤ CB, CB ≤ A.

2 Some lemmas

Let L = 1− 1
log 3 ∈ (0, 1) in this paper. In this section, we list some auxiliary facts. We define a sequence (rj)j∈N

by r0 = 0 and rj = 1 − m−1+L
j+m−1+L for each j ∈ N. The sequence (rj)j∈N lies in [0, 1) is strictly increasing and

satisfies rj → 1− as j →∞. For ϕ ∈ S(D) and j ∈ N, we define the set

Ajϕ = {z ∈ D : rj ≤ |ϕ(z)| < rj+1}.

It is obvious that Ajϕ ∩Akϕ = ∅ for j 6= k.

Lemma 2.1 Define A : [1,∞)→ (0, 1] by

A(x) =

(
x+ 1

x+m+ L

)x
.

Then we have that

inf
x≥1

A(x) = lim
x→∞

A(x) = e−(m−1+L).
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P r o o f.

lim
x→∞

A(x) = lim
x→∞

(
x+ 1

x+m+ L

)x
= lim

x→∞

(
1 +
−(m− 1 + L)

x+m+ L

) x+m+L
−(m−1+L)

−x(m−1+L)
x+m+L

= e−(m−1+L).

(logA(x))
′

= log
x+ 1

x+m+ L
+

x(m+ L− 1)

(x+ 1)(x+m+ L)

≤ log
x+ 1

x+m+ L
+
m+ L− 1

x+m+ L

= log
x+ 1

x+m+ L
− x+ 1

x+m+ L
+ 1.

The above inequality is negative, due to the function log η − η + 1 takes values −∞ and 0 at η = 0 and η = 1,
respectively and is strictly increasing in η ∈ (0, 1). Thus logA is strictly decreasing, in turn the function A
is strictly decreasing on [1,∞). Hence it follows that inf

x≥1
A(x) = lim

x→∞
A(x) = e−(m−1+L). This ends the

proof.

Lemma 2.2 Let m, j ∈ N, then the function

fj(x) = xj(1− x)m log
3

1− x
, x ∈ (0, 1),

is decreasing on [rj , 1). Also, we have that

jm

log j+1
m−1+L

fj(x) ≥
Lm

3mem−1+L
for all x ∈ [rj , rj+1], (1)

lim
j→∞

jm

log j+1
m−1+L

min
x∈[rj ,rj+1]

fj(x) =
(m− 1 + L)m

em−1+L
. (2)

P r o o f. It suffices to show that fj is decreasing on [rj , rj+1]. Since

f ′j(x) = xj(1− x)m−1
(
(j(1− x)−mx) log 3

1− x
+ x

)
,

and L ∈ (0, 1), then we have j − (j +m)x < 0 holds for all x ∈ [rj , 1). By the fact log 3
1−x ≥ log 3 for all

x ∈ (0, 1), it follows that

f ′j(x) ≤ xj−1(1− x)m−1 ((j − (j +m)x) log 3 + x) .

Since the function

hj(x) = (j − (j +m)x) log 3 + x = j log 3− ((j +m) log 3− 1)x

is decreasing for x ∈ [rj , 1) and hj(rj) = 0, thus f ′j(x) < 0 for all x ∈ (rj , 1). That is, fj is decreasing on
[rj , 1). On the other hand, by the first statement in this lemma and lemma 2.1, we get that for each j ∈ N and all
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x ∈ [rj , rj+1],

jm

log j+1
m−1+L

fj(x) ≥
jm

log j+1
m−1+L

fj(rj+1)

=
jm

log j+1
m−1+L

(
1− m− 1 + L

j +m+ L

)j (
m− 1 + L

j +m+ L

)m
log

3(j +m+ L)

m− 1 + L

=
log 3(j+m+L)

m−1+L

log j+1
m−1+L

(
j + 1

j +m+ L

)j (
(m− 1 + L)j

j +m+ L

)m
≥ 1 · e−(m−1+L)

(
m− 1 + L

m+ 1 + L

)m
≥ Lm

3mem−1+L
.

Moreover, we have that

lim
j→∞

jm

log j+1
m−1+L

min
x∈[rj ,rj+1]

fj(x) = lim
j→∞

jm

log j+1
m−1+L

fj(rj+1)

= lim
j→∞

log 3(j+m+L)
m−1+L

log j+1
m−1+L

(
j + 1

j +m+ L

)j (
(m− 1 + L)j

j +m+ L

)m
=

(m− 1 + L)m

em−1+L
.

This completes the proof.

A positive continuous function v on [0, 1) is called normal (see, e.g. [18]), if there exist three positive constants
0 ≤ δ < 1, and 0 < a < b <∞, such that for r ∈ [δ, 1)

v(r)

(1− r)a
↓ 0, v(r)

(1− r)b
↑ ∞ as r → 1.

Denoting v1(z) = (1− |z|)m log
(

3
1−|z|

)
, it is clear that v1 is a normal weight. From [17, Lemma 3] we obtain

that ” Assume that v is a normal weight, then sup
z∈D

v(z)|f(z)| � |f(0)| + sup
z∈D

v(z)(1 − |z|)|f ′(z)| for every

f ∈ H(D).” Hence the following result holds for the log-Bloch space Blog on the unit disk:
Lemma 2.3 For f ∈ H(D),m ∈ N, then

f ∈ Blog ⇔ ‖f‖log � sup
z∈D

(1− |z|)m log

(
3

1− |z|

)
|f (m)(z)| <∞.

Hence, f ∈ Blog ⇔ f (m) ∈ H∞v1 = {f ∈ H(D) : ‖f‖v1 = sup
z∈D

v1(z)|f(z)| < ∞}. Moreover, v1 is also a

essential weight. In fact, a weight v : D → R+ is called radial if v(z) = v(|z|) for all z ∈ D. The so-called
associated weights are defined by

ṽ(z) = (sup{|f(z)| : f ∈ H∞v , ‖f‖v ≤ 1})−1.

It is evident that ṽ is also a weight. A weight v is called essential if there exists a constant C > 0 such that

v(z) ≤ ṽ(z) ≤ Cv(z) for each z ∈ D.

Besides, the following condition (L1) which was introduced by Lusky in [12] plays an important part in deciding
whether a weight is essential or not,

(L1) inf
n∈N

v(1− 2−n−1)

v(1− 2−n)
> 0.

Copyright line will be provided by the publisher



mn header will be provided by the publisher 5

Radial weights which satisfy (L1) are always essential (see [1]). It is obvious that the weight v1 is radial and
satisfies

inf
n∈N

v1(1− 2−n−1)

v1(1− 2−n)
= inf
n∈N

1

2m
log 6 · 2n

log 3 · 2n
>

1

2m
> 0.

Hence v1 is essential, which will be used to show the following theorem A.

Lemma 2.4 [2, Lemma 2.3]

‖zj‖log
log(j + 1)

� 1

e
as j →∞. (3)

Besides, since

lim
j→∞

log(j + 1)

log j+1
m−1+L

= 1,

thus

‖zj‖log
log j+1

m−1+L
� 1

e
as j →∞. (4)

Lemma 2.5 For fj defined in lemma 2.2, the following statements hold:
(a) for all j ∈ N, there is a unique xj ∈ (0, 1) such that fj(xj) is the absolute maximum of fj .
(b) the sequence (xj)j∈N satisfies

lim
j→∞

xj = 1−, (5)

where ”−” denotes that xj tends to 1 from the left, moreover,

lim
j→∞

j(1− xj) = m. (6)

(c)

lim
j→∞

jm

log(j + 1)
max
0<x<1

fj(x) = lim
j→∞

jm

log(j + 1)
fj(xj) =

mm

em
. (7)

P r o o f. It is obvious that

f ′j(x) = xj(1− x)m−1
(
(j(1− x)−mx) log 3

1− x
+ x

)
.

We denote
gj(x) = (j(1− x)−mx) log 3

1− x
+ x.

Then

g′j(x) = j + 1 +m− m

1− x
− (j +m) log

3

1− x
≤ j + 1 +m−m− (j +m) log 3

= j + 1− (j +m) log 3 < 0.

Thus gj is strictly decreasing on (0, 1), and since

lim
x→0+

gj(x) = j log j > 0 and lim
x→1−

gj(x) = −∞,

hence there is a unique xj ∈ (0, 1) such that gj(xj) = 0. It is clear that gj(x) > 0 whenever x ∈ (0, xj) and that
gj(x) < 0 whenever x ∈ (xj , 1). Since

f ′j(x) = xj−1(1− x)m−1gj(x),
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so the function fj is increasing on (0, xj) and decreasing on (xj , 1). Therefore, fj has a unique absolute maxi-
mum at xj , which implies (a) holds.

Since gj(xj) = (j(1− xj)−mxj) log 3
1−xj + xj = 0, thus(

(1− xj)−
mxj
j

)
log

3

1− xj
=
−xj
j
.

Since xj ∈ (0, 1), then letting j →∞ in the above equation, it follows that

lim
j→∞

(
(1− xj)−

mxj
j

)
log

3

1− xj
= 0.

However, log 3
1−xj ≥ log 3, then lim

j→∞
[(1− xj)− mxj

j ] = 0. Hence lim
j→∞

xj = 1−. That is, (5) is true.

Using gj(xj) = 0 again, we have that

lim
j→∞

[j(1− xj)−mxj ] = lim
j→∞

−xj
log 3

1−xj
= 0.

Which implies that lim
j→∞

j(1− xj) = lim
j→∞

mxj = m. That is, (6) is true.

Since

lim
j→∞

j log xj = lim
j→∞

j(xj − 1)
log[1 + (xj − 1)]

xj − 1
= −m,

then lim
j→∞

xjj = e−m. Further by

lim
j→∞

log 3
1−xj

log(j + 1)
= lim
j→∞

log 3j
j(1−xj)

log(j + 1)
= lim
j→∞

(
log 3j

log(j + 1)
− log(j(1− xj))

log(j + 1)

)
= 1,

we have that

lim
j→∞

jm

log(j + 1)
max
0<x<1

fj(x) = lim
j→∞

jm

log(j + 1)
xjj(1− xj)

m log
3

1− xj

= lim
j→∞

log 3
1−xj

log(j + 1)
jm(1− xj)mxjj =

mm

em
.

This completes the proof.

In this paper, we use the following notation. Let u ∈ H(D) and f ∈ H(D), define

Iuf(z) =

∫ z

0

f ′(ζ)u(ζ)dζ, Juf(z) =

∫ z

0

f(ζ)u′(ζ)dζ.

Then it follows that

Iu(ϕ
j+1)(z) =

∫ z

0

(ϕj+1)′(ζ)u(ζ)dζ, Ju(ϕ
j)(z) =

∫ z

0

ϕj(ζ)u′(ζ)dζ. (8)

Besides,

‖Iu(ϕj+1)‖µ = (j + 1) sup
z∈D

µ(z)|ϕ(z)|j |u(z)ϕ′(z)|, ‖Ju(ϕj)‖µ = sup
z∈D

µ(z)|ϕj(z)u′(z)|.

Since (Dm
ϕ,uf)

′ = u′f (m) ◦ϕ+uϕ′f (m+1) ◦ϕ, thusDm
ϕ,u : Blog → Bµ is bounded (or compact) if and only if

the weighted composition operators u′Cϕ : H∞v1 → H∞µ and [uϕ′]Cϕ : H∞v2 → H∞µ are bounded (or compact),

where v2(z) = (1− |z|)m+1 log
(

3
1−|z|

)
is also a essential weight. Similar to the paper [3, Proposition 3.1] we

obtain the following theorem A.
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Theorem A Let u ∈ H(D), ϕ ∈ S(D), m ∈ N and µ be a weight on D, Then the operator Dm
ϕ,u : Blog → Bµ

is bounded if and only if

M1 := sup
z∈D

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|
<∞,

M2 := sup
z∈D

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|
<∞.

Based on the above result, we will give the new criterion for the boundedness of the operator Dm
ϕ,u : Blog → Bµ.

3 The boundedness

Theorem 3.1 Let u ∈ H(D), ϕ ∈ S(D), m ∈ N and µ be a weight on D. Then Dm
ϕ,u : Blog → Bµ is bounded

if and only if u ∈ Bµ, sup
z∈D

µ(z)|u(z)ϕ′(z)| <∞ and both of the inequalities hold:

sup
j≥1

jm‖Juϕj‖µ
‖zj‖log

<∞, (9)

sup
j≥1

jm‖Iuϕj+1‖µ
‖zj‖log

<∞. (10)

P r o o f. Necessity. Suppose the operator Dm
ϕ,u : Blog → Bµ is bounded. Since the function f1(z) = zm ∈

Blog and f2(z) = zm+1 ∈ Blog, then we have that

m! sup
z∈D

µ(z)|u′(z)| <∞.

(m+ 1)! sup
z∈D

µ(z)|u′(z)ϕ(z) + u(z)ϕ′(z)| <∞.

From the above inequalities, we obtain that u ∈ Bµ and sup
z∈D

µ(z)|u(z)ϕ′(z)| < ∞. Next we will show (9) and

(10) hold. From (7), we know that there exists a constant K1 > 0 such that

sup
j≥1

jm

log(j + 1)
max
0<x<1

xj(1− x)m log
3

1− x
< K1. (11)

Since the operator Dm
ϕ,u : Blog → Bµ is bounded, then by theorem A, lemma 2.4 and (11), it follows that

sup
j≥1

jm‖Juϕj‖µ
‖zj‖log

� sup
j≥1

jm

log(j + 1)
sup
z∈D

µ(z)|ϕj(z)u′(z)|

= sup
j≥1

jm

log(j + 1)
sup
z∈D

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|
|ϕ(z)|j(1− |ϕ(z)|)m log

3

1− |ϕ(z)|

≤M1 sup
j≥1

jm

log(j + 1)
sup
z∈D
|ϕ(z)|j(1− |ϕ(z)|)m log

3

1− |ϕ(z)|
< M1K1.

That is, (9) holds. Similarly, from (7), we obtain that

lim
j→∞

jm+1

log(j + 1)
max
0<x<1

xj(1− x)m+1 log
3

1− x
=

(m+ 1)m+1

em+1
.

By the above equation, there exists a constant K2 > 0 such that

sup
j≥1

jm+1

log(j + 1)
max
0<x<1

xj(1− x)m+1 log
3

1− x
< K2. (12)
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Similarly, by theorem A, lemma 2.4 and (12),

sup
j≥1

jm‖Iuϕj+1‖µ
‖zj‖log

� sup
j≥1

jm

log(j + 1)
sup
z∈D

(j + 1)µ(z)|ϕj(z)ϕ′(z)u(z)|

= sup
j≥1

jm(j + 1)

log(j + 1)
sup
z∈D

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|
|ϕ(z)|j(1− |ϕ(z)|)m+1 log

3

1− |ϕ(z)|

≤M2 sup
j≥1

jm(j + 1)

log(j + 1)
sup
z∈D
|ϕ(z)|j(1− |ϕ(z)|)m+1 log

3

1− |ϕ(z)|

�M2 sup
j≥1

jm+1

log(j + 1)
sup
z∈D
|ϕ(z)|j(1− |ϕ(z)|)m+1 log

3

1− |ϕ(z)|
�M2K2.

That is, (10) holds.
Sufficiency. Firstly, if sup

z∈D
|ϕ(z)| < 1, then there is a number r ∈ (0, 1) such that sup

z∈D
|ϕ(z)| < r. For every

f ∈ Blog with ‖f‖Blog
≤ 1, by the condition u ∈ Bµ and sup

z∈D
µ(z)|u(z)ϕ′(z)| <∞, it follows that

‖Dm
ϕ,uf‖Bµ = |(Dm

ϕ,uf)(0)|+ ‖Dm
ϕ,uf‖µ

= |u(0)||f (m)(ϕ(0))|+ sup
z∈D

µ(z)|u′(z)f (m)(ϕ(z)) + u(z)f (m+1)(ϕ(z))ϕ′(z)|

≤ |u(0)||f (m)(ϕ(0))|+ sup
z∈D

µ(z)|u′(z)f (m)(ϕ(z))|+ sup
z∈D

µ(z)|u(z)f (m+1)(ϕ(z))ϕ′(z)|

≤ |u(0)|‖f‖log
(1− |ϕ(0)|)m log 3

1−|ϕ(0)|
+ sup
z∈D

µ(z)|u′(z)|‖f‖Blog

(1− |ϕ(z)|)m log 3
1−|ϕ(z)|

+ sup
z∈D

µ(z)|u(z)ϕ′(z)|‖f‖Blog

(1− |ϕ(z)|)m+1 log 3
1−|ϕ(z)|

≤ |u(0)|
(1− |ϕ(0)|)m log 3

1−|ϕ(0)|
+ sup
z∈D

µ(z)|u′(z)|
(1− r)m log 3

1−r
+ sup
z∈D

µ(z)|u(z)ϕ′(z)|
(1− r)m+1 log 3

1−r
<∞,

which implies the boundedness of Dm
ϕ,u : Blog → Bµ.

Secondly, if sup
z∈D
|ϕ(z)| = 1. For every f ∈ Blog with ‖f‖Blog

≤ 1, we have that

‖Dm
ϕ,uf‖Bµ = |(Dm

ϕ,uf)(0)|+ ‖Dm
ϕ,uf‖µ

= |u(0)||f (m)(ϕ(0))|+ sup
z∈D

µ(z)|u′(z)f (m)(ϕ(z)) + u(z)f (m+1)(ϕ(z))ϕ′(z)|

≤ |u(0)||f (m)(ϕ(0))|+ sup
z∈D

µ(z)|u′(z)f (m)(ϕ(z))|+ sup
z∈D

µ(z)|u(z)f (m+1)(ϕ(z))ϕ′(z)|

≤ |u(0)|‖f‖log
(1− |ϕ(0)|)m log 3

1−|ϕ(0)|
+ sup
z∈D

µ(z)|u′(z)|‖f‖Blog

(1− |ϕ(z)|)m log 3
1−|ϕ(z)|

+ sup
z∈D

µ(z)|u(z)ϕ′(z)|‖f‖Blog

(1− |ϕ(z)|)m+1 log 3
1−|ϕ(z)|

≤ |u(0)|
(1− |ϕ(0)|)m log 3

1−|ϕ(0)|
+ sup
z∈D

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|
+ sup
z∈D

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|

= I1 + I2 + I3, (13)

It is obvious that I1 <∞. We only need to show that I2 and I3 is finite. For any integer j ≥ 1, let

Ajϕ = {z ∈ D : rj ≤ |ϕ(z)| < rj+1},

where rj = 1− m−1+L
j+m−1+L . Let k be the smallest positive integer such that Akϕ 6= ∅. Since sup

z∈D
|ϕ(z)| = 1, hence

the set Ajϕ is not empty for every integer j ≥ k, and D = ∪∞j=kAjϕ. By (1), for every j ∈ N,

jm

log j+1
m+1+L

min
x∈[rj ,rj+1]

fj(x) ≥
Lm

3mem−1+L
= δ1. (14)
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Hence by (14) and (4), it follows that

I2 = sup
z∈D

µ(z)|u(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|

= sup
k≤j

sup
z∈Ajϕ

jmµ(z)|u′(z)||ϕ(z)|j
jm

log j+1
m+1+L

|ϕ(z)|j(1− |ϕ(z)|)m log 3
1−|ϕ(z)| log

j+1
m+1+L

≤ 1

δ1
sup
k≤j

sup
z∈Ajϕ

jmµ(z)|u′(z)||ϕ(z)|j

log j+1
m+1+L

≤ 1

δ1
sup
1≤j

sup
z∈D

jmµ(z)|u′(z)||ϕ(z)|j

log j+1
m+1+L

� 1

δ1
sup
j≥1

sup
z∈D

jmµ(z)|u′(z)||ϕ(z)|j

‖zj‖log

=
1

δ1
sup
j≥1

jm‖Juϕj‖µ
‖zj‖log

. (15)

Similarly, jm+1

log j+1
m+L

min
x∈Ajϕ

xj(1− x)m+1 log 3
1−x ≥

Lm+1

3m+1em+L = δ2. Hence

I3 = sup
z∈D

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|

= sup
k≤j

sup
z∈Ajϕ

µ(z)|u(z)ϕ′(z)|jm+1|ϕ(z)|j
jm+1

log j+1
m+L

|ϕ(z)|j(1− |ϕ(z)|)m+1 log 3
1−|ϕ(z)| log

j+1
m+L

≤ 1

δ2
sup
k≤j

sup
z∈Ajϕ

µ(z)|u(z)ϕ′(z)|jm+1|ϕ(z)|j

log j+1
m+L

≤ 1

δ2
sup
j≥1

sup
z∈D

µ(z)|u(z)ϕ′(z)|jm+1|ϕ(z)|j

log j+1
m+L

� 1

δ2
sup
j≥1

sup
z∈D

µ(z)|u(z)ϕ′(z)|jm+1|ϕ(z)|j

‖zj‖log

=
1

δ2
sup
j≥1

jm+1‖Iuϕj+1‖µ
(j + 1)‖zj‖log

� 1

δ2
sup
j≥1

jm‖Iuϕj+1‖µ
‖zj‖log

. (16)

Combining (13), (15) and (16) we obtain the boundedness of Dm
ϕ,u : Blog → Bµ in this case. Now the proof is

complete.

4 The essential norm

In this section, we will give an estimate for the essential norm of Dm
ϕ,u : Blog → Bµ. To simplify the notations,

we denote

A := lim sup
j→∞

jm‖Juϕj‖µ
‖zj‖log

and B := lim sup
j→∞

jm‖Iuϕj+1‖µ
‖zj‖log

.

For r ∈ [0, 1], we define the linear dilation operator Kr : H(D) → H(D) by Krf = fr, where fr(z) = f(rz).
Then we have:

Copyright line will be provided by the publisher



10 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

Lemma 4.1 [2, Lemma 5.2] Let r ∈ [0, 1]. Then the following statements hold:
(a) Blog is a Kr-invariant subspace of H(D); moreover, we have that

‖Kr‖Blog→Blog
≤ 1.

(b) If r 6= 1, then Kr is compact on Blog.

The following criterion for compactness comes from an easy modification of [4, Proposition 3.11]. Hence we
omit the details.

Lemma 4.2 Let µ1 and µ2 be weights on D, m ∈ N, u ∈ H(D) and ϕ ∈ S(D). Then the operator
Dm
ϕ,u : Bµ1

→ Bµ2
is compact if and only if given any bounded sequence (fj)j∈N in Bµ1

such that fj converges
to 0 uniformly on compact subsets of D, then ‖Dm

ϕ,u(fj)‖Bµ2 → 0 as j →∞.

Theorem 4.3 Let u ∈ H(D), ϕ ∈ S(D), m ∈ N and µ be a weight on D. Suppose that the operator
Dm
ϕ,u : Blog → Bµ is bounded. Then

‖Dm
ϕ,u‖e � A+B. (17)

P r o o f. Since the operator Dm
ϕ,u : Blog → Bµ is bounded, then A <∞ and B <∞. Moreover,

L1 := sup
z∈D

µ(z)||u′(z)| <∞, L2 := sup
z∈D

µ(z)|u(z)ϕ′(z)| <∞.

Firstly, if sup
z∈D
|ϕ(z)| < 1, then there is a number r ∈ (0, 1) such that sup

z∈D
|ϕ(z)| < r. It’s easy to verify the

operator Dm
ϕ,u : Blog → Bµ is compact by lemma 4.2. In fact, let {fk}k∈N be a bounded sequence in Blog

converging to zero uniformly on compact subsets of D as k → ∞. We denote L := sup
k∈N
‖fk‖Blog

< ∞. By

Cauchy’s integral formula, we obtain that

‖Dm
ϕ,ufk‖Bµ = |(Dm

ϕ,ufk)(0)|+ ‖Dm
ϕ,ufk‖µ

= |u(0)||f (m)
k (ϕ(0))|+ sup

z∈D
µ(z)|u′(z)f (m)

k (ϕ(z)) + u(z)f
(m+1)
k (ϕ(z))ϕ′(z)|

≤ |u(0)||f (m)
k (ϕ(0))|+ sup

z∈D
µ(z)|u′(z)f (m)

k (ϕ(z))|

+sup
z∈D

µ(z)|u(z)ϕ′(z)||f (m+1)
k (ϕ(z))|

≤ |u(0)||f (m)
k (ϕ(0))|+ L1 sup

z∈D
|f (m)
k (ϕ(z))|+ sup

z∈D
L2|f (m+1)

k (ϕ(z))|

≤ |u(0)||f (m)
k (ϕ(0))|+ L1 sup

|w|≤r
|f (m)
k (w)|+ L2 sup

|w|≤r
|f (m+1)
k (w)|

→ 0, as k →∞.

Employing lemma 4.2, it is clear that the operator Dm
ϕ,u : Blog → Bµ is compact. Thus

‖Dm
ϕ,u‖e = 0. (18)
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On the other hand, by (3) we obtain that

A = lim sup
j→∞

jm‖Juϕj‖µ
‖zj‖log

� lim sup
j→∞

jm‖Juϕj‖µ
log(j + 1)

= lim sup
j→∞

jm

log(j + 1)
sup
z∈D

µ(z)|u′(z)ϕj(z)|

≤ L1 lim sup
j→∞

jm

log(j + 1)
rj = 0. (19)

B = lim sup
j→∞

jm‖Iuϕj+1‖µ
‖zj‖log

� lim sup
j→∞

jm‖Iuϕj+1‖µ
log(j + 1)

= lim sup
j→∞

jm

log(j + 1)
sup
z∈D

µ(z)(j + 1)|ϕ(z)|j |ϕ′(z)||u(z)|

≤ L2 lim sup
j→∞

jm(j + 1)

log(j + 1)
rj = 0. (20)

From (18)-(20), both sides of (17) are zero. Therefore the essential norm formula is true in this case. In the
sequel, we assume that sup

z∈D
|ϕ(z)| = 1.

The upper bounded. By the boundedness of the operator Dm
ϕ,u : Blog → Bµ and lemma 4.2, we know the

operator Dm
ϕ,uKrj : Blog → Bµ is compact. Then

‖Dm
ϕ,u‖e ≤ lim sup

j→∞
‖Dm

ϕ,u −Dm
ϕ,uKrj‖

= lim sup
j→∞

sup
‖f‖Blog≤1

‖(Dm
ϕ,u −Dm

ϕ,uKrj )f‖Bµ

≤ lim sup
j→∞

sup
‖f‖Blog≤1

|(Dm
ϕ,u −Dm

ϕ,uKrj )f(0)|

+ lim sup
j→∞

sup
‖f‖Blog≤1

sup
z∈D

µ(z)|(Dm
ϕ,u −Dm

ϕ,uKrj )
′f(z)|

≤ lim sup
j→∞

sup
‖f‖Blog≤1

|u(0)f (m)(ϕ(0))− rmj u(0)f (m)(rjϕ(0))|

+ lim sup
j→∞

sup
‖f‖Blog≤1

sup
z∈D

µ(z)|u′(z)||f (m)(ϕ(z))− rmj f (m)(rjϕ(z))|

+ lim sup
j→∞

sup
‖f‖Blog≤1

sup
z∈D

µ(z)|u(z)ϕ′(z)||f (m+1)(ϕ(z))− rm+1
j f (m+1)(rjϕ(z))|

≤ lim sup
j→∞

sup
‖f‖Blog≤1

|u(0)||f (m)(ϕ(0))− rmj f (m)(rjϕ(0))|

+ J1 + J2. (21)

On the one hand, similar to [2, Lemma 5.3], by rj → 1 as j → ∞ and Cauchy’s integral formula, it follows
that

lim sup
j→∞

sup
‖f‖Blog≤1

|u(0)||f (m)(ϕ(0))− rmj f (m)(rjϕ(0))| = 0.

On the other hand, for each positive integer j ∈ N, denote the set Ajϕ = {z ∈ D : rj ≤ |ϕ(z)| < rj+1}.
Since sup

z∈D
|ϕ(z)| = 1, then there is a k ∈ N such that Akϕ 6= ∅ and Ajϕ is not empty for every integer j ≥ k.

Hence D =
⋃∞
j=k A

j
ϕ. By (2), for an arbitrary ε > 0, there is N1 ∈ N such that for any integer j ≥ N1,

jm

log j+1
m−1+L

min
x∈[rj ,rj+1]

xj(1− x)m log
3

1− x
>

(m− 1 + L)m

em−1+L
− ε. (22)
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Further by

lim
j→∞

jm+1

log j+1
m+L

min
x∈[rj ,rj+1]

xj(1− x)m+1 log
3

1− x
=

(m+ L)m+1

em+L
,

there is N2 ∈ N such that for any integer j ≥ N2,

jm+1

log j+1
m+L

min
x∈[rj ,rj+1]

xj(1− x)m+1 log
3

1− x
>

(m+ L)m+1

em+L
− ε. (23)

In the following, denote N = max{N1, N2}. In fact (22) is used to prove J1 and (23) for J2. We divide J1 into
two parts

J1,1 = lim sup
j→∞

sup
‖f‖Blog≤1

sup
k≤j≤N

sup
z∈Ajϕ

µ(z)|u′(z)||f (m)(ϕ(z))− rmj f (m)(rjϕ(z))|;

J1,2 = lim sup
j→∞

sup
‖f‖Blog≤1

sup
N+1≤j

sup
z∈Ajϕ

µ(z)|u′(z)||f (m)(ϕ(z))− rmj f (m)(rjϕ(z))|.

It is clear that

J1,1 ≤ L1 lim sup
j→∞

sup
‖f‖Blog≤1

sup
rk≤|ϕ(z)|≤rN+1

|f (m)(ϕ(z))− rmj f (m)(rjϕ(z))|

= 0.

On the other hand,

J1,2 ≤ lim sup
j→∞

sup
‖f‖Blog≤1

sup
N+1≤j

sup
z∈Ajϕ

µ(z)|u′(z)|(|f (m)(ϕ(z))|+ |rmj f (m)(rjϕ(z))|)

≤ lim sup
j→∞

sup
‖f‖Blog≤1

sup
N+1≤j

sup
z∈Ajϕ

µ(z)|u′(z)|(|f (m)(ϕ(z))|+ |f (m)(rjϕ(z))|).

Denote the expression s(ρ) for ρ ∈ (0, 1),

s(ρ) = sup
N+1≤j

sup
z∈Ajϕ

µ(z)|u′(z)||f (m)(ρϕ(z))|

= sup
N+1≤j

sup
z∈Ajϕ

µ(z)|u′(z)|
|f (m)(ρϕ(z))|(1− |ρϕ(z)|)m log 3

1−|ρϕ(z)|

(1− |ρϕ(z)|)m log 3
1−|ρϕ(z)|

≤ sup
N+1≤j

sup
z∈Ajϕ

‖f‖Blog

µ(z)|u′(z)|
(1− |ρϕ(z)|)m log 3

1−|ρϕ(z)|

≤ sup
N+1≤j

sup
z∈Ajϕ

‖f‖Blog

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|

= sup
N+1≤j

sup
z∈Ajϕ

‖f‖Blog

jmµ(z)|u′(z)||ϕ(z)|j

jm|ϕ(z)|j(1− |ϕ(z)|)m log 3
1−|ϕ(z)|

� sup
N+1≤j

‖f‖Blog

jm‖Juϕj‖µ
‖zj‖log

sup
z∈Ajϕ

log j+1
m−1+L

jm|ϕ(z)|j(1− |ϕ(z)|)m log 3
1−|ϕ(z)|

≤ 1
(m−1+L)m
em−1+L − ε

sup
N+1≤j

‖f‖Blog

jm‖Juϕj‖µ
‖zj‖log

,
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In the above chain of relations, the first inequality follows from the definition of the norm ‖ · ‖Blog
and lemma

2.3. The second inequality is due to the fact that the function (1 − x)m+1 log 3
1−x is decreasing on [0, 1]. The

third and fourth inequalities follow from (4) and (22), respectively. Since ε is arbitrary, then

J1,2 ≤ lim sup
j→∞

sup
‖f‖Blog≤1

(s(1) + s(rj))

� lim sup
j→∞

jm‖Juϕj‖µ
‖zj‖log

.

The above inequalities imply that

J1 � lim sup
j→∞

jm‖Juϕj‖µ
‖zj‖log

. (24)

Using the similar way by replacing (22) with (23), we can obtain that

J2 = lim sup
j→∞

sup
‖f‖Blog≤1

sup
z∈D

µ(z)|u(z)ϕ′(z)||f (m+1)(ϕ(z))− r(m+1)
j f (m+1)(rjϕ(z))|

� lim sup
j→∞

jm‖Iuϕj+1‖µ
‖zj‖log

. (25)

Combining (21), (24) and (25), it follows the upper bounded.
The lower bounded. The assumption sup

z∈D
|ϕ(z)| = 1 holds. For every compact operator K : Blog → Bµ and

each sequence {fk}k∈N ⊂ Blog with sup
k∈N
‖fk‖Blog

<∞, and fk converging to zero on the compact subsets of D,

it follows that lim
k→∞

‖Kfk‖Bµ = 0. Thus

‖Dm
ϕ,u −K‖ ≥ lim sup

k→∞
‖(Dm

ϕ,u −K)fk‖Bµ ≥ lim sup
k→∞

‖Dm
ϕ,u(fk)‖Bµ ,

that is, ‖Dm
ϕ,u‖e ≥ lim sup

k→∞
‖Dm

ϕ,u(fk)‖Bµ .

Choosing a sequence {ak}k∈N ⊂ D such that |ϕ(ak)| → 1 as k → ∞, we define the function sequences
{f (m)

1,k }k∈N and {f (m)
2,k }k∈N, respectively.

f
(m)
1,k (z) =

(m+ 2)(1− |ϕ(ak)|2)
(1− ϕ(ak)z)m+1 log 3

1−ϕ(ak)z

− (m+ 2)(1− |ϕ(ak)|2)2

(1− ϕ(ak)z)m+2 log 3

1−ϕ(ak)z

;

f
(m)
2,k (z) =

(m+ 2)(1− |ϕ(ak)|2)
(1− ϕ(ak)z)m+1 log 3

1−ϕ(ak)z

− (m+ 1)(1− |ϕ(ak)|2)2

(1− ϕ(ak)z)m+2 log 3

1−ϕ(ak)z

.

Clearly {f1,k}k∈N ⊂ Blog and {f2,k}k∈N ⊂ Blog; moreover, both sequences converge to zero uniformly on
compact subsets of D as k →∞. Since f (m)

1,k (ϕ(ak)) = 0 and

f
(m+1)
1,k (ϕ(ak)) =

(m+ 1)ϕ(ak)

(1− |ϕ(ak)|2)m+1 log 3
1−|ϕ(ak)|2

,

f
(m)
2,k (ϕ(ak)) =

1

(1− |ϕ(ak)|2)m log 3
1−|ϕ(ak)|2

,

f
(m+1)
2,k (ϕ(ak)) =

ϕ(ak)

(1− |ϕ(ak)|2)m+1
(
log 3

1−|ϕ(ak)|2

)2 ,
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14 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

we have that

‖Dm
ϕ,u‖e ≥ lim sup

k→∞
‖Dm

ϕ,u(f1,k)‖Bµ ≥ lim sup
k→∞

‖Dm
ϕ,u(f1,k)‖µ

= lim sup
k→∞

sup
z∈D

µ(z)|u′(z)f (m)
1,k (ϕ(z)) + u(z)ϕ′(z)f

(m+1)
1,k (ϕ(z))|

≥ lim sup
k→∞

µ(ak)|u′(ak)f (m)
1,k (ϕ(ak)) + u(ak)ϕ

′(ak)f
(m+1)
1,k (ϕ(ak))|

= lim sup
k→∞

µ(ak)|u(ak)ϕ′(ak)|(m+ 1)|ϕ(ak)|
(1− |ϕ(ak)|2)m+1 log 3

1−|ϕ(ak)|2

� lim sup
k→∞

µ(ak)|u(ak)ϕ′(ak)|
(1− |ϕ(ak)|2)m+1 log 3

1−|ϕ(ak)|2
(26)

= lim sup
|ϕ(z)|→1

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)m+1 log 3

1−|ϕ(z)|2
, (27)

and

‖Dm
ϕ,u‖e ≥ lim sup

k→∞
‖Dm

ϕ,u(f2,k)‖Bµ ≥ lim sup
k→∞

‖Dm
ϕ,u(f2,k)‖µ

= lim sup
k→∞

sup
z∈D

µ(z)|u′(z)f (m)
2,k (ϕ(z)) + u(z)ϕ′(z)f

(m+1)
2,k (ϕ(z))|

≥ lim sup
k→∞

µ(ak)|u′(ak)f (m)
2,k (ϕ(ak)) + u(ak)ϕ

′(ak)f
(m+1)
2,k (ϕ(ak))|

≥ lim sup
k→∞

µ(ak)|u′(ak)|
(1− |ϕ(ak)|2)m log 3

1−|ϕ(ak)|2

− lim sup
k→∞

µ(ak)|u(ak)ϕ′(ak)ϕ(ak)|

(1− |ϕ(ak)|2)m+1
(
log 3

1−|ϕ(ak)|2

)2
= lim sup

k→∞

µ(ak)|u′(ak)|
(1− |ϕ(ak)|2)m log 3

1−|ϕ(ak)|2

− lim sup
k→∞

µ(ak)|u(ak)ϕ′(ak)|

(1− |ϕ(ak)|2)m+1
(
log 3

1−|ϕ(ak)|2

)2 .
Since

log
3

1− |ϕ(ak)|2
≤
(
log

3

1− |ϕ(ak)|2

)2

,

then

lim sup
k→∞

µ(ak)|u(ak)ϕ′(ak)|
(1− |ϕ(ak)|2)m+1 log 3

1−|ϕ(ak)|2
+ ‖Dm

ϕ,u‖e

≥ lim sup
k→∞

µ(ak)|u(ak)ϕ′(ak)|

(1− |ϕ(ak)|2)m+1
(
log 3

1−|ϕ(ak)|2

)2 + ‖Dm
ϕ,u‖e

≥ lim sup
k→∞

µ(ak)|u′(ak)|
(1− |ϕ(ak)|2)m log 3

1−|ϕ(ak)|2
. (28)
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Combining (26) and (28), it follows that

‖Dm
ϕ,u‖e � lim sup

k→∞

u(ak)|u′(ak)|
(1− |ϕ(ak)|2)m log 3

1−|ϕ(ak)|2

= lim sup
|ϕ(z)|→1

u(z)|u′(z)|
(1− |ϕ(z)|2)m log 3

1−|ϕ(z)|2
. (29)

For s ∈ (0, 1), by (3), we consider

jm‖Juϕj‖µ
‖zj‖log

� jm

log(j + 1)
sup
z∈D

µ(z)|u′(z)||ϕ(z)|j

≤ jm

log(j + 1)
sup
|ϕ(z)|≤s

µ(z)|u′(z)||ϕ(z)|j + jm

log(j + 1)
sup
|ϕ(z)|>s

µ(z)|u′(z)||ϕ(z)|j

≤ L1
jmsj

log(j + 1)
+

jm

log(j + 1)
sup
|ϕ(z)|>s

µ(z)|u′(z)||ϕ(z)|j .

By lemma 2.5, the above inequalities imply that

jm

log(j + 1)
sup
|ϕ(z)|>s

µ(z)|u′(z)||ϕ(z)|j

=
jm

log(j + 1)
sup
|ϕ(z)|>s

µ(z)|u′(z)|
|ϕ(z)|j(1− |ϕ(z)|)m log 3

1−|ϕ(z)|

(1− |ϕ(z)|)m log 3
1−|ϕ(z)|

≤ jm

log(j + 1)
fj(xj) sup

|ϕ(z)|>s

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|
.

Thus by (7) we obtain that

lim sup
j→∞

jm‖Juϕj‖µ
‖zj‖log

� lim sup
j→∞

L1
jmsj

log(j + 1)

+ lim sup
j→∞

jm

log(j + 1)
fj(xj) sup

|ϕ(z)|>s

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|

=
mm

em
sup
|ϕ(z)|>s

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|
.

Further we have that

lim sup
j→∞

jm‖Juϕj‖µ
‖zj‖log

� lim
s→1

sup
|ϕ(z)|>s

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|

≤ lim sup
|ϕ(z)|→1

µ(z)|u′(z)|
(1− |ϕ(z)|)m log 3

1−|ϕ(z)|

� lim sup
|ϕ(z)|→1

µ(z)|u′(z)|
(1− |ϕ(z)|2)m log 3

1−|ϕ(z)|2
. (30)

Combining (29) and (30), it’s clear that

lim sup
j→∞

jm‖Juϕj‖µ
‖zj‖log

� ‖Dm
ϕ,u‖e.
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Similarly,

jm‖Iuϕj+1‖µ
‖zj‖log

� jm

log(j + 1)
sup
z∈D

(j + 1)µ(z)|ϕ(z)|j |u(z)ϕ′(z)|

� jm+1

log(j + 1)
sup
z∈D

µ(z)|ϕ(z)|j |u(z)ϕ′(z)|

≤ L2
jm+1

log(j + 1)
sup
|ϕ(z)|≤s

|ϕ(z)|j + jm+1

log(j + 1)
sup
|ϕ(z)|>s

µ(z)|ϕ(z)|j |u(z)ϕ′(z)|

≤ L2
jm+1

log(j + 1)
sj +

jm+1

log(j + 1)
sup
|ϕ(z)|>s

µ(z)|ϕ(z)|j |u(z)ϕ′(z)|.

By lemma 2.5, the above inequalities imply that

jm+1

log(j + 1)
sup
|ϕ(z)|>s

µ(z)|ϕ(z)|j |u(z)ϕ′(z)|

=
jm+1

log(j + 1)
sup
|ϕ(z)|>s

µ(z)|u(z)ϕ′(z)|
|ϕ(z)|j(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|

(1− |ϕ(z)|)m+1 log 3
1−|ϕ(z)|

≤ jm+1

log(j + 1)
xjj(1− xj)

m+1 log
3

1− xj
sup
|ϕ(z)|>s

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|
.

Then by (7), we obtain that

lim sup
j→∞

jm‖Iuϕj+1‖µ
‖zj‖log

� lim sup
j→∞

L2
jm+1

log(j + 1)
sj

+ lim sup
j→∞

jm+1

log(j + 1)
xjj(1− xj)

m+1 log
3

1− xj
sup
|ϕ(z)|>s

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|

=
(m+ 1)m+1

em+1
sup
|ϕ(z)|>s

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|
.

Further we get that

lim sup
j→∞

jm‖Iuϕj+1‖µ
‖zj‖log

� lim
s→1

sup
|ϕ(z)|>s

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|

≤ lim sup
|ϕ(z)|→1

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|)m+1 log 3

1−|ϕ(z)|

� lim sup
|ϕ(z)|→1

µ(z)|u(z)ϕ′(z)|
(1− |ϕ(z)|2)m+1 log 3

1−|ϕ(z)|2
. (31)

Combining (27) and (31), it follows that

lim sup
j→∞

jm‖Iuϕj+1‖µ
‖zj‖log

� ‖Dm
ϕ,u‖e.

This completes the proof.

The following corollary is a consequence of theorem 4.3 and lemma 2.4.

Corollary 4.4 Let u ∈ H(D), ϕ ∈ S(D), m ∈ N and µ be a weight on D. Suppose that the operator
Dm
ϕ,u : Blog → Bµ is bounded. Then Dm

ϕ,u : Blog → Bµ is compact if and only if either of the following
statements holds:
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(a)

lim sup
j→∞

jm‖Juϕj‖µ
‖zj‖log

= 0 and lim sup
j→∞

jm‖Iuϕj+1‖µ
‖zj‖log

= 0.

(b)

lim sup
j→∞

jm‖Juϕj‖µ
log(j + 1)

= 0 and lim sup
j→∞

jm‖Iuϕj+1‖µ
log(j + 1)

= 0.
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