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Abstract. The thickness of a graph is the minimum number of planar span-
ning subgraphs into which the graph can be decomposed. It is a measurement
of the closeness to planarity of a graph, and it also has important applica-
tions to VLSI design, but it has been known for only few graphs. We obtain
the thickness of vertex-amalgamation and bar-amalgamation of graphs, the
lower and upper bounds for the thickness of edge-amalgamation and 2-vertex-
amalgamation of graphs respectively. We also study the thickness of cartesian
product of graph, and by using operations on graphs, we derive the thickness
of the cartesian product Kn2Pm for most values of m and n.

1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). A graph is said to be
planar if it can be drawn on the plane without edge crossings. A planar graph
drawn in this way is called a plane graph. Suppose G1, G2, . . . , Gk are spanning
subgraphs of G, if E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk) = E(G) and E(Gi) ∩ E(Gj) =
∅, (i 6= j, i, j = 1, 2, . . . , k), then {G1, G2, . . . , Gk} is a decomposition of G.
Furthermore, if G1, G2, . . . , Gk are all planar graphs, then {G1, G2, . . . , Gk} is a
planar decomposition of G. The minimum number of planar spanning subgraphs
over all possible planar decompositions of G is called the thickness of G, denoted
by θ(G).

The thickness of a graph was firstly defined by W.T. Tutte [21] in 1963. As a
topological invariant of a graph, it is an important research object in topological
graph theory, and it also has important applications to VLSI design [1]. But
the results about thickness are few, compared with other topological invariants,
e.g., genus, crossing number. The only types of graphs whose thickness have
been obtained are complete graphs [4, 7, 22], complete bipartite graphs [8] and
hypercubes [16]. Since determining the thickness of a graph is NP-hard [17], it
is very difficult to get the exact number of thickness for arbitrary graphs, people
study the lower and upper bounds for the thickness of a graph [12, 15] and
introduce heuristic algorithms to approximate it [11, 20]. Some relations between
thickness and other topological invariants, such as genus, are also established
[2]. The reader is referred to [18, 19] for more background and results about the
thickness problems.
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In this paper, the thickness of graphs that are formed from vertex-amalgamation
and bar-amalgamation of any two graphs are obtained, respectively. The low-
er and upper bounds for the thickness of graphs that are obtained by edge-
amalgamation and 2-vertex-amalgamation of any two graphs are also derived,
respectively. Some results about the thickness of cartesian product are also ob-
tained, especially, the thickness of the cartesian product Kn2Pm is obtained for
most value of m and n, in which Kn is the complete graph with n vertices and
Pm is the path with m vertices.

Graphs in this paper are simple graphs. For the undefined terminologies see
[6].

2. Thickness of graph amalgamations

The union of graphs G1 and G2 is the graph G1∪G2 with vertex set V (G1)∪V (G2)
and edge set E(G1) ∪ E(G2). The intersection G1 ∩ G2 of G1 and G2 is defined
analogously.

Let G1 and G2 be subgraphs of a graph G. If G = G1∪G2 and G1∩G2 = {v}
(a vertex of G), then we say that G is the vertex-amalgamation of G1 and G2

at vertex v, denoted G = G1 ∨1{v} G2. If G = G1 ∪ G2 and G1 ∩ G2 = {u, v}
(two distinct vertices of G), then we say that G is the 2-vertex-amalgamation of
G1 and G2 at vertices u and v, denoted G = G1 ∨1

{u,v} G2. If G = G1 ∪ G2 and

G1 ∩ G2 = {e} (an edge of G), then we say that G is the edge-amalgamation of
G1 and G2 on edge e, denoted G = G1 ∨2{e} G2.

Let G and H be two disjoint graphs, the bar-amalgamation of G and H is
obtained by running a new edge between a vertex of G and a vertex of H.

The four kinds of amalgamations defined above are important operations on
graphs, by these amalgamations, one can synthesize larger graphs (i.e., the graph
with larger order) from small ones. It is a general method to study problems in
graph theory by using operations on graphs. In the following, we list some results
about genus of graph amalgamations which will be applied in our proof.

The genus of a graph G is the minimum integer k such that G can be embedded
on the orientable surface of genus k, denoted by γ(G). A graph G is planar if
and only if γ(G) = 0.

Lemma 2.1. [5] If G is the vertex-amalgamation of G1 and G2, then

γ(G) = γ(G1) + γ(G2).

Lemma 2.2. [10] If G is the bar-amalgamation of G1 and G2, then

γ(G) = γ(G1) + γ(G2).

Lemma 2.3. [3] If G is the edge-amalgamation of G1 and G2, then

γ(G) ≤ γ(G1) + γ(G2).

Lemma 2.4. [13] If G is the 2-vertex-amalgamation of G1 and G2, then

γ(G1) + γ(G2)− 1 ≤ γ(G) ≤ γ(G1) + γ(G2) + 1.

In [2], a relation between genus and thickness of a graph was given as follows.
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Lemma 2.5. [2] If G is a graph with genus 1, then the thickness of G is 2.

In the following, some results about the thickness of vertex-amalgamation,
bar-amalgamation, edge-amalgamation and 2-vertex-amalgamation of graphs are
obtained.

Theorem 2.6. If G is the vertex-amalgamation of G1 and G2, θ(G1) = n1 and
θ(G2) = n2, then

θ(G) = max{n1, n2}.

Proof. Without loss of generality, one can assume that n1 is not less than n2 and
G1 ∩ G2 = {v} (a vertex of G). Suppose that {G11, G12, . . . , G1n1} is a planar
decomposition of G1 and {G21, G22, . . . , G2n1} is a planar decomposition of G2.
From Lemma 2.1,

γ(G1i ∨1{v} G2i) = γ(G1i) + γ(G2i) = 0, 1 ≤ i ≤ n1.

Hence {G11 ∨1{v}G21, G12 ∨1
{v}G22, . . . , G1n1 ∨1{v}G2n1} is a planar decomposition

of G, which shows θ(G) ≤ n1. On the other hand, G1 is a subgraph of G and
θ(G1) = n1, so we have θ(G) ≥ n1. Summarizing the above, the thickness of G is
n1, the theorem follows. �

Theorem 2.7. If G is the bar-amalgamation of G1 and G2, θ(G1) = n1 and
θ(G2) = n2, then

θ(G) = max{n1, n2}.

Proof. Suppose that n1 ≥ n2 and edge e is the new edge between G1 and G2. Let
{G11, G12, . . . , G1n1} be a planar decomposition of G1 and {G21, G22, . . . , G2n1}
be a planar decomposition of G2. G11 ∪ G21 ∪ e is the bar-amalgamation of G11

and G21, from Lemma 2.2, the genus of G11 ∪ G21 ∪ e is zero, that is to say,
G11∪G21∪e is a planar graph. Hence {G11∪G21∪e, G12∪G22, . . . , G1n1 ∪G2n1}
is a planar decomposition of G, which shows θ(G) ≤ n1. For G = G1 ∪ G2 ∪ e
and θ(G1) = n1, we have θ(G) ≥ n1. Summarizing the above, the thickness of G
is n1, the theorem is obtained. �

Theorem 2.8. If G is the edge-amalgamation of G1 and G2, θ(G1) = n1 and
θ(G2) = n2, then

max{n1, n2} ≤ θ(G) ≤ max{n1, n2}+ 1.

Proof. Suppose that n1 is not less than n2 and G1 ∩ G2 = {e} (an edge of G),
the two end vertices of e are u and v. Let {G11, G12, . . . , G1n1} be a planar
decomposition of G1 and without loss of generality, one can assume e ∈ E(G11).
Let Euv be the set of edges that are incident with u or v in G2. It is easy to see
that the graph G11 ∪Euv is a planar graph. Let {G21, G22, . . . , G2n2} be a planar
decomposition of G2 − Euv.
(1) If n1 > n2, then {G11 ∪Euv, G12 ∪G21, . . . , G1n2+1 ∪G2n2 , G1n2+2, . . . , G1n1}
is a planar decomposition of G, which shows θ(G) ≤ n1.
(2) If n1 = n2, then {G11 ∪ Euv, G12 ∪G21, . . . , G1n1 ∪G2n2−1, G2n2} is a planar
decomposition of G, which shows θ(G) ≤ n1 + 1.

For G = G1 ∨2{e} G2 and θ(G1) = n1, we have θ(G) ≥ n1. Summarizing the
above, the theorem follows. �
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From the proof of Theorem 2.8, if G is the edge-amalgamation of G1 and G2,
θ(G1) = n1 and θ(G2) = n2, then θ(G) = max{n1, n2}, when n1 6= n2; θ(G) is
either max{n1, n2} or max{n1, n2}+ 1, when n1 = n2.

Theorem 2.9. If G is the 2-vertex-amalgamation of G1 and G2, θ(G1) = n1 and
θ(G2) = n2, then

max{n1, n2} ≤ θ(G) ≤ max{n1, n2}+ 1.

Proof. Suppose that G1 ∩ G2 = {u, v} (two distinct vertices of G), E1v and E2v

are the sets of edges that are incident with v in G1 and G2 respectively. Then
G−E1v−E2v can be seen as the vertex-amalgamation ofG−E1v andG−E2v at the
vertex u. From Theorem 2.6, there exists a planar decomposition of G−E1v−E2v

with n = max{n1, n2} planar subgraphs, and θ(G) ≥ n. Obviously, the graph
E1v ∪ E2v is a planar graph. So there is a planar decomposition of G with n+ 1
planar subgraphs, which show θ(G) ≤ n+1. Summarizing the above, the theorem
follows. �

With a similar argument to the proof of Theorem 2.9, one can obtain the
following theorem about q-vertex-amalgamation (q ≥ 3) of two graphs.

Theorem 2.10. If G is the q-vertex-amalgamation of G1 and G2, θ(G1) = n1

and θ(G2) = n2, then

max{n1, n2} ≤ θ(G) ≤ max{n1, n2}+ q − 1.

3. Thickness of the cartesian product of two graphs

The cartesian product of graphs G and H is the graph G2H with vertex set

V (G2H) = V (G)× V (H)

and edge set

E(G2H) = {(g, h)(g′, h′) | gg′ ∈ E(G) and h = h′, or hh′ ∈ E(H) and g = g′}.

For any h ∈ V (H), we denote byGh the subgraph ofG2H induced by V (G)×{h},
it’s isomorphic to G and called a G-fiber. The H-fiber is defined analogously.

3.1. Thickness of the cartesian product of a t-minimal graph and an
outerplanar graph. A graph G is said to be t-minimal, if every proper sub-
graphs of it have a thickness less than t. There are only two 2-minimal graphs,
i.e., K5 and K3,3, up to homeomorphism. The only known t−minimal complete
graph is K9 for t = 3. A graph is an outerplanar graph if it can be embedded in
the plane without crossings in such a way that all of the vertices belong to the
unbounded region f∞ of the embedding.

Theorem 3.1. [9] Let G and H be connected graphs. Then the graph G2K2 is
planar if only if G is outerplanar.

Theorem 3.2. Let G be a t−minimal graph and H be an outerplanar graph.
Then t(G2H) = t(G).



THE THICKNESS OF AMALGAMATIONS AND CARTESIAN PRODUCT OF GRAPHS 5

Proof. Suppose that V (G) = {v1, v2, . . . , vn}. Because G is t−minimal and the
removal of a single edge from a graph cannot reduce the thickness of the graph
by more than one, for e ∈ E(G), we have t(G − e) = t − 1. Without loss of
generality, we suppose that e = v1v2. From the structure of the G2H, we have
G2H = ((G− e)2H) ∪ ({e}2H).

From Theorem 3.1, {e}2H is a planar graph. The H fibers Hv3 , Hv4 , . . . , Hvn

are also all planar graphs. We have ({e}2H) ∪ Hv3 ∪ Hv4 ∪ · · · ∪ Hvn is a
planar graph, since that it’s the union of these n − 1 disjoint planar graphs,
denote it by Gt. The removal of the subgraph Gt from G2H leaves |V (H)|
copies of disjoint graphs G − e, which can be decomposed into t − 1 subgraphs,
because t(G− e) = t− 1. Summarizing the above, we can get a planar subgraphs
decomposition of G2H with t subgraphs, i.e. t(G2H) ≤ t.

On the other hand, G ⊂ G2H, we have t(G2H) ≥ t. The theorem follows.
�

Corollary 3.3. Let G be a t−minimal graph and Cm be a cycle graph. Then
t(G2Cm) = t(G).

Corollary 3.4. Let G be a t−minimal graph and Pn be a path graph. Then
t(G2Pn) = t(G).

3.2. The thickness of Kn2P2, n ≥ 2. In the following, by using operations on
graphs and some conclusions above, we obtain the thickness of Kn2Pm, n,m ≥ 2.

Lemma 3.5. [4, 7, 22] The thickness of the complete graph Kn is θ(Kn) =
⌊
n+7
6

⌋
,

except that θ(K9) = θ(K10) = 3.

Let K1
n be the complete graph with vertices v1, v2, . . . , vn. K2

n is a copy of K1
n

and it’s vertices labeled with u1, u2, . . . , un respectively. By joining the vertices
vi and ui with an edge viui, 1 ≤ i ≤ n, we get the graph Kn2P2. Figure 1
illustrates K52P2. From a planar decomposition of Kn2P2, by contracting the
edges from K2

n to a single vertex in every planar subgraphs, one can obtain a
planar decomposition of Kn+1, so we have

θ(Kn2P2) ≥ θ(Kn+1). (1)

v1

v2

v3
v4

v5

u1

u2

u3 u4

u5

Figure 1 The graph K52P2

By inserting a vertex wi on edge viui, for 1 ≤ i ≤ n, and merging these
n 2-valent vertices w1, w2, . . . , wn into one vertex w, one can get a new graph.
This graph also can be seen as the vertex-amalgamation of Kn+1 and Kn+1 at w,
denoted by Kn+1 ∨1{w} Kn+1. Figure 2 shows the graph K6 ∨1{w} K6.
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v1

v2

v3
v4

v5

u1

u2

u3 u4

u5w

Figure 2 The graph K6 ∨1{w} K6

From Theorem 2.6, the thickness of Kn+1∨1{w}Kn+1 is the same as the thickness

of Kn+1. Let θ(Kn+1) = t and {G1, G2, . . . , Gt} be a planar decomposition of
Kn+1, then one can get a planar decomposition of Kn+1 ∨1{w} Kn+1 as follows,

{G1 ∨1{w} G1, G2 ∨1{w} G2, . . . , Gt ∨1{w} Gt}

in which Gi ∨1{w} Gi, 1 ≤ i ≤ t are plane graphs. A planar decomposition of

K6 ∨1{w} K6 is shown in Figure 3.

v1

v2

v3
v4

v5

u1

u2

u3 u4

u5w

v1

v2

v3
v4

u1

u2

u3 u4

u5wv5

Figure 3 A planar decomposition of K6 ∨1{w} K6

From the construction of Gi ∨1
{w} Gi, if the edge vqw ∈ Gi ∨1{w} Gi, then

uqw ∈ Gi ∨1{w} Gi, 1 ≤ q ≤ n. For each graph Gi ∨1{w} Gi, 1 ≤ i ≤ t, if

vqw, uqw ∈ Gi ∨1
{w} Gi, then we replace them by a new edge vquq, for 1 ≤ q ≤ n,

and delete the vertex w. In this way, we obtain a new planar decomposition,
which is exactly a planar decomposition of Kn2P2. Figure 4 illustrates a planar
decomposition of K52P2 by using this way.

v1

v2

v3
v4

v5

u1

u2

u3 u4

u5

v1

v2

v3
v4

u1

u2

u3 u4

u5v5

Figure 4 A planar decomposition of K52P2

From the argument and construction above, one can get a planar decomposi-
tion of Kn2P2 from that of Kn+1 ∨1{w} Kn+1, so we have

θ(Kn2P2) ≤ θ(Kn+1 ∨1{w} Kn+1) = θ(Kn+1). (2)
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Theorem 3.6. The thickness of the cartesian product Kn2P2(n ≥ 2) is

θ(Kn2P2) =
⌊n+ 8

6

⌋
,

except that θ(K82P2) = θ(K92P2) = 3.

Proof. From (1) and (2), we obtain that θ(Kn2P2) = θ(Kn+1). By Lemma 3.5,
the theorem follows. �

3.3. The thickness of Kn2Pm, n ≥ 2,m ≥ 3. We use the similar method to
that in Section 3.2. Firstly, we insert a 2-valent vertex into each ”path edge”
(the edges come from Pm). Secondly, we merge these (m− 1)n 2-valent vertices
into m − 1 vertices, each of which joint two adjacent Kn, then we get a new
graph G̃. The graph G̃ can be seen as a vertex-amalgamation of m graphs, in
which the first and the mth graphs are Kn+1, the others are Kn+2 − e. From
Theorem 2.6, one can get θ(G̃) = θ(Kn+2− e). In the following, we will construct
a planar decomposition of Kn2Pm (m ≥ 3) from a planar decomposition of G̃,
which shows that

θ(Kn2Pm) ≤ θ(Kn+2 − e) ≤ θ(Kn+2). (3)

Suppose that {G1, G2, . . . , Gj} is a planar decomposition of Kn+2 − e, in
which the vertices of Kn+2 are labeled with v1, v2, . . . , vn+2 respectively and
e = vn+1vn+2. For each 1 ≤ i ≤ j, we do a vertex-amalgamation of m graphs Gi

as follows
Gi ∨1{vn+1} Gi ∨1

{vn+2} Gi ∨1{vn+1} Gi · · · ∨1
{vp} Gi

in which p = vn+2 when m is odd, and p = vn+1 when m is even, denote the

resulting graph by Ĝi. For each Ĝi (1 ≤ i ≤ j), we delete the vertex vn+2 and
the edges incident with it in the first Gi, delete the vertex vn+1 or vn+2 and
the edges incident with it in the mth Gi according to m is odd or even, denote
the resulting graph by G̃i, and {G̃1, G̃2, . . . , G̃j} is a planar decomposition of G̃.

Finally we delete m− 1 vertices vn+1 and vn+2 in G̃i, 1 ≤ i ≤ j and replace them
by ”path edge” as in Section 3.2, denote the obtained graph by Gi, 1 ≤ i ≤ j, and
{G1, G2, . . . , Gj} is a planar decomposition of Kn2Pm, m ≥ 3. Figure 5 shows a
planar decomposition of a vertex-amalgamation of 4 graphs K7 − e and a planar
decomposition of K52P4 from it is illustrated in Figure 6.

v1

v2

v3
v4

v5

v1

v2

v3 v4

v5

v6

v1

v5

v4
v3

v1

v5

v4 v3

v2v7

v2

v1

v2

v3
v4

v5
v6

v1

v2

v3 v4

v5

v6

v1

v5

v4
v3

v2

v1

v5

v4 v3

v2
v6

v7v7 v7v7
v7

v6 v7 v7
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Figure 5 A planar decomposition of a vertex-amalgamation of 4 graphs
K7 − e

On the other hand, Kn2P2 is a subgraph of Kn2Pm (m ≥ 3), combing it with
(1), we have

θ(Kn2Pm) ≥ θ(Kn2P2) ≥ θ(Kn+1). (4)

v1

v2

v3
v4

v5

v1

v2

v3 v4

v5

v1

v5

v4v3

v1

v5

v4 v3

v2
v2

v1

v2

v3v4

v5

v1

v2

v3 v4

v5

v1

v5

v4v3

v2

v1

v5

v4 v3

v2

Figure 6 A planar decomposition of K52P4 from a planar decomposition of a
vertex-amalgamation of 4 graphs K7 − e as shown in Figure 5

Theorem 3.7. The thickness of the cartesian product Kn2Pm (n ≥ 2,m ≥ 3) is

θ(Kn2Pm) =
⌊n+ 9

6

⌋
,

except θ(K32Pm) = 1, θ(K82Pm) = 3 and possibly when n = 6p+ 3 (p ≥ 2).

Proof. When n 6= 7, from (3), (4) and Lemma 3.5, we obtain θ(Kn2Pm) =
θ(Kn+2), except possibly when n = 6p+ 3 (p is a nonnegative integer).

When n = 3, because θ(K4) ≤ θ(K32Pm) ≤ θ(K5−e) and both K4 and K5−e
are planar graphs, we have θ(K32Pm) = 1.

When n = 9, because θ(K10) ≤ θ(K92Pm) ≤ θ(K11) and θ(K10) = θ(K11) =
3, we have θ(K92Pm) = 3.

When n = 7, we have 2 ≤ θ(K72Pm) ≤ θ(K9 − e). We give a planar decom-
position of K9− e as shown in Figure 7, and K9− e is a non-planar graph, which
shows θ(K9 − e) = 2. So we have θ(K72Pm) = 2.

Summarizing the above, the theorem is obtained. �

1 2 3 4 5 6 7

8

9

8

9

1

7

33 5 2 6 4

Figure 7 A planar decomposition of K9 − e
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From Theorem 3.6 and Theorem 3.7, the only unsolved case for the thickness
of the cartesian product Kn2Pm when is n = 6p+ 3 (p ≥ 2) and m ≥ 3. For this
case, θ(Kn2Pm)=θ(Kn+1) or θ(Kn+2 − e). What is the exactly number for this
case is still open. It was conjectured in [14] that K6t−7 is t−minimal for t ≥ 5.
If this conjecture is true, then θ(Kn2Pm) = θ(Kn+1) = θ(Kn+2 − e) = bn+8

6

⌋
, for

n = 6p+ 3 (p ≥ 2) and m ≥ 3.

The method of the current paper is not strong enough to determine the thick-
ness for the cartesian product of complete graph Kn and the cycle graph Cm. We
pose the following problem for possible consideration.

Problem 3.8. Find an explicit formula for the thickness of the cartesian product
of complete graph Kn and the cycle graph Cm for n,m ≥ 3.
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