
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATRIX ANAL. APPL. c© 2016 Society for Industrial and Applied Mathematics
Vol. 37, No. 4, pp. 1719–1728

COMON’S CONJECTURE, RANK DECOMPOSITION, AND
SYMMETRIC RANK DECOMPOSITION OF SYMMETRIC

TENSORS∗

XINZHEN ZHANG† , ZHENG-HAI HUANG† , AND LIQUN QI‡

Abstract. Comon’s Conjecture claims that for a symmetric tensor, its rank and its symmetric
rank coincide. We show that this conjecture is true under an additional assumption that the rank
of that tensor is not larger than its order. Moreover, if its rank is less than its order, then all rank
decompositions are necessarily symmetric rank decompositions.
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1. Introduction. A tensor is a multidimensional array. The order of a tensor is
the number of dimensions, also known as degree. A first order tensor is a vector, and
a second order tensor is a matrix. Tensors of order three or higher are called higher
order tensors. Unless otherwise specialized, tensors appearing in this paper are higher
order tensors. A tensor is called square or cubical if all its dimensions are identical. A
square tensor is called symmetric if its elements are invariant under any permutation
of their indices. Symmetric tensors have wide applications such as in signal and image
processing and blind source separation; we refer to [9, 21, 23, 24, 26] and references
therein.

Decompositions of higher order tensors are the extensions of matrix singular value
decomposition. For example, we have candecomp/parafac (CP) decomposition,
Tucker decomposition, and parafac2 decomposition; see [19] and references therein.
In this paper, we will consider the CP decomposition of higher order tensors. The CP
decomposition was introduced by Hitchcock in 1927 [17, 18] and has attracted much
attention in the areas of machine learning, biomedical engineering, signal processing,
independent component analysis, psychometrics, and chemometrics [1, 7, 8, 10, 13, 14,
19, 29]. For symmetric tensors, there are two types of CP decompositions: the outer
product decomposition and the symmetric outer product decomposition, which are
also called the CP decomposition and the symmetric CP decomposition, respectively.
One may regard them as the generalizations of singular value decomposition and
eigenvalue decomposition of symmetric matrices. The symmetric CP decomposition
has wide applications in blind identification of underdetermined mixtures, speech, and
so on. Furthermore, the bijection between symmetric tensors and homogeneous poly-
nomials is another motivation to study the symmetric CP decompositions [2, 6, 25].
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1720 XINZHEN ZHANG, ZHENG-HAI HUANG, AND LIQUN QI

For symmetric tensors, CP decomposition leads to the CP rank, and symmetric
CP decomposition leads to the symmetric CP rank. For ease, we will call them the
rank and the symmetric rank, respectively, throughout this paper. Furthermore, the
decompositions corresponding to the rank and the symmetric rank are called the rank
decomposition and the symmetric rank decomposition, respectively.

From [11], we know that the rank and the symmetric rank always exist. As
the generalization of matrix rank, the rank and the symmetric rank of tensors are
distinguishing themselves from the matrix rank. First, to determine the rank of
a tensor is NP-hard [15], while the matrix rank can be determined by polynomial
time algorithms. Another difference is about the relationship between the rank and
the symmetric rank. For any symmetric matrix, the rank and the symmetric rank
coincide, while for symmetric tensors, a similar relationship is not known to us. In
2008, the following conjecture, termed Comon’s Conjecture in [20, 22], is raised in
[11].

Comon’s Conjecture. For a symmetric tensor, its rank and its symmetric rank
always coincide.

Comon’s Conjecture has attracted much attention since 2008 [3, 16, 20, 22, 27].
As far as we know, this conjecture has been proved at least in the following cases:
(1) the border rank is 2 [3] or 3 [20]; (2) the rank is less than the dimension [11];
(3) the symmetric rank is 1 or 2 [11]; (4) the flattening rank condition and Kruskal’s
condition hold [22]. For other cases, Comon’s Conjecture remains open.

This paper is concerned with Comon’s Conjecture, the rank decomposition, and
the symmetric rank decomposition for symmetric tensors. In section 2, we present
preliminaries on the rank and the rank decomposition of tensors. In section 3, for a
symmetric tensor whose rank is less than its order, any rank decomposition is shown
to be a symmetric rank decomposition. As a corollary, Comon’s Conjecture is true for
such tensors. In section 4, we present an example to show that a rank decomposition
need not be symmetric in general. Furthermore, we give a positive answer to Comon’s
Conjecture for the case that the rank of a symmetric tensor is equal to its order.

2. Preliminaries. In this paper, m, n1, n2, . . . , nm are positive integers, F is
the real number field R or complex number field C, and Dim is the abbreviation for
dimension of a vector space. Span({. . .}) denotes the linear span of a set of vectors
{. . .}. (·)∗ denotes the dual space of space (·). Throughout this paper, we assume
that m ≥ 2 and ni ≥ 2 (i = 1, . . . ,m).

An m-order (n1 × · · · × nm)-dimensional tensor A = (Ai1i2...im) is a multidimen-
sional array of entries Ai1i2...im ∈ F with ij = 1, . . . , nj and j = 1, . . . ,m. All such
tensors form a linear space of dimension n1 × n2 × · · · × nm, which is denoted by
Fn1×···×nm . In particular, such tensors are said to be square if n1 = · · · = nm := n,
which are then called m-order n-dimensional tensors. Let Tm(Fn) be the space of all
m-order n-dimensional square tensors. A square tensor A = (Ai1...im) ∈ Tm(Fn) is
called symmetric if Ai1...im is invariant under all permutations of (i1, . . . , im). We will
denote by Sm(Fn) the space of all m-order n-dimensional symmetric tensors.

For any given tensor, fibers are defined by fixing every index but one; slices
are second order sections, defined by fixing all but two indices. It is clear that any
slice of a symmetric tensor is a symmetric matrix. The mode-k unfolding of tensor
A ∈ Fn1×···×nm is a matrix, denoted by A(k), with entries

(A(k))ij = Ai1...ik−1iik+1...im , j = 1 +

nl∑
l=1,l 6=k

(il − 1)Jl, Jl =
∏

l=1,l 6=k

nl.
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COMON’S CONJECTURE, AND RANK DECOMPOSITION 1721

An m-order (n1 × n2 × · · · × nm)-dimensional tensor A ∈ Fn1×n2×···×nm is called
rank-1 if it can be written as an outer product of m vectors x(i) ∈ Fni (i = 1, 2, . . . ,m).
We denote it by A = x(1) ⊗ x(2) ⊗ · · · ⊗ x(m) with entries

Ai1i2...im = x
(1)
i1
x

(2)
i2
· · ·x(m)

im
, ij = 1, . . . , nm, j = 1, . . . ,m.

Here, the symbol “ ⊗ ” denotes the vector outer product. Furthermore, an m-order
n-dimensional symmetric tensor A ∈ Sm(Fn) is called symmetric rank-1 if A can be
written as A = αx⊗m := αx⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸

m

for a vector x ∈ Fn and a scalar α ∈ F.

The rank of tensor A ∈ Fn1×n2×···×nm is the smallest r such that

(2.1) A = A1 +A2 + · · ·+Ar,

where Ai ∈ Fn1×n2×···×nm (i = 1, 2, . . . , r) are rank-1 tensors. For convenience, the
rank of A is denoted by r(A), and (2.1) is called a rank decomposition of A. The
symmetric rank of tensor A ∈ Sm(Fn) is the minimal number s (denoted as rS(A))
such that

(2.2) A = A1 +A2 + · · ·+As

for some symmetric rank-1 tensors Ai ∈ Sm(Fn) (i = 1, 2, . . . , s). Equation (2.2) is
referred to as a symmetric rank decomposition. It is not hard to see that r(A) ≤ rS(A)
for any A ∈ Sm(Fn). However, it is unknown whether the equality holds, which is
conjectured to be true in Comon’s Conjecture.

To study Comon’s Conjecture and the rank decomposition, we introduce a relation
“ ∼ ” between two vectors in Fn. Specifically, for two nonzero vectors x, y ∈ Fn, x ∼ y
if and only if x = τy for some nonzero scalar τ ∈ F. Clearly, such a relation is
an equivalence relation. A set of vectors that are mutually equivalent is called an
equivalence class. For a tensor A ∈ Sm(Fn) with rS(A) = s,

A =

s∑
i=1

x(i,1) ⊗ x(i,2) ⊗ · · · ⊗ x(i,m)

is also a symmetric rank decomposition if x(i,j) ∼ x(i,1) for i = 1, . . . , s and j =
2, . . . ,m.

For a linearly independent vector set {v1, . . . , vt} ⊂ Fq, there exist covectors
φ1, . . . , φt ∈ (Fq)∗ (also known as dual basis of dual space (Span(v1, . . . , vt))

∗) that
are dual to a v1, . . . , vt, such that

φk(vi) = δik :=

{
1, i = k,
0, i 6= k,

for i, k = 1, . . . , t. Suppose that

I = {j1, . . . , js},

vi = x(i,j1) ⊗ x(i,j2) ⊗ · · · ⊗ x(i,js), i = 1, . . . , t,

A =

t∑
i=1

x(i,1) ⊗ · · · ⊗ x(i,j1) ⊗ · · · ⊗ x(i,js) ⊗ · · · ⊗ x(i,m).
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1722 XINZHEN ZHANG, ZHENG-HAI HUANG, AND LIQUN QI

By contracting A with covector φj (j = 1, . . . , t) in I-modes, we mean a tensor

A ·I φk =

t∑
i=1

φk(vi)x
(i,j1) ⊗ · · · ⊗ x(i,jm−s) = x(k,j1) ⊗ · · · ⊗ x(k,jm−s),

where {j1, . . . , jm−s} = {1, . . . ,m}\I. Clearly, A ·I φk is a symmetric rank-1 tensor if
A is symmetric.

The mode-k inner product A ·k x ∈ Fn1×nk−1×nk+1×···×nm is defined between a
tensor A ∈ Fn1×n2×···×nm and a vector x ∈ Fnk with entries

(A ·k x)j1j2...jm−1
=

nk∑
i=1

Aj1...jk−1ijk+1...jmxi, jl = 1, . . . , nj , l = 1, . . . , k − 1, k, . . . ,m.

If A is symmetric, A ·k x is symmetric too. The multilinear transformation of
tensor A ∈ Fn1×n2×···×nm by matrices P i ∈ Fn̄i×ni , i = 1, 2, . . . ,m, is a tensor
Y = (P 1, . . . , Pm) · A ∈ Fn̄1×n̄2×···×n̄m , whose entries are

Yi1i2...im =

n1∑
j1=1

. . .

nm∑
jm=1

P 1
i1j1P

2
i2j2 . . . P

m
imjmXj1j2...jm , il = 1, 2, . . . , n̄l, l = 1, . . . ,m.

3. Rank decomposition and symmetric rank decomposition. In this sec-
tion, the relationship between the rank decomposition and the symmetric rank de-
composition is investigated for any symmetric tensor with its rank being less than its
order. To begin with, we present several properties of the rank decomposition.

Lemma 3.1. Let

(3.1) A =

r∑
i=1

x(i,1) ⊗ x(i,2) ⊗ · · · ⊗ x(i,m)

be a rank decomposition of A ∈ Fn1×···×nm . Then for any index set J = {j1, j2, . . . ,
jm−1} ⊂ {1, 2, . . . ,m} with |J | = m− 1, the set

{x(i,j1) ⊗ x(i,j2) ⊗ · · · ⊗ x(i,jm−1) | i = 1, 2, . . . , r}

is linearly independent.

Proof. This result is a corollary of Proposition 2.4 of [5], and the proof is omitted
here.

Lemma 3.2. For A ∈ Sm(Fn), let (3.1) be a rank decomposition of A with r ≥ 2
and W := Span({x(1,j), x(2,j), . . . , x(r,j)}) for some j ∈ {1, . . . ,m}. Then x(i,k) ∈ W
for i = 1, 2, . . . , r and k = 1, 2, . . . ,m.

Proof. This result can be regarded as a direct corollary of Proposition 3.1.3.1 of
[20] and section 3.1 in [4]. Hence the proof is omitted here.

Corollary 3.3. Let A ∈ Sm(Fn) and (3.1) be a rank decomposition of A with
r ≥ 2. Then there is no index k such that x(i,k) ∼ x(j,k) for all i, j ∈ {1, . . . , r} and
i 6= j.

Proof. Otherwise, we assume without loss of generality that x(i,1) ∼ x(j,1) for
i, j ∈ {1, . . . , r}. Letting W = Span({x(1,1), x(2,1), . . . , x(r,1)}), we have Dim(W ) = 1.
From Lemma 3.2, x(i,j) ∈W for i = 1, . . . , r and j = 1, . . . ,m. We then have r(A) =
1, which contradicts the assumption r(A) ≥ 2. The desired result is established
now.
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COMON’S CONJECTURE, AND RANK DECOMPOSITION 1723

Concerned with the relationship between the rank decomposition and the sym-
metric rank decomposition, let us begin with the case r(A) = 1 or 2.

Lemma 3.4. Let A ∈ Sm(Fn) (m ≥ 3) and r(A) = 1 or 2. Then any rank
decomposition of A is a symmetric rank decomposition.

Proof. Case 1. r(A) = 1. Let (3.1) be a rank decomposition with r = 1. Since A
is symmetric, any slice of A is a symmetric matrix. This indicates that x(1,i) ∼ x(1,1),
i = 2, . . . ,m, and the result holds clearly.

Case 2. r(A) = 2. Let (3.1) be a rank decomposition of A with r = 2. From
Corollary 3.3, x(1,j) 6∼ x(2,j) for j ∈ {1, . . . ,m}. For the case j = 1, vectors x(1,1), x(2,1)

are linearly independent. Hence, there exist covectors φ1, φ2 such that φi(x
(k,1)) = δik.

Contracting A with φi in {1}-modes, we get

A ·1 φi =

2∑
k=1

φi(x
(k,1))x(k,2) ⊗ · · · ⊗ x(k,m) = x(i,2) ⊗ · · · ⊗ x(i,m),

which is a symmetric rank-1 tensor. From Case 1, x(i,2) ∼ x(i,l) for i = 1, 2 and
l = 3, . . . ,m. In the same way, for the case j = 2, we can show that x(i,1) ∼ x(i,l) for
l = 3, . . . ,m and i = 1, 2. So we can assert that x(i,1) ∼ x(i,l) for l = 2, . . . ,m and
i = 1, 2. This completes the proof.

Proposition 5.5 of [11] gives a similar conclusion under the condition rS(A) = 1
or 2. As r(A) ≤ rS(A), Lemma 3.4 is then an extension of Proposition 5.5 of [11]. To
generalize above result, we need the following lemmas.

Lemma 3.5. For i = 1, . . . , r, let x(i,j) ∈ Fnj\{0}, j = s + 1, . . . ,m, and Bi ∈
Fn1×n2×···×ns be s-order tensors. If the tensors

Bi ⊗ x(i,s+1) ⊗ · · · ⊗ x(i,m), i = 1, 2, . . . , r

are linearly independent and DimSpan({B1,B2, . . . ,Br}) = p < r, then there exists an
index j0, s+ 1 ≤ j0 ≤ m, such that

DimSpan({B1 ⊗ x(1,j0),B2 ⊗ x(2,j0), . . . ,Br ⊗ x(r,j0)}) > p.

Proof. Without loss of generality, the set {B1,B2, . . . ,Bp} is assumed to be lin-
early independent and Bj (p+ 1 ≤ j ≤ r) can be expressed linearly by B1,B2, . . . ,Bp.
From Lemma 1 of [28], we have

DimSpan({B1 ⊗ x(1,j),B2 ⊗ x(2,j), . . . ,Bp ⊗ x(p,j)}) = p.(3.2)

Hence

DimSpan({B1 ⊗ x(1,j),B2 ⊗ x(2,j), . . . ,Br ⊗ x(r,j)}) ≥ p, j = s+ 1, . . . ,m.(3.3)

Next, we will show that the inequality (3.3) holds strictly for some j ∈ {s +
1, . . . ,m}. Otherwise, for any given k (k > p) and j = s + 1, . . . ,m, there exists a
nonzero p-tuple (βkj1, βkj2, . . . , βkjp) ∈ Fp such that

Bk ⊗ x(k,j) =

p∑
l=1

βkjlBl ⊗ x(l,j).
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1724 XINZHEN ZHANG, ZHENG-HAI HUANG, AND LIQUN QI

Contracting both sides in (s+ 1)-modes with y satisfying y>x(k,j) = 0, we have

0 = (y>x(k,j))Bk =

p∑
l=1

βkjl(y
>x(l,j))Bl.

By the linear independence of B1,B2, . . . ,Bp, it follows that y>x(k,j) = 0 for βkjl 6= 0.
By the choice of y, we have

(3.4) x(k,j) ∼ x(l,j) for all l = 1, . . . , p and βkjl 6= 0.

That is, if βkjl 6= 0, there exists γkjl 6= 0 such that x(l,j) = γkjlx
(k,j). Then Bk =∑p

l=1 γkjlβkjlBl.
Noting that both {Bl | l = 1, . . . , p} and {Bl ⊗ x(l,j) | l = 1, . . . , p} are linearly

independent, the coefficients βkjl and βkjlγkjl are uniquely determined. For simplicity,
γkjlβkjl is denoted by τkl. By construction, if τkl 6= 0, then γjkl 6= 0 for any j. From
(3.4), we have

Bk⊗x(k,s+1)⊗x(k,s+2)⊗· · ·⊗x(k,m) =

p∑
l=1

1/

m∏
j=s+1

γkjl

 τklBl⊗x(l,s+1)⊗· · ·⊗x(l,m).

This contradicts the assumption. Hence, (3.3) holds strictly for some j and the
conclusion follows.

Lemma 3.6. Let xi ∈ Fn, i = 1, . . . , r, be nonzero vectors and xi 6∼ xj for 1 ≤ i 6=
j ≤ r. If rk := DimSpan({x⊗k1 , x⊗k2 , . . . , x⊗kr }) < r, then rk+1 :=

DimSpan({x⊗(k+1)
1 , x

⊗(k+1)
2 , . . . , x

⊗(k+1)
r }) > rk.

Proof. Suppose that the set {x⊗k1 , x⊗k2 , . . . , x⊗kp } is linearly independent and p <

r. We now show that the set {x⊗(k+1)
1 , x

⊗(k+1)
2 , . . . , x

⊗(k+1)
p+1 } is also linearly indepen-

dent. Otherwise, there exists a nonzero p-tuple (α1, . . . , αp) ∈ Fp such that

x
⊗(k+1)
p+1 =

p∑
i=1

αix
⊗(k+1)
i .

For any nonzero vector z ∈ Fn with z>xp+1 = 0, we have by contracting above tensor
in 1-modes with z

p∑
i=1

αi(z
>xi)x

⊗k
i = 0.

From the linear independence of {x⊗ki | i = 1, . . . , p}, we have z>xi = 0 for αi 6= 0.
Hence, if αi 6= 0, it holds that xi ∼ xp+1 and a contradiction follows.

By Lemma 3.6, Corollary 4.4 of [11] is improved as follows.

Corollary 3.7. Let xi ∈ Fn, i = 1, . . . , r, be nonzero vectors and xi 6∼ xj for
1 ≤ i 6= j ≤ r. Then for any m ≥ r − r̄ + 1, {x⊗m1 , x⊗m2 , . . . , x⊗mr } is linearly
independent, where r̄ = DimSpan({x1, . . . , xr}).

We are ready to present our main result of this section.

Theorem 3.8. Let A ∈ Sm(Fn) and m ≥ 3. If r := r(A) < m, then any rank
decomposition of A is a symmetric rank decomposition.
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COMON’S CONJECTURE, AND RANK DECOMPOSITION 1725

Proof. From Lemma 3.4, the result holds for the case r ≤ 2. It suffices to consider
the case m > r ≥ 3. Let (3.1) be a rank decomposition of A with r ≥ 3.

Set j1 = 1. By Corollary 3.3, r1 := DimSpan({x(1,1), x(2,1), . . . , x(r,1)}) ≥ 2.
By Lemma 3.5, there exists a j2 ∈ {2, . . . ,m} such that r2 := DimSpan({x(1,1) ⊗
x(1,j2), x(2,1) ⊗ x(2,j2), . . . , x(r,1) ⊗ x(r,j2)}) > r1. Clearly, r2 ≥ 3. Continuing this
procedure, an index set Is = {j1, j2, . . . , js} (s < r) can be found such that r =
rs > rs−1 > · · · > r1 ≥ 2 and rk ≥ k + 1, k = 1, 2, . . . , s, hold. Here, rk =
DimSpan({x(i,j1) ⊗ x(i,j2) ⊗ · · · ⊗ x(i,jk) | i = 1, 2, . . . r}), k = 1, . . . , s. It is easy to
check s ≤ r − 1 ≤ m− 2 from the fact r = rs ≥ s+ 1.

For simplicity, let Js = {1, . . . ,m}\Is := {js+1, . . . , jm} and denote for k =
1, 2, . . . , s {

Ai,k = x(i,j1) ⊗ x(i,j2) ⊗ · · · ⊗ x(i,jk),
Bi,k = x(i,jk+1) ⊗ x(i,jk+2) ⊗ · · · ⊗ x(i,jm).

Based on these notations, A can be rewritten as

A =

r∑
i=1

Ai,s ⊗ Bi,s.

From the linear independence of {A1,s, . . . ,Ar,s}, a set of covectors {φi}i=1,...,r can be
found, which is dual to {A1,s, . . . ,Ar,s}. That is, φj(Ai,s) = δij for i, j = 1, 2, . . . , r.
Contracting A in Is-modes with φj (j = 1, 2, . . . , s), we have

A ·Is φj =

r∑
i=1

φj(Ai,s)Bi,s = Bj,s,

which is a rank-1 symmetric tensor. By Lemma 3.4, x(i,jk) ∼ x(i,jm), k = s+1, . . . ,m.

Hence, for i = 1, 2, . . . , r, Bi,s has the form Bi,s = αiy
⊗(m−s)
i with yi ∈ Fn and αi 6= 0.

We thus have the following rank decomposition:

A =

r∑
i=1

αiAi,s ⊗ y⊗(m−s)
i =

r∑
i=1

αiAi,s−1 ⊗ x(i,js) ⊗ Bi,s.(3.5)

By Lemma 3.1, {Ai,s−1 ⊗ y⊗(m−s)
i | i = 1, 2, . . . , r} is linearly independent. Applying

Lemma 3.5 to vectors Ai,s−1 ⊗ y
⊗(m−s)
i (i = 1, 2, . . . , r) several times, we have the

linear independence of {Ai,s−1 ⊗ y⊗(r−rs−1)
i | i = 1, 2, . . . , r}. Therefore, there exists

a set of covectors {νi}i=1,...,r which is dual to {Ai,s−1 ⊗ y⊗(r−rs−1)
i | i = 1, 2, . . . , r}.

That is, νi(Aj,s−1 ⊗ y⊗(r−rs−1)
j ) = δij , i, j = 1, . . . , r. Hence,

A ·(Is−1
⋃
{js+1}) νi =

r∑
j=1

(νi(Aj,s−1 ⊗ y⊗(r−rs−1)
j ))y

⊗(m−s−(r−rs−1))
j ⊗ x(j,js)

= y
⊗(m−s−(r−rs−1))
i ⊗ x(i,js)

is a rank-1 symmetric tensor. Here, m − s − (r − rs−1) = m − r + (rs−1 − s) ≥
m − r ≥ 1. Therefore, x(i,js) ∼ yi and A =

∑r
i=1 βiAi,s−1 ⊗ y⊗(m−s+1)

i for some
βi ∈ F, i = 1, 2, . . . , r.

Repeating the above procedure from s− 1 to 2, we can show

A =

r∑
i=1

βix
(i,1) ⊗ y⊗(m−1)

i =

r∑
i=1

βiy
⊗(m−1)
i ⊗ x(i,1).
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Form Lemma 3.1, y
⊗(m−1)
1 , . . . , y

⊗(m−1)
r are linearly independent. Moreover, yi 6∼

yj for any 1 ≤ i 6= j ≤ r. Otherwise, yi ∼ yj will lead to y
⊗(m−1)
i ∼ y

⊗(m−1)
j .

Applying Corollary 3.7 to vectors y1, . . . , yr, {y⊗(r−1)
1 , . . . , y

⊗(r−1)
r } is then linearly

independent. So there is a set of covectors {ν̄i}i=1,...,r dual to {y⊗(r−1)
i }i=1,...,r such

that ν̄i(y
⊗(r−1)
j ) = δij for i, j = 1, 2, . . . , r. Contracting A in Ī-modes with ν̄i (Ī =

{1, . . . , r − 1}), we have

A ·Ī ν̄i =

r∑
j=1

βi(ν̄i(y
⊗r−1
j ))y

⊗(m−r)
i ⊗ x(j,1) = βiy

⊗(m−r)
i ⊗ x(i,1),

which is a rank-1 symmetric tensor. So we can assert that yi ∼ x(i,1) and the decom-
position (3.1) is symmetric.

The following corollaries give a positive answer to Comon’s Conjecture.

Corollary 3.9. Let A ∈ Sm(Fn) and r(A) < m. Then Comon’s Conjecture is
true.

Corollary 3.10. Let A ∈ Sm(Fn) and rS(A) ≤ m. Then Comon’s Conjecture
is true.

The following lemma can be found in [12, 20].

Lemma 3.11. For any binary symmetric tensor of order m, its symmetric rank
is not larger than m.

By Corollary 3.10 and Lemma 3.11, we have the following result.

Corollary 3.12. For any binary symmetric tensor, Comon’s Conjecture is true.

To end this section, we consider the following example.

Example 3.13. Consider a 3-order two-dimensional symmetric tensor A with
non-zero elements

A111 = −1, A122 = 1.

Shown in [11], rS(A) = 3 over the real field R with a symmetric rank decomposi-
tion

A =
1

2

(
1
1

)⊗3

+
1

2

(
1
−1

)⊗3

− 2

(
1
0

)⊗3

,(3.6)

and rS(A) = 2 over the complex field C with a symmetric rank decomposition

A =

√
−1

2

(
−
√
−1

1

)⊗3

−
√
−1

2

( √
−1

1

)⊗3

.(3.7)

We shall show below that rS(A) = r(A) over both C and R.
In fact, from Lemma 3.1, it is easy to see that r(A) 6= 1 over C and R. This

implies that r(A) = 2 over C. Hence, Comon’s Conjecture is true for A over C. On
the other hand, since 3 = rS(A) ≥ r(A) ≥ 2 over R, it suffices to show that r(A) 6= 2
over R by contradiction. By a proof similar to that of Lemma 3.4, we know that a
rank decomposition is a symmetric rank decomposition for tensor A. Hence, it is
established that r(A) = 3, and Comon’s Conjecture is true for A over R.

Remark 3.14. It is well known that the rank and the symmetric rank of a
(symmetric) tensor may be different in different fields; see section 3.1 in [19]. However,
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under the conditions of Corollaries 3.9 and 3.10, the rank and the symmetric rank of
a symmetric tensor coincide regardless of the fields F.

4. Comon’s Conjecture for the case that the rank is equal to the order.
For any symmetric tensor with the rank being less than its order, any rank decom-
position is shown in the above section to be a symmetric rank decomposition. This
section is concerned with the case that the rank is equal to the order. To begin with,
let us consider the following example.

Example. Let a, b ∈ Fn be nonzero vectors and a 6∼ b. For m ≥ 3, introduce the
following m-order n-dimensional symmetric tensor:

(4.1) A = a⊗ b⊗ b⊗ · · · ⊗ b+ b⊗ a⊗ b⊗ b⊗ · · · ⊗ b+ · · ·+ b⊗ b⊗ b⊗ · · · ⊗ a.

Then by Proposition 5.6 of [11], we have rS(A) = m. From Corollary 3.10, r(A) = m.
Hence, (4.1) is a rank decomposition of A and is not a symmetric rank decomposition
of A.

Therefore, for a symmetric tensor whose rank is larger than or equal to its order,
a rank decomposition need not be a symmetric rank decomposition. To proceed, we
ask, what is the symmetric rank of a symmetric tensor with its rank being its order?
To answer this question, we need the following lemma.

Lemma 4.1. Let A ∈ Sm(Fn) with r(A) = m ≥ 3. If (3.1) is a rank decomposi-
tion of A with r = m and DimSpan({x(1,1), x(2,1), . . . , x(m,1)}) ≥ 3, then (3.1) is a
symmetric rank decomposition.

Proof. Similarly to the proof of Theorem 3.8, an index set I = {j1, j2, . . . , js} ⊂
{1, 2, . . . ,m} can be found such that m = rs > rs−1 > · · · > r1 ≥ 3 and rk ≥ k + 2.
Here, rk := DimSpan({Ai,k = x(i,j1) ⊗ x(i,j2) ⊗ · · · ⊗ x(i,jk)|i = 1, 2, . . . r}) for k =
1, 2, . . . , s. It is easy to check that s ≤ m− 2. The rest of the proof is similar to that
of Theorem 3.8 and is omitted here.

Theorem 4.2. Let A ∈ Sm(Fn) and r(A) = m. Then rS(A) = m.

Proof. From Lemma 4.1, it suffices to consider the case DimSpan({x(1,1),
x(1,2), . . . , x(m,m)}) = 2. To simplify the notation, we denote Span({x(1,1), x(1,2), . . . ,
x(m,m)}) = Span({p, q}) for two nonzero vectors p, q ∈ Fn. Let x(i,j) = Pa(i,j), where
P = [p, q] is a matrix and a(i,j) are two-dimensional vectors. Then, it holds that

Axm =

m∑
i=1

m∏
j=1

(x>x(i,j)) =

m∑
i=1

m∏
j=1

((P>x)>a(i,j)) = T ym.

Here, x ∈ Fn, y = P>x ∈ F2, and

T =

m∑
i=1

a(i,1) ⊗ a(i,2) ⊗ · · · ⊗ a(i,m) = (P>, P>, . . . , P>) · A

is an m-order two-dimensional symmetric tensor. From Proposition 3.1.3.1 of [20] and
its symmetric version, we have r(A) = r(T ) and rS(A) = rS(T ).

In view of binary tensor T and Lemma 3.11, we have rS(T ) ≤ m, which implies
rS(A) ≤ m. Together with the fact rS(A) ≥ r(A) = m, one obtains immediately that
rS(A) = m, and the statement is established now.

Based on this result, Corollaries 3.9 and 3.10 can be improved as follows.

Corollary 4.3. For A ∈ Sm(Fn), Comon’s Conjecture is true if r(A) ≤ m or
rS(A) ≤ m+ 1.
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