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In this paper, we give a new characterization for the boundedness of the weighted differentiation composition
operator from logarithmic Bloch spaces to Bloch-type spaces and calculate its essential norm in terms of the
n-th power of the induced analytic self-map on the unit disk. From which a sufficient and necessary condition
of compactness of the operator follows immediately.
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1 Introduction

Denote H (D) the space of all holomorphic functions on the unit disk D and S(ID) the set of all self-maps on
D. Throughout this paper, log denotes the natural logarithm function. Given a bounded, continuous and strictly
positive function p on D, we define the pi-Bloch space B,, = B,,(ID), consisting of all f € H (D) such that

| £1l, = sup p(2)|f(2)] < oc.
z€D

The space B,, is a Banach space under the norm

£ 118, = 1F O+ 1£1],-

Fora > 0 and p : D — (0,1) is defined by p(z) = (1 — |2]?)®, then in this case, B,, is denoted by B, the so-
called -Bloch space on D. when o = 1, B, is the classical Bloch space B. Moreover, let 1t = viog : D — (0, 00)
be given by

Viog(2) = (1= 2]) log (1—3||> ’

then we obtain the log-Bloch space and denote Bvlog (D) by Biog. It is well-known that the log-Bloch space Biog
is a Banach space endowed with the norm

11810 = [£O)] + 1 flh10g,

where 3
1/ lhog = sup(1 — |z])log { —— | [/"(2)I.
zeD 1- |Z|
We refer the readers to the book [22] by K. H. Zhu, which is excellent source for the development of the theory
of function spaces.
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2 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

For ¢ € S(D), the composition operator C,, is defined by
Co(f)=foyp, f€HD).

It is an interesting topic to provide function-theoretic characterizations of when ¢ induces a bounded or com-
pact composition operator on various holomorphic function spaces. For this theory, we refer the readers to the
books [4] by Cowen and MacCluer, and [14] by Shapiro.

As we all know the differentiation operator is defined as D f = f’ for f € H(D). Foru € H (D), the weighted
composition operator uC,, is given by

(uCef)(2) = u(2)f(#(2)), f e H(D).

Now let m € N, the weighted differentiation composition operator, denoted by D", , is defined as follows

(D f)(2) = u(2).f"™ (p(2)), | e HD).

When m = 0, then the operator D, becomes the weighted composition operator uC,. That’s the reason why
we call D', the weighted differentiation composition operator. If m = 0 and u(z) = 1, then D7, = C,. If
m = 1and u(z) = 1, then D7, = C,D. If m = 1 and u(z) = ¢'(z), then D7, = DC,,. For the operator
Dgfu, we refer the readers to the papers [15, 16].

The essential norm of a continuous linear operator 7' : X — Y is the distance from 7 to the set of all compact
operators, that is,

IT||e = inf{||T — K||: K is compact }.

Since ||T'||. = 0 if and only if 7" is compact, so the estimates on ||T'|| lead to conditions for T to be compact.

Recently there has been a great interest in the new characterizations for the essential norms of composition
operator and differentiation operator between Bloch-type spaces on the unit disk. In papers [10] and [11], we
respectively studied the new characterizations for the operators C, D™ : B, — Bg and DC, : B, — Bg.
Concerning the composition operator from the log-Bloch space to p-Bloch space, we refer the readers to the pa-
pers [2,5]. Moreover, the papers [6-9,13,19-21] are also about the new subject, which are helpful for our study.
Based on the above foundations, the goal of this paper is to give the new characterizations for the weighted differ-
entiation operator D', : Biog — B, on the unit disk. In section 2, we list some lemmas. The characterizations
for the boundedness and essential norm of D', : Biog — B, are given in section 3 and section 4, respectively.

Throughout the remainder of this paper, the notations A < B, A < B, A » B mean that there maybe
different positive constants C such that B/C < A< CB, A<CB, CB < A.

2 Some lemmas

LetL =1-— 10; 3 € (0, 1) in this paper. In this section, we list some auxiliary facts. We define a sequence (7;) jen
—14L

jfmflJrL

satisfies r; — 17 as j — oo. For ¢ € S(D) and j € N, we define the set

byro=0andr; =1— for each j € N. The sequence (7;);en lies in [0, 1) is strictly increasing and

AL ={zeD: r; <|p(2)| <7js1}.

It is obvious that A7, N A% =  for j # k.
Lemma 2.1 Define A : [1,00) — (0, 1] by

Alz) = <xfm“+L)

inf A(z) = lim A(z) = o (m—=1+L)

z>1 T—00

Then we have that
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Proof.
x+1 ¢
lim A = 1 -
Jim A(@) zzﬂgo<x+m+L)
z4+m+L —x(m—14L)
,(m,1+L) —(m—1+L) z+m+L
= lm (14 —-———=
T—00 r+m+L
_ 67(m71+L)'
x+1 x(m+L—-1)
log A(z)) = lo
(log A(z)) & tm+L  (@+D@+m+L)
z+1 m+L—1
< log
z+m+L z+m+L
1 z+1 z+1 1
= 0 —_ .
gx+m+L r+m+ L

The above inequality is negative, due to the function logn — 1 + 1 takes values —oco and O at » = O and n = 1,

respectively and is strictly increasing in € (0,1). Thus log A is strictly decreasing, in turn the function A

is strictly decreasing on [1,00). Hence it follows that ugf; A(x) = lim A(x) = e~ (m~1*L) This ends the
xr= T—r0o0

proof. O
Lemma 2.2 Let m, j € N, then the function
fi(x) =27(1 —x)™log : , z€(0,1),
-
is decreasing on [rj,1). Also, we have that
jm m
I T j(x) 2 amom—1+L fOrall x € [’f'j,'l’j+1]7 (l)
log m]—1+L 3me
m, -1 L™
lim J = min  f;(z) = W%:L) )
J—roeo log mil+L IE[T‘;‘,7’]+1] em

Proof. It suffices to show that f; is decreasing on [r;, r;+1]. Since

—|—a:>,

and L € (0,1), then we have j — (j + m)z < 0 holds for all z € [r},1). By the fact log 1= > log3 for all
x € (0,1), it follows that

— T

(e = (1 =" (01~ 2) — ) og

fi@) <21 —2)" N (( - (j +m)z)log3 + ).
Since the function
hi(x) = (j — (j + m)x)log3 +x = jlog3 — ((j + m)log3 — 1)x

is decreasing for x € [r;,1) and h;(r;) = 0, thus fi(z) < 0 for all € (r;,1). Thatis, f; is decreasing on
[rj,1). On the other hand, by the first statement in this lemma and lemma 2.1, we get that for each j € N and all
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4 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

x € [rj, 4],

J" J"

i) > L i)
F1 J +1 AN
IOg milJrL 1 mil+L
_ jm L, m-1+L T m—-1+1L mlO 3(j+m+L)
log L j+m+L) \j+m+L m—1+1L
_ gt ( jt1 )J’ ((m—HL)j)"‘
logm];ﬁ_L j+m+L j+m+L
> 1- e—(m—1+L) m—1 + L "
- m+1+L
Lm
3mem71+L'
Moreover, we have that
) jm ) ) -m
lim ————— min i(r) = lim —————f:(r;
j—oo log mfﬁL xe[mnﬂ]fj( ) j—oo log mjjiL Jilris)
3(j+m+L) . j .\ m
i log = i5 L < j+1 )J <(m1+L)J)
oo log s \j+m+L j+m+1L
_(m—-1+L)™
- em—1+L
This completes the proof. O

A positive continuous function v on [0, 1) is called normal (see, e.g. [18]), if there exist three positive constants
0<d<1,and 0 < a < b < o0, such that for r € [§, 1)

v(r) v(r)

(TR ey

Too as r— 1.

Denoting v1(z) = (1 — |z])™ log (%lzl) , it is clear that vy is a normal weight. From [17, Lemma 3] we obtain
that ” Assume that v is a normal weight, then supv(z)|f(2)| =< |f(0)| + supv(z)(1 — |z|)|f'(2)| for every
z€eD z€D
f € H(D).” Hence the following result holds for the log-Bloch space Biog on the unit disk:
Lemma 2.3 For f € H(D), m € N, then

3
1— 2]

F € By < [Slhox = 5up(1 — J2)" o ( ) ()] < oo

Hence, f € Biog < f™) € Hy ={f € HD) : | fllo, = supvi(2)|f(2)| < oo}. Moreover, v; is also a
zeD

essential weight. In fact, a weight v : D — Ry is called radial if v(z) = v(|z|) for all z € D. The so-called
associated weights are defined by

0(z) = (sup{|f(2)| : f e HZ, Ifll <117
It is evident that v is also a weight. A weight v is called essential if there exists a constant C' > 0 such that
v(z) < 9(z) < Cvu(z) foreach z € D.

Besides, the following condition (L1) which was introduced by Lusky in [12] plays an important part in deciding
whether a weight is essential or not,

_u(l -2
L1) inf 2= ).
() =gy >0
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Radial weights which satisfy (L1) are always essential (see [1]). It is obvious that the weight vy is radial and

satisfies )
1—-2—"— 11 .on 1
1 uzlnf7&>i>0
neN ’Ul(l — 2—n) neN 2m 10g3 .on om
Hence v, is essential, which will be used to show the following theorem A.

Lemma 2.4 [2, Lemma 2.3]

12 liog 1 ,
=" as j— o0.
log(74+1) e
Besides, since
I +1
im 28UED
j—o0 log mil+L
thus
J 1
2 lhos Uljf = = as j — oo.
log =z

Lemma 2.5 For f; defined in lemma 2.2, the following statements hold:

(a) forall j € N, there is a unique x; € (0, 1) such that f;(x;) is the absolute maximum of f;.

(b) the sequence (x;)jen satisfies

lim z; =17,
j—oo
where ”—" denotes that x; tends to 1 from the left, moreover,

lim j(1—z;) =m.
j—o0

(©)

. mm
= lim —X——
j—oo log(j + 1)

fj(xj):eT~

lim —— ;
i o T 1) oma, /i
Proof. Itis obvious that

fj@)=a/(1—z)" " <(j(1 — ) —mz)log 131: +;p> '

We denote

9i(@) = (j(1 = 2) = ma) log - 3 ta

Then

m 3
tlbm— 1
JHl4m—— (]+m)0g17x

£
—~
8
~
IN

j+14+m—m—(j+m)log3
j+1—(j+m)log3<0.

Thus g; is strictly decreasing on (0, 1), and since

lim g;(z) =jlogj >0 and lim g;(z) = —o0,

z—0t r—1—

(€)

“)

)

(6)

(N

hence there is a unique x; € (0,1) such that g;(z;) = 0. It is clear that g;(z) > 0 whenever = € (0, z;) and that

g;(x) < 0 whenever z € (z;,1). Since

fil@) = 27711 — )" g (@),
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6 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

so the function f; is increasing on (0, z;) and decreasing on (z;, 1). Therefore, f; has a unique absolute maxi-
mum at x;, which implies (a) holds.
Since g;(z;) = (j(1 — z;) — ma;)log T2 + z; = 0, thus

((1Ij)m?j)1°g L Y
J

1—ux; J

Since x; € (0, 1), then letting j — oo in the above equation, it follows that

lim <(1 —z;) — mxj> log S 0.
J

j—00 1-— x;
However, log 2~ > log 3, then hm [(1 — ;) — *4] = 0. Hence lim x; = 17. Thatis, (5) is true.
j—o0
Using g; (xj) = O again, we have that
. . . 7Ij
lim [j(1 — z;) — mx;] = lim — = 0.
j—roo j—oo log =2

Which implies that lim j(1 — ;) = lim ma; = m. Thatis, (6) is true.
j—roo J

— 00
Since

log|1 i—1
lim jlogz; = hm j( )—og[ + (@ ) = —m,
oo 2 —1

then lim 27 = e~™. Further by
j—oo 7

log 330 log — 1 ; 1 1—
lim 2155 i ) _ lim < og3j _ log(yl wg))) _1,
j—oolog(j+1)  jooe log(j+1)  j—oe \log(j + 1) log(j+1)

we have that

ym S
lim —— lim ——a%(1 —z,;)™1
j—oo log(j + 1) 0<1 filw) = j—oo log(j + 1) ( z;)" log 11—z
log 7 oM
= i 7‘”1’ ™1 — )" = —.
=00 log(j + l)J (1= ay)"a; em
This completes the proof. O

In this paper, we use the following notation. Let w € H(D) and f € H(D), define

/ FOu(Q)dS, Tuf(z / 5(¢
Then it follows that

L(e)(2) = / Y (QuOAC, Tu()(z) = / TP (). ®)
Besides,

(@™ )l = (G + 1)ilégﬂ(Z)\@(Z)\j\U(Z)so’(Z)\, 17 (") 1 = iggu(Z)lW(Z)U’(Z)M

Since (D12, f) = v/ f™ oot ug' f(m T o o, thus D17, : Biog — By, is bounded (or compact) if and only if
the weighted composition operators u'Cy, : Hp? — H2° and [up’1Cy, H vy — H° are bounded (or compact),
where v2(2) = (1 — |2])™*! log (1_—|Z|) is also a essential weight. Similar to the paper [3, Proposition 3.1] we

obtain the following theorem A.
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Theorem A Let u € H(D), ¢ € S(D), m € N and p be a weight on D, Then the operator D!, : Biog — By,
is bounded if and only if

/
M, = sup p(2)u (2)] < oo,
zed (1= [e(2))™ log 115,
/
My = sup 1(2)|u(z)¢’ (2)| < o0,

zeb (1= lo(2)))™+ log =2y

Based on the above result, we will give the new criterion for the boundedness of the operator D', : Biog — By,

3 The boundedness

Theorem 3.1 Letu € H(D), p € S(D), m € Nand p be a weight on D. Then D', : Biog — B, is bounded
if and only if u € B, sup pu(z)|u(z)¢’(2)| < oo and both of the inequalities hold:
zeD

" Ju e

sup - < 00, &)
i>1 %7 [og

-m I J+1
i>1 [127]hog

Proof. Necessity. Suppose the operator D', : Biog — B, is bounded. Since the function f(z) = 2™ €
Biog and fo(z) = 2™ € Biog, then we have that

m!sup pu(2)|u’ ()] < oco.
z€eD

(m +1)! Z‘lelgu(Z)IU’(Z)so(Z) +u(2)¢'(2)] < oo

From the above inequalities, we obtain that v € B, and sup p(z)|u(z)¢’(z)| < co. Next we will show (9) and
2€D

(10) hold. From (7), we know that there exists a constant K7 > 0 such that

M

3
(1—91:)mlog1 < Kj. (11)

SUp —————~ max
jzﬁ) log(j + 1) o<a<1
Since the operator D', : Biog — B,, is bounded, then by theorem A, lemma 2.4 and (11), it follows that

> m

3" 1w j i
sup —————+ < sup ——— sup u(z 2)u' (z
Nl i Tog( 1 1) g )]
J" p(z)|u'(2)] ; m 3
= sup s lp(2)? (1 = |e(2))™ log ————
j>1 log(j +1) zep (1= l(2)])™log 1_|Z(2)‘ 1 —[p(2)]
™ ‘ 3
< Mjsup ———su (1 —lo(2)])"log ———+ < M1 K.
13>I1)1 o+ 1) ZEP‘SO( z)P( le(2)]) gl—\ga(z)| 1481

That is, (9) holds. Similarly, from (7), we obtain that

m—+1 3 1 m+1
lim —.— max 27 (1 —2)™ ! log = (m+1)
j—oo log(j + 1) o<z<1 1—x em+1

By the above equation, there exists a constant Ko > 0 such that

m—+1

max 2/ (1 —2)™ " log — < K. (12)

sSup ———~
jo1 log(j + 1) 0<a<1
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8 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

Similarly, by theorem A, lemma 2.4 and (12),

ijIu(PjJrl HM jm i
—_— = - sup(j + Du(z)|¢? u(z
i S e ) (J + Du(2)l¢’ ()¢ (2)u(2)]
imG+1) p(2)|u(z)¢’ (2)] ; 1
= sup =—= sup lp(2)l? (1 — |e(2)])™ log ————
S50 108 (1) Seb (1~ Jp(=) )™+ log =iy e
JmG+1) !
< Mssu 7su P (1 = |o(z))™  log ————
< Mysu LHsu () (1 = [p(2)])™+ log ——— < My K.
2ol log(i + 1) Zeb © v ST el —

That is, (10) holds.
Sufficiency. Firstly, if sup |o(2)] < 1, then there is a number r € (0, 1) such that sup |¢(2)] < r. For every

f € Biog with || f||5,,, < 1 by the condition u € B,, and sup p(2)|u(z)e’(2)| < oo, it follows that

DG fls, = (DG £)0)] + |1 D2, 1l
= [u(0)|[ £ (2(0))] + sup p(2) ' (2) ™ (p(2) + ulz) fT (0(2)) ¢ (2)]

< [u(0)[| £ (2(0))] +§lelgu(2)\u’(Z)f(m)( (2 ))I+supM(Z)Iu(Z)f(m“)(w(Z)M( )|

WO o pEW S + oup O S s,
= (= lpO)) ™ log =y 2eb (1= lp(a)) ™ log 2y e (L= () log 2y
u(0) oy HOWEL | @]

B (1 - |§0(0)|)m 1Og% z€D (1 _T)m log% Pran) (]_ —’r')mel logfj

which implies the boundedness of DZZU : Biog — By
Secondly, if sup |p(2)| = 1. For every f € Biog with || f||5,,, < 1, we have that
z€D

DG fllB, = (D2 f)O)| + 1DZ fll
= [u(0)[| ™ (£(0))| + sup p(2) |/ (2) 7 (9(2) + u(z) T (0(2) ¢ (2)]

< [u(0)[| £ (2(0))] +§1elgu(2)W( 2T (p(2)] + sup p(2)|ulz) F" ) (0(2)) ' (2)]

zeD
[4(0)]1£ 10 LOICIIFE K I s
= A= TpO)™ log =gy 2eb (1= [p(2))™ log =iy 6b (L= [p(x))™* log =iy
[u(0) u2)l () p()lu(z)e(2)]
= A= 1pO)™ log =gy 2eb (1= [p())™ log =iy 26b (L= [9(x))™* log =iy
=1+ 1)+ I3, (13)

It is obvious that I; < co. We only need to show that /5 and I3 is finite. For any integer 7 > 1, let
AL ={zeD: rj <[p(2)] <7541},

m—1+L

where Ty = 1-— m

Let k be the smallest positive integer such that Ak # (. Since sup |¢(z)| = 1, hence
zeD

the set Aé is not empty for every integer j > k, and D = Uj:kA{F. By (1), forevery j € N,

jm . Lm
————— min f > ————— = ;. (14)
log mi-+1}&-L z€[rj,rj4+1] i@ = 3mem—1+L '
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Hence by (14) and (4), it follows that

I — sup f1(2)|u(2)] .
zeb (1= |o(2)])™ log =y

3™ u(2) W' (2) ][0 (2) !
_Jm i(1 — 3 J+1
log lp(2)7(1 = |(2)])™ log T-o(2)] log 1L

1 ;m / J
< Lgup sup IO Clplo)

61 kE<j zeA{, 0g m+1+L

3" ) (2) |l (2)
FES|
m~+1+L
1 m / J
< L e O ()
01 j>1 2D 1127 [|10g

1 | J07
01 j>1  [[#7hog

= sup sup
k<j e Al

1
< — supsup
01 1<; zeD log

.. sm+1 . . m+1
Slmllarly, l‘jﬁ min ZEJ(l — I)m+1 log % Z ?)mg_/lw = 52. Hence
O8 mFL zeAl,

/
b = sp HOUESGI
b (L= e log =iy

p@)u2)¢' )™ e(2)P
jmt J+1

i(1 — m+1 3 _ J+L
log L lp(2)]7 (1 — |e(2)]) log T (2)] log =7

w(2)|u(z)e’ (2)|77e(2))
1 gy FOREE ™)
2 k<j reAd log 2

1 2)|u(z) (2)|i™ T o(2)|

L AN ()
2 j>1 2€D logm

1 / -m—+1 J

1 supsup p2)ul2)¢" ()15 |p(2)]
2 j>1 2€D ||Zj||10g

L gL,
—sup———r—
02 j>1 (G + D27 hog
L [ s

= —sup -
62 j>1  127]hog

= sup sup
k<j zeAl

IN

IN

PN

(16)

Combining (13), (15) and (16) we obtain the boundedness of D', : Biog — B, in this case. Now the proof is
complete. O

4 The essential norm

In this section, we will give an estimate for the essential norm of D', : Biog — B,,. To simplify the notations,
we denote

im| J J . i T J+1 .
A := limsup M and B := limsup M
imoo  |127]log isoo  [1#7]hog

For r € [0, 1], we define the linear dilation operator K, : H(D) — H(D) by K,.f = f, where f.(z) = f(rz).
Then we have:
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10 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

Lemma 4.1 [2, Lemma 5.2] Let v € [0, 1]. Then the following statements hold:
(@) Biog is a K,-invariant subspace of H(D); moreover, we have that

HKT”Blog%Blog <L

(b) If r # 1, then K, is compact on Biog.

The following criterion for compactness comes from an easy modification of [4, Proposition 3.11]. Hence we
omit the details.

Lemma 4.2 Let p11 and po be weights on D, m € N, u € H(D) and ¢ € S(D). Then the operator
D, : By, — By, is compact if and only if given any bounded sequence (f;);en in B, such that f; converges

to 0 uniformly on compact subsets of D, then || D, (f;)|5,, — 0 as j — oo.

Theorem 4.3 Let u € H(D), ¢ € S(D), m € N and p be a weight on D. Suppose that the operator
D7, Biog — B, is bounded. Then

1Dl < A+ B. (17)

ul

Proof. Since the operator Dgfu : Biog — B,, is bounded, then A < oo and B < co. Moreover,

Ly :=sup u(2)||v'(2)] < oo, Lg:=suppu(z)|u(z)¢’ ()| < co.
z€D zeD

Firstly, if sup |¢(z)| < 1, then there is a number r € (0, 1) such that sup |p(z)| < r. It’s easy to verify the

zeD z€D
operator D', : Biog — B, is compact by lemma 4.2. In fact, let {f;}ren be a bounded sequence in Biog
converging to zero uniformly on compact subsets of D as & — oo. We denote L := sup || fx||5,, < oo. By
keN '

Cauchy’s integral formula, we obtain that

1D fills, = (D2 fi) ()] + D2 ficll
= [u(0)|| £ (£(0)| + sup a(2) u/(2) T (p(2)) + u(2) f (0(2)¢ (2)]

< [aO)I™ (9(O)] +sup p(2) o’ ()£ (o(2))
+ilelgu(Z)\u(Z)so’(Z)l|f;5m+1)(<ﬁ(2))\
< u(0)|I£™ (2(0))] + L sup 11 (0(2)] + sup Lol £ (0(2))]

< ()| £ (9(0))] + L1 sup [ (w)] + Lo sup £ (w)]

lw|<r [w|<r

— 0, as k — oo.
Employing lemma 4.2, it is clear that the operator D', : Biog — B, is compact. Thus

I1DZ.ulle = 0. (18)
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On the other hand, by (3) we obtain that

A = hmsupM jhmsupM
J—roo 127 [|10g jooo log(j+1)
. qm , _
= limsup ————sup u(2) |/ (2)¢’ (2
msup I sup () (21 2)
< I, limsupm i =0. (19)
J—00
m I J+1 ‘m I 41
B = limsupwjhmsupw
Jj—o0 (|27 ||10g o0 log(yj 4+ 1)
" | .
= limsup ————su + Do)V (2)]|ulz
mSup G 1) o pu( )G+ Dle(2)l [¢'(2)|[u(2)]

m 1 .
< Lslimsup ww —

j—oo IOg(j + 1) (20)

From (18)-(20), both sides of (17) are zero. Therefore the essential norm formula is true in this case. In the
sequel, we assume that sup lo(2)| = 1.

The upper bounded. By the boundedness of the operator D', : Biog — By, and lemma 4.2, we know the
operator D', K : Biog —+ B,, is compact. Then

1D

o < limsup| D™
j—00

= thUp sSup H(Dgl,u - DZL,uKTj)f”Bu
§=00 (|1l <1

< limsup sup |(D$u — D:ZuKrj)f(Oﬂ
J=00 [IfllBpe<1

+ limsup sup suppu(z)|(D, — D, Kr,) f(2)|

J=00 IflIB)p,<1 €D

< limsup sup |u(0)f(m)(<p(0))—7“ u(0 )f(m)(r ©(0))]

i=00 [Ifllsy,<1

+ limsup sup sup p(z)|u' (2)|If 7 (0(2) = ) f (o 2)]

§00 [|fllse<1 2€D

+ limsup sup sup p(2)u(z)¢ (2)||F7 D (o(2) — LY (r0(2)

J=00 |IfllB)ye<1 €D

< limsup sup |u(0)||f(m)(<,0(0))—7” fim (Tg@( )]

J=00 IflIBjpe <1

+  Jy+ Js. (21)

@,u DZL,uKTgH

On the one hand, similar to [2, Lemma 5.3], by r; — 1 as j — oo and Cauchy’s integral formula, it follows
that

limsup sup \u(O)Hf(m)(gD(O)) - r}-”f(m)(rjw(o))l = 0.

=00 |[fllBpe <1

On the other hand, for each positive integer j € N, denote the set A7, = {z € D : 7; < [p(z)| < rjz1}.
Since sup |¢(z)| = 1, then there is a k € N such that A’; # () and Ag) is not empty for every integer j > k.
zeD

Hence D = U;’ik AJ,. By (2), for an arbitrary ¢ > 0, there is N, € N such that for any integer j > N,

J" . ; m 3 (m—1+L)™

log

Copyright line will be provided by the publisher



12 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

Further by
-m+1 ) 3 L ma1
lim ]71 min /(1 — )™ log _(mt )L ,
j—e< log Tﬂ_L a€[ry,rj41] l—=z em+

there is Ny € N such that for any integer j > N,

m—+1 m—+1

j ) ; mal 3 (m+ L)
—~—— min 2/(1-=x lo > — €. 23
log 1L s TR T > T )

In the following, denote N = max{N;, Nz}. In fact (22) is used to prove .J; and (23) for Jo. We divide .J; into
two parts

i =limsup sup  sup sup () (" (e(=)) = 17 (e (=)
500 [[fllBypp <1 K<IEN 2 Ad,

Sz =limsup sup  sup sup (=) (2)[|f (=) — 7O (o)
§=00 [|fllsygg <1 N+1<5 2 ad,

It is clear that

Ji,1

IN

Lilimsup sup sup |f(m)(90(z)) - r}”f(’”)(rj@(@)l

73700 |[fllB)pe<1 Te<|P(2)|STN 41

= 0.
On the other hand,

Jiz <limsup  sup  sup sup ()| (2)|(LF (9 ()] + ] f O (5 0(2)])
J=00 |IfliBjpg <1 N+1<5 24,
<limsup sup  sup sup u(2)[u'(2)[(|F" (0(2))] + 1 (rj0(2))])-
=00 |IfllBpg<1 N+1<7 2 A
Denote the expression s(p) for p € (0,1),
slp) = supsup u(2)|u' (2)]| " (po(2))]

N+1<j zeal,

LF (oL = [pp(2)])™ log 1507

= sup sup p(z)|u'(2)|

N+1<) zeAd, (1= lpe(2))™ log =0y
()| (z
< sup sup ||f||B., ( )|m( ) 3
N+1<) 2ead, (1= [pp(2)]) IOgW
w(z)|u' (=
<  sup sup | flBy., ( )|m( ) 3
NY1<) seal (1 = le(2))™ log Ty
Jm ) (2)le(2)
= sup sup [fls,— : (2)]u'( )||m( )| .
N+1<j ze Al J™e(2) 7 (1 = [e(2)]) logm
. y +1
]m JuSOJ 1Og mi
< s (s, Dy ERLE
N1< 127lhog  Leas I™0(2)P (1 = [0(2))™ log T3y
1 3™ T |l
< oo SW B o
S A ™
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In the above chain of relations, the first inequality follows from the definition of the norm || - |5, and lemma
2.3. The second inequality is due to the fact that the function (1 — 2)™*!log 2 is decreasing on [0, 1]. The
third and fourth inequalities follow from (4) and (22), respectively. Since e is arbitrary, then

Jio < limsup sup (s(1) +s(r;))

i [Iflls <1

i sup 2 [ 7
j—oo ||Z]||log

PN

The above inequalities imply that

3" 1wl

J1 = limsup - (24)
jooo 177 lhog
Using the similar way by replacing (22) with (23), we can obtain that
Jo = 1i ! (m+1) _ o (mAD) p(m41) (.
> imsup  sup sup p(z)u(z)@ (2)[[fT (0(2)) =TS (r0(2)
J=00 [IfllB)p, <1 2€D
-m Iu J+1
< limsup o e (25)
imoo |1Z7lhog

Combining (21), (24) and (25), it follows the upper bounded.
The lower bounded. The assumption sup |¢(z)| = 1 holds. For every compact operator K : Bj,, — B, and
z€D

each sequence { fx }ren C Biog With sup Il fx |l Bog < 00, and fj, converging to zero on the compact subsets of D,
eN

k
8, = 0. Thus

it follows that lim || K f|
k— o0

DG, — K| = limsup [[(D, — K) fills, = limsup [ DZ,(f&)ll5,
k— o0 k—o0

thatis, | D2, [le > limsup || DZ, (fk)l|5,-
k—o0

Choosing a sequence {ay }ren C D such that |p(ar)| — 1 as & — oo, we define the function sequences
{fl(jz) }ren and {fz(fz) }ren, respectively.

fmy = —mAaD0—lela)l)  (m+ 20 = lele))?
1,k (1 - @(ak)z)m—H log ﬁ (1 — w(ak)z)m'ﬂ log ﬁ )
)y = (MU —le@)l®)  m+ D0 - lpla) )
2,k (1 — (p(ak)z)m+1 log m (1 _ @(ak)z)m“ log m

Clearly {f1 k}ren C Biog and {fo tren C Biog; moreover, both sequences converge to zero uniformly on
compact subsets of D as k — oo. Since fl(TZ) (p(ar)) = 0and

(m + 1)e(ar)

(m+1)( _
. QO(ak)) - 9
(1~ [p(an) )™ log =2y
1
£ (olar)) = :
k (1= lp(an)?)™ log t—;taryp
m plak
74 () = (ax)

27
(1~ lan) Py (1og ooy

Copyright line will be provided by the publisher



14 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

we have that

IDZ e > limsup||D2, (f14)5, > limsup [|DZ, (f1.4)ll
k—oo k—o0
= limsupsup u(2)|u'(2) £} (0(2)) + u(2) () f173 T (0(2)]

k—oo z€D

> nglsogpm)\u'(ak)fff:)(so(ak» +ulan)g' () F7 (plan)]

e Halu(a0)¢ (@] (m + Dlp(er)
b’ (1= [p(ar) )+ log

plar)|ular) ¢’ (ar)|

> limsup
koo (1= [p(a) )™+ log 7=t
s (=) |u(2)¢' ()]
(1= le(2)]2) ™+ log =2
[p(2)]—1 w2 1—[p(2)[?
and
DG lle > 1iinsup||D$u(fz,k)llB#ZlilﬁnsupllDqu(fz,k)llu
—00 —0o0
= limsuwpsup ()| (2) S (0(2) +ul2)e' ()L (e(2)
— 00 z
> Timsup p(ay)u (ar) f57) (p(ar)) + ular)e (ar) f577 (olan))|
—00
. plar) v (ax)|
> limsup o 3
koo (1= lp(ar)?)™ log i
!
~ Jimsup e [H(@) @ (ar) o (ak)| i
£ (1 [pag)2)m 4 (log 1y )
plan)u' (ax)|
= limsup 5 3
koo (1= lp(an)?)™ log T
s plan)u(ar)¢' (ar)] 2
£ (1 fp(an) Pyt (1o e
Since
lo 3 (lo )2
T el ~ T ()P
then
. plan)u(ar)¢' (ar)]
lim sup + 1D e
koo (1= Jp(ar) )™ log 2
. plan) [u(ar)¢’ ()] .
> lim sup 5 + D2 le

€% (1~ [p(ar) )+ (log 1y )

imsu o)ty ( -
= P T ol ) log =

(26)

27)

(28)

Copyright line will be provided by the publisher
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Combining (26) and (28), it follows that

SR 118 4

koo (1= le(ar)[?)™ log 7= tarm

— Jimsup u(2)[u'(2)] _
lo(z)|—1 (1= |e(2)? )mlogﬁ

1D

For s € (0, 1), by (3), we consider

jm”Ju‘pj”u J" ’ j
, =< sup p(2)|u' (2)||e(2))
E og(j 1) b (2)|u'(2)lle(2)]
jm ’ j jm ! j
S ——— sup u()|[u'(2)|le(z)/ + ——— sup u(2)[u'(z)|le(z)]
log(j + 1) |p(2)|<s log(j + 1) |p(2)|>s
ijj -m

J , _
; + . sup 2)u (2 2)]7.
g+ D) T logG D) ok KR @)

By lemma 2.5, the above inequalities imply that

sm

J ’ j
——— sup pu(z)|v'(2)|le(z))
g + 1) |, (2)] |o(2)]

i () (1= ()™ log =y

/
=———— sup u(z)u(z
T Y B e G g o oy e e

j" p(z) | (2)]
< ———fi(z;) sup .
log(] + 1) I lp(2)|>s (1 - |‘P(z)|)m log 1,‘2(z)|

Thus by (7) we obtain that

lim sup M =< limsup L4 J_°
iseo 1179 |liog jooo  log(j+1)
n W) (2)
+limsup ———f;(z;) sup
j—oo 10g(1 + 1) 10 ss (L= [p(2) )™ log 72y
mm p(2)|' ()]

= — sup - .
™ Je(a)lzs (1= le(2)))™ log =30y

Further we have that

m J J
hm Sup j || UQO ||,u
j—o0 HZJ”log

IA
ok}
wn
=
T

IA

lim sup .
lo(z)—1 (1= lp(2)[2)™ log %

Combining (29) and (30), it’s clear that

m J j
lim sup J”Zw =D e

oo 117 ]hog

(29)

(30)
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16 Y.X. Liang and Z.H. Zhou: Weighted differentiation composition operator

Similarly,
3™ [ L jm ; '
, = sup(j + Dp(2)|e(2) |u(2)¢' (2
TS ogj = 1) ZeD( Ju(2)|e(2)) [u(z)¢' ()]
jm+1 )
< ————sup u(2)|e(2)) |u(z)¢’ (2
s s Al )6 )
o o)l + (el [u(2)¢' ()
SLy————= sup [p(x)] + ———= sup p(2)|p(z)u(2)¢'(z
log(j + 1) |p(2)|<s log(j +1) jp(z)]>s
m—+1 -m—+1

L _ /
<L 5 s+ - sup z Nz .
log(j + 1) ' log(j +1) Mz)bsﬂ( ()l |u(2)¢'(2)]

By lemma 2.5, the above inequalities imply that

~m—+1

J Iu(2)o' (2
oG 7 1) b MR ()¢ (o)

jm+1 lp(2) 7 (1 = [o(z) )™ og =2
] ) Ee)]
= ———— sup u(z)u(z)¢'(2)|
1og(j + 1) |o(2)|>s (1= lp(2))m+ og =2y,
-m-+1 3 /
< I )™ g <1 u(Z)IU(i)lsD (2)] .
log(j+ 1) L= 2j o(2))>s (1= [(2)])™ ! log 7=ror;

Then by (7), we obtain that

-m Iu J+1 m—+1 .
lim sup M =< limsup Lo ],753
jooo 1#7]log jooo  log(j+1)
m—+1 /
J j mtl 3 p(2)[u(z)¢’(2)|
+ lim sup 7#(1 — ;)" log sup
j—00 lo ( 1) / ! —Zj |p(2)|>s (1 - |@(Z)|)m+1 IOg%

_mypm pEWEE
emtl lp(2)|>s (1 - ‘@(z)|)m+1 10g %

Further we get that

im T J+1
N 2 R 116 1) ]
Jj—oo ||ZjHlog 521 6(2)[>s (1= |p(z))m+1 logm
< lmsup OO E)
lp(2)|—1 (1- |@(2)|)m log - |<P(Z)|
. p(2)|u(z)¢' (2)|
=< limsup . 3D
lo(z) =1 (1= |@(2)[>)m ! log ﬁ
Combining (27) and (31), it follows that
-m Iu J+1
limsupw = ||D$u||e.
j—oo 127 {l10g '
This completes the proof. O

The following corollary is a consequence of theorem 4.3 and lemma 2.4.

Corollary 4.4 Let w € H(D), ¢ € S(D), m € N and p be a weight on D. Suppose that the operator
D7, : Bog — By, is bounded. Then D, : Biog — By is compact if and only if either of the following
statements holds:

Copyright line will be provided by the publisher
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(a)
im| T J i T J+1
lim sup Jin ‘ugo ”“ =0 and limsup JiH u,@ ”“ =0.
jooo 1#hog j—o0 127 [l10g
(b)
im| T J i T J+1
lim sup jin ,W [ =0 and limsup ]7H “@ I =0
oo log(j+1) jooo  log(j+1)
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