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Abstract

By using a new type of smoothing function, we first reformulate the generalized nonlinear complementarity problem over a
polyhedral cone as a smoothing system of equations, and then develop a smoothing Newton-type method for solving it. For the
proposed method, we obtain its global convergence under milder conditions, and we further establish its local superlinear (quadratic)
convergence rate under the BD-regular assumption. Preliminary numerical experiments are also reported in this paper.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let F, G be continuously differentiable mappings from Rn to Rm, K be a nonempty closed convex cone in Rm and
K◦ denote its polar cone. The generalized nonlinear complementarity problem, denoted by GNCP(F, G,K), is to
find a vector x∗ ∈ Rn such that

F(x∗) ∈ K, G(x∗) ∈ K◦, F (x∗)�G(x∗) = 0.

This problem has many interesting applications in such as engineering and economics, and is a wide class of problems
that contains the classical nonlinear complementarity problem, abbreviated as NCP, as a special case, see, e.g. [1,6,10]
and references therein. To solve it, one usually reformulates it as a minimization problem over a simple set or an
unconstrained optimization problem, see [17] for the case that K is a general cone, and see [9,10] for the case
that K = Rn+. The conditions under which a stationary point of the reformulated optimization is a solution of the
GNCP(F, G,K) were also provided in the literature.
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In this paper, we consider the GNCP(F, G,K) for the case that m = n, and K is a polyhedral cone in Rn, i.e., there
exist A ∈ Rs×n, B ∈ Rt×n such that

K = {v ∈ Rn|Av�0, Bv = 0}.

It is easy to verify that its polar cone K◦ assumes the following representation:

K◦ = {u ∈ Rn|u = A��1 + B��2, �1 �0, �1 ∈ Rs, �2 ∈ Rt }.

From now on, the GNCP(F, G,K) is specialized over a polyhedral cone, and in the subsequent analysis we abbreviate
it as GNCP for simplicity. In [1], Andreani et al. reformulated the problem as a smooth optimization problem with
simple constraints and presented the sufficient conditions under which a stationary point of the optimization problem
is a solution of the concerned problem. Later, Wang et al. [18] reformulated the problem as a system of nonlinear and
nonsmooth equations, and proposed a nonsmooth Levenberg–Marquardt method for solving it.

It is well known that the smoothing Newton-type method received much attention in solving such as NCP and
minimization problem due to its high efficiency [2,3,5,14,16]. It seems reasonable to ask if this kind of method can be
applied to the GNCP, and this actually constitutes the main motivation of this paper. In the rest of this paper, we will first
present a new reformulation of the GNCP by using a new type of smoothing function, and then develop a smoothing
Newton-type method for solving it which guarantees the monotonicity of the generated sequence of the objective
function. Under milder conditions, we show that any accumulation point of the generated sequence is a solution of the
GNCP, and we also establish the local superlinear (quadratic) convergence rate of the proposed algorithm under the
BD-regular assumption. Preliminary numerical experiments show the efficiency of the proposed algorithm.

To end this section, we give some standard notions used in this paper: for a continuously differentiable function
� : Rn → Rm, we denote the Jacobian of � at x ∈ Rn by �′(x) ∈ Rm×n, whereas the transposed Jacobian is denoted
as ∇�(x). In particular, if m = 1, ∇�(x) is a column vector. We use x�y to denote the inner product of vectors
x, y ∈ Rn, and use [a]i or ai to denote the ith component of the vector a ∈ Rn. The null space of a matrix B is denoted
by N(B).

2. Preliminaries

In [18], the authors reformulated the GNCP as a system of nonlinear equations based on the following Fischer
function [8]:

�F(a, b) =
√

a2 + b2 − a − b for a, b ∈ R

as is seen from the following conclusion.

Lemma 2.1. x∗ ∈ Rn is a solution of the GNCP if and only if there exist �∗
1 ∈ Rs and �∗

2 ∈ Rt , such that

{�F(AF(x∗), �∗
1) = 0,

BF(x∗) = 0,

G(x∗) − A��∗
1 − B��∗

2 = 0,

where �F(a, b) = (�F(a1, b1), �F(a2, b2), . . . ,�F(as, bs))
� for a, b ∈ Rs .

Now, we will establish a new type of smoothing reformulation of the GNCP based on the following smoothing
approximation function to the Fischer function:

�(�, a, b) =
√

a2 + b2 + ��2 − a − b, a, b, � ∈ R,

where � > 0 is a constant.



X. Zhang et al. / Journal of Computational and Applied Mathematics 212 (2008) 75–85 77

Based on the relation between �F(·, ·) and �(·, ·, ·), we can establish the following smoothing function to the GNCP:

H(�, y) :=
(

�(�)
	(�, x, �1, �2)

)
,

where �(�) = √
�s((� + 1)2 − 1) and

	(�, x, �1, �2) =
( �(�, AF(x), �1)

BF(x)

G(x) − A��1 − B��2

)
,

�(�, AF(x), �1) =
⎛
⎝�(�, [AF(x)]1, [�1]1)

...

�(�, [AF(x)]s , [�1]s)

⎞
⎠ .

In subsequent development of the paper, we denote y = (x, �1, �2), z = (�, y) and define

f (�, y) = 1
2‖	(z)‖2, T (z) = 1

2‖H(z)‖2 = 1
2�2(�) + f (z).

From Lemma 2.1, we can see that x∗ is a solution of the GNCP if and only if there exist �∗
1 ∈ Rs, �∗

2 ∈ Rt such that
z∗ = (0, x∗, �∗

1, �
∗
2) is a global minimizer with zero objective function value of the unconstrained optimization problem

min
z∈R1+n+s+t

T (z). (2.1)

Obviously, the smoothing function �(�, a, b) is not smooth everywhere. However, it is differentiable almost every-
where, and therefore it has a nonempty generalized Jacobian in the sense of Clarke [4].

To proceed our analysis, we need to review some concepts related to nonsmooth analysis. For a locally Lipschitzian
mapping 
 : Rn → Rm, we denote by �
(x) the Clarke’s generalized Jacobian of 
(x) at x ∈ Rn which can be
expressed as the convex hull of the set �B
(x) [13], where

�B
(x) =
{
V ∈ Rn×n|V = lim

xk→x

′(xk), 
(x) is differentiable at xk for all k

}
.

The following definitions are due to Qi and Sun [15].

Definition 2.1. A locally Lipschitz continuous vector-valued function 
(x) : Rn → Rm is said to be semismooth at
x ∈ Rn, if the limit

lim
V ∈�
(x+th′)

h′→h,t↓0

{V h′}

exists for any h ∈ Rn.

Definition 2.2. A function 
(x) : Rn → Rm is said to be strongly semismooth at x ∈ Rn if 
(x) is semismooth at x

and for any V ∈ �
(x + h) and h → 0, it holds that


(x + h) − 
(x) − V h = O(||h||2).

For simplicity, we denote the Clarke’s generalized Jacobian of �(ε, AF(x), �1) with respect to (ε, x, �1) ∈ R1+n+s

by ��(ε, AF(x), �1). Similar discussion to [7, Proposition 3.1] gives the following result (also see [18, Lemmas 2.3,
2.4]).

Proposition 2.1. (1) The function �(�, AF(x), �1) is continuously differentiable for � �= 0, and for this function, it
holds that

��(�, AF(x), �1) ⊆ (c DaAF ′(x) Db),
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where c = (c1, . . . , cs)
�, Da = diag(a1, . . . , as) and Db = diag(b1, . . . , bs) such that

ci = ��√
[AF(x)]2

i + [�1]2
i + ��2

,

ai = [AF(x)]i√
[AF(x)]2

i + [�1]2
i + ��2

− 1,

bi = [�1]i√
[AF(x)]2

i + [�1]2
i + ��2

− 1

if �2 + [AF(x)]2
i + [�1]2

i �= 0; and ai = �i − 1, bi = �i − 1 for any (ci, �i , �i ) ∈ R3 satisfying c2
i /� + �2

i + �2
i �1 for

the case that �2 + [AF(x)]2
i + [�1]2

i = 0.
(2) H(z) is semismooth on R1+n+s+t , and is strongly semismooth on R1+n+s+t if F ′(x) and G′(x) are both Lipschitz

continuous on Rn.
(3) T (z) is continuously differentiable on R1+n+s+t with ∇T (z) = V �H(z) for any V ∈ �H(z), and f (�, y) is

continuously differentiable with ∇f (0, y) = V �	(0, y) for any V ∈ �	(0, y).

In the end of this section, we give the definition of BD-regular and a technical lemma which will be used in the
convergence analysis of the algorithm proposed in Section 4.

Definition 2.3. A function 
(x) : Rn → Rn is said to be BD-regular at x if any V ∈ �
(x) is nonsingular.

Lemma 2.2. For any fixed y = (x, �1, �2) ∈ Rn+s+t , the function T (z) is monotonically increasing with respect to
� > 0.

Proof. Since T (z) is differentiable for all � �= 0, a direct computation yields

T ′
� (z) = �

⎡
⎢⎣2�s(� + 1)(� + 2)

+
s∑

i=1

�√
[AF(x)]2

i + [�1]2
i + ��2

(√
[AF(x)]2

i + [�1]2
i + ��2 − [AF(x)]i − [�1]i

)⎤⎥⎦

= �

⎡
⎢⎣2�s(� + 1)(� + 2) + �s −

s∑
i=1

�[AF(x)]i + �[�1]i√
[AF(x)]2

i + [�1]2
i + ��2

⎤
⎥⎦

�� [2�s(� + 1)(� + 2) − �s] > 0,

which implies that T ′
� (z) > 0 for all � > 0, the desired result follows. �

3. Stationary point and nonsingularity conditions

Generally, for an optimization problem, one can obtains its a stationary point when he uses the existing optimization
methods to solve it. So it is necessary to establish conditions which guarantee that every stationary point of (2.1) is a
solution of the GNCP.

Theorem 3.1. Let z∗ = (�∗, y∗) = (�∗, x∗, �∗
1, �

∗
2) be a stationary point of (2.1). If �∗ �0 and ∇F(x∗)−1∇G(x∗) is

positive definite in N(B), then x∗ is a solution of the GNCP.
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Proof. Define

U∗ = �(�∗, AF(x∗), �∗
1),

V ∗ = BF(x∗),

W ∗ = G(x∗) − A��∗
1 − B��∗

2.

Since z∗ is a stationary point of (2.1), ∇T (z∗) = 0, i.e.,

⎧⎪⎨
⎪⎩

2�s�∗(�∗ + 1)(�∗ + 2) + c�U∗ = 0, (3.1)

∇F(x∗)A�D∗
aU∗ + ∇F(x∗)B�V ∗ + ∇G(x∗)W ∗ = 0, (3.2)

D∗
bU∗ − AW ∗ = 0, (3.3)

−BW ∗ = 0, (3.4)

where c ∈ Rs is defined in Proposition 2.1.
From (3.4), one has W ∗ ∈ N(B). Pre-multiplying (3.2) by W ∗�∇F(x∗)−1 and using (3.3) and (3.4), we have

U∗�
(D∗

b)�D∗
aU∗ + W ∗�∇F(x∗)−1∇G(x∗)W ∗ = 0. (3.5)

Now, we show that �∗ = 0 by reductio ad absurdum. For a contradiction purpose, we assume that �∗ > 0. Then, from
the definitions of Da and Db, we know (D∗

b)�D∗
a is positive definite. Taking into account that ∇F(x∗)−1∇G(x∗) is

positive definite in the null space of B, we conclude that W ∗ = 0 and U∗ = 0. However, this contradicts (3.1). Hence
�∗ = 0.

Substituting �∗ = 0 into (3.5) and recalling [10, Lemma 3.1], we have

W ∗ = 0, U∗ = �(0, AF(x∗), �∗
1) = 0.

Pre-multiplying (3.2) by F(x∗)∇F(x∗)−1 yields

BF(x∗) = 0.

The proof is completed. �

To establish the superlinear (quadratic) convergence rate of our algorithm proposed in the next section, we need
to explore the conditions under which any element of the generalized Jacobian of the objective function of (2.1) is
nonsingular at a stationary point.

Theorem 3.2. If z∗=(�∗, x∗, �∗
1, �

∗
2) is a stationary point of (2.1), both F ′(x∗) and G′(x∗) are nonsingular, and �∗ �0,

A∇G(x∗)−1∇F(x∗)A� is a P-matrix, then V is nonsingular for any V ∈ �H(z∗).

Proof. By Proposition 2.1, we know that any element V ∈ �H(z∗) can be written as

V � =
⎛
⎜⎝

2
√

�s(�∗ + 1) c� 0 0
0 ∇F(x∗)A�Da ∇F(x∗)B� ∇G(x∗)
0 Db 0 −A

0 0 0 −B

⎞
⎟⎠ ,

where Da and Db are defined in Proposition 2.1. For convenience, we denote

D =
(∇F(x∗)A�Da ∇F(x∗)B� ∇G(x∗)

Db 0 −A

0 0 −B

)
.
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Since �∗ �0, hence, V is nonsingular if and only if D is nonsingular. Similar argument to that in the proof of Theorem
4.2 in [18] may show that the matrix D is nonsingular. �

4. Algorithm and convergence

In this section, We first give a description of our proposed smoothing Newton-type method for solving the equation
H(z) = 0 and then analyze its convergence.

Algorithm 4.1.

S.0 Choose  ∈ (0, 1), �0 > 0, � ∈ (0, +∞), � ∈ (0, 1
2 ), ��0, and take y0 ∈ Rn+s+t as an initial point. Let k := 0

and z0 = (�0, y0), L be a positive integer.
S.1 If ‖∇T (zk)‖��, stop; otherwise, go to S.2.
S.2 If the following linear system:

H(zk) + H ′(zk)�z = 0 (4.1)

is solvable and there exists mk such that mk is a smallest nonnegative integer satisfying

mk �L, T (zk + mk�zk)�(1 − 2�mk )T (zk), (4.2)

then let

zk+1 := zk + mk�z, (4.3)

k := k + 1, and go to S.1; otherwise, go to S.3.
S.3 Let �yk = −∇yf (�k, yk) and lk be the smallest nonnegative integer such that

f (�k, yk + lk�yk)�f (�k, yk) + �lk (�yk)
�∇yf (�k, yk). (4.4)

Let

yk+1 := yk + lk�yk ,

and adjust the parameter � as follows:

�k+1 :=
{ �k

2 if ‖∇yf (�k, yk+1)‖���k, (4.5)

�k otherwise. (4.6)

Let zk+1 := (�k+1, yk+1) and k := k + 1, go to S.1.

Now, we come to the convergence analysis of Algorithm 4.1.
Certainly, if the smoothing parameter �k = 0 at certain step, then the proposed method reduces to the generalized

Newton method [18]. However, the following conclusion tells us that the positiveness of parameter �k would be kept
throughout the computation.

Lemma 4.1. The sequence {�k} generated by Algorithm 4.1 is nonincreasing, and �k > 0 for all k.

Proof. We only need to prove the assertion for the case in Step 2, since it is obvious for the case in Step 3.
From the definition of H(z), a direct computation leads to that ��k = −(�2

k + 2�k)/(2�k + 2), so it is easy to see that

−�k < ��k < 0,

and hence,

0 < �k+1 = �k + mk��k =
(

1 − mk
�k + 2

2�k + 2

)
�k < �k. �
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From Lemmas 2.2 and 4.1, we know that

T (�k−1, yi)�T (�k, yi), ∀ k, i ∈ N . (4.7)

As a consequence, we obtain the following result.

Lemma 4.2. Suppose {zk} is a sequence generated by Algorithm 4.1, then the sequence {T (zk)} is monotonically
decreasing.

Proof. Obviously, T (zk)�T (zk−1) if zk is generated by S.2, so it suffices to show the assertion holds for the case that
zk is generated by S.3.

If �k+1 is generated by (4.6), then

f (�k+1, yk+1) = f (�k, yk+1)�f (�k, yk).

Since T (z) = 1
2�2(�) + f (�, y), we conclude that T (zk+1)�T (zk).

If �k+1 is generated by (4.5), then �k+1 = �k/2 < �k. Let z̄k+1 = (�k, yk+1), then T (z̄k+1)�T (zk). Combining this
with (4.7), we have

T (zk+1)�T (z̄k+1)�T (zk). �

Theorem 4.1. For the sequence {zk} generated by Algorithm 4.1, if the index set K = {k ∈ N |zk is generated by S.2}
is an infinite set, then any accumulation point of {zk} is a solution of (2.1).

Proof. Obviously,

T (zk)�(1 − 2�L)T (zk−1), ∀k ∈ K .

Since K is an infinite index set, by Lemma 4.2, one has

lim
k→∞
k∈K

T (zk) = 0.

The desired result follows. �

In the following analysis, we assume that precision � = 0 and the algorithm generates an infinite sequence.

Theorem 4.2. Any accumulation point z∗ of the sequence {zk} generated by Algorithm 4.1 is a stationary point of
(2.1).

Proof. If the index set K, defined in Theorem 4.1, is infinite, then the result follows from Theorem 4.1. So in the
following analysis, we assume that the whole sequence {zk} is generated by Step 3.

Let z∗ =(�∗, y∗) be an arbitrary accumulation point of {zk}, then there exists an infinite subsequence K1 ⊆ {1, 2, . . .}
such that {zk}K1

→ z∗ as k ∈ K1 and k → ∞.
Now, we claim that �k → �∗ = 0 as k → ∞, otherwise, without loss of generality, we can assume that the whole

sequence {zk} is generated by S.3 and �k+1 is generated by (4.6), i.e., �k = �∗ for all k. By the descent property of the
algorithm, we know that any accumulation point of the sequence {yk} generated by Algorithm 4.1 must be a stationary
point of the following optimization problem:

min
y∈Rn+s+t

f (�∗, y),

i.e.,

lim
k∈K1
k→∞

∇yf (�∗, yk) = 0.
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However, by (4.5) and (4.6), for all k ∈ K1, it holds that

‖∇yf (�∗, yk)‖ > ��∗,

and we arrive at a contradiction. So �∗ = 0, which implies that T ′
� (z

∗) = 0.

To show T ′
y(z

∗) = 0, we consider the following two cases.
First, if the sequence {lk|k ∈ K1} has an upper bound L∗, then by Algorithm 4.1, we know that

f (�k, yk+1)�f (�k, yk) − �L∗‖∇yf (�k, yk)‖2,

i.e.,

f (�k, yk) − f (�k, yk+1)��L∗‖∇yf (�k, yk)‖2.

Let z̄k = (�k, yk+1). Then from �k ��k+1, we have

T (z̄k)�T (zk+1).

Therefore,

T (zk) − T (zk+1)��L∗‖∇yf (�k, yk)‖2.

Since {T (zk)} is nonincreasing and bounded from below, we have

∇yf (�k, yk) → 0, k ∈ K1, k → ∞,

i.e.,

∇yf (0, y∗) = 0.

Second, if the sequence {lk|k ∈ K1} has no bound, then there exists a subsequence K2 ⊆ K1 such that lk → ∞ as
k ∈ K2 and k → ∞. From the stepsize rule, we know that

f (�k, yk + lk−1�yk) > f (�k, yk) − �lk−1‖∇yf (�k, yk)‖2.

By the Mean-Value theorem, there exists ȳk = yk + �1
lk−1�yk with �1 ∈ (0, 1) such that

∇yf (�k, ȳk)
�∇yf (�k, yk) < �‖∇yf (�k, yk)‖2.

Thus, 〈∇yf (�k, yk) − ∇yf (�k, ȳk), ∇yf (�k, yk)
〉
> (1 − �)‖∇yf (�k, yk)‖2.

Using Cauchy–Schwartz inequality, we have

‖∇yf (�k, ȳk) − ∇yf (�k, yk)‖�(1 − �)‖∇yf (�k, yk)‖. (4.8)

From the fact that zk → z∗ and lk → ∞ as k ∈ K2, k → ∞, we know that lim k∈K2
k→∞

yk = y∗. Consequently, there exists

a closed neighborhood N(y∗, ∗) of y∗ such that for sufficiently large k ∈ K2, yk, ȳk ∈ N(y∗, ∗). From the uniform
continuity of function ∇yf (�k, y), we have

lim
k∈K2
k→∞

‖∇yf (�k, ȳk) − ∇yf (�k, yk)‖ = 0.

Recalling (4.8), one has

lim
k∈K2
k→∞

∇yf (�k, yk) = 0.

By the definition of f (�, y) and T (z), we have

∇yT (z∗) = ∇yf (z∗) = 0.

Combining this result with ε∗ = 0, we conclude that z∗ is a stationary point of (2.1). �



X. Zhang et al. / Journal of Computational and Applied Mathematics 212 (2008) 75–85 83

Theorem 4.3. Let {zk} be generated by Algorithm 4.1. Suppose z∗ is an accumulation point of {zk} and a BD-regular
solution of H(z) = 0, then

(1) the point x∗ is a solution of the GNCP;
(2) the sequence {�k} converges to 0 quadratically;
(3) the sequence {zk} converges to z∗ superlinearly. In particular, if F ′ and G′ are locally Lipschitz continuous at

z∗, then {zk} converges to z∗ Q-quadratically.

Proof. The first statement is obvious and we omit the proof.
We first prove (3). Since H is semismooth at z∗ according to Proposition 2.1, and z∗ is a BD-regular solution from

the assumption, we can conclude from [12, Proposition 3] that z∗ is a unique solution of H(z)= 0 and therefore it is an
isolated solution of the GNCP. That is, z∗ is an isolated accumulated point of {zk}. On the other hand, from Theorem
4.2, we know that limk→∞‖zk − zk−1‖ = 0. From [11, Proposition 6.1] we can obtain the global convergence of the
generated sequence {zk}.

Using [13, Theorem 4.3], for sufficiently large k, we have mk = 0 i.e., mk = 1. By Theorem 3.1 [13], we conclude
that the sequence {zk} converges to z∗ superlinearly (quadratically). Hence (3) holds.

To prove (2), by (3), we know for sufficiently large k, zk is generated by (4.3), and hence from (4.1), we know that

�k+1 = �k + ��k = �k − (�k + 1)2 − 1

2(�k + 1)
= (�k)2

2(�k + 1)
,

from which we obtain that

lim
k→∞

�k+1

(�k)2 = lim
k→∞

1

2(�k + 1)
= 1

2
.

This completes the proof. �

5. Computational experiments

In this section, we give two sets of numerical experiments, and throughout our computational experiments, the
parameters in Algorithm 4.1 are set as

� = 0.01, L = 10, � = 0.8, � = 0.4,  = 0.5.

Example 5.1. This example is an implicit complementarity problems [1,9] with the following form: find y ∈ Rn such
that

y − m(y)�0, F (y)�0, F (y)�(y − m(y)) = 0,

where mi : Rn → R, i = 1, . . . , n, and

F(y) = Ay + b =
⎛
⎜⎝

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎞
⎟⎠ y +

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ ,

m(y) = �(Ay + b) with � : Rn → Rn being twice continuously differentiable. The following choices of function �
define our test problems:

POZ1 : �i (x) = −0.5 − xi, i = 1, 2, . . . , n,

POZ2 : �i (x) = −1.5xi + 0.25x2
i , i = 1, 2, . . . , n.
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Table 1
Numerical results of Example 1

� ST Iter f ∗ CPU �−2 �−1

(1) (a) 7 7.8886 × 10−31 0.1870 8.8886 × 10−10 3.9504 × 10−19

(2) (a) 8 7.7429 × 10−46 0.2030 7.3518 × 10−12 2.7026 × 10−23

(1) (b) 7 1.7256 × 10−31 0.1720 8.8886 × 10−10 3.9504 × 10−19

(2) (b) 7 109769 × 10−39 0.1720 8.8886 × 10−10 3.9504 × 10−19

(1) (c) 7 2.4649 × 10−32 0.1880 8.8886 × 10−10 3.9504 × 10−19

(2) (c) 8 2.7733 × 10−31 0.1880 8.5546 × 10−13 3.6625 × 10−25

(1) (d) 7 1.9720 × 10−31 0.1880 8.8886 × 10−10 3.9504 × 10−19

(2) (d) 8 1.7964 × 10−33 0.1880 1.0842 × 10−8 5.8886 × 10−17

Table 2
Numerical results of Example 2

s r Family SP Iter Inner CPU

3 0.1 (1) 0.333 6.6 10.2 0.2190
(2) 1 8.67 17.1 0.1875

1 (1) 0.417 5.4 7 0.2500
(2) 1 5.2 5.6 0.2250

10 (1) 0.333 6.5 9.667 0.2317
(2) 1 6.6 7.8 0.2280

5 0.1 (1) 0.4 7.75 14.25 0.2382
(2) 1 6.83 13.67 0.2345

1 (1) 0.5 6.83 10.67 0.2055
(2) 1 7.8 10.6 0.1996

10 (1) 0.3 8.67 17.67 0.1976
(2) 1 9.2 14.25 0.1938

9 0.1 (1) 0.3 11 16.6 0.3040
(2) 1 9.8 17.6 0.2528

1 (1) 0.5 7.67 17.2 0.2590
(2) 1 7.4 10.6 0.2190

10 (1) 0.5 9.75 16.5 0.2070
(2) 1 9.71 15.16 0.2090

12 0.1 (1) 0.3 11.33 29 0.2760
(2) 1 12.6 33.4 0.2132

1 (1) 0.462 8.83 15 0.2215
(2) 1 11.71 22.85 0.1928

10 (1) 0.5 11.11 19 0.1873
(2) 1 10.8 19.2 0.1876

In Table 1, Iter denotes the iterative number, f ∗ is the final value of f when the algorithm terminates, and CPU denotes
the computing time in the computer, �−2 and �−1 denote the values of �k at the last two iterates, respectively. Table 1
gives the numerical experiment of this example with termination parameter �=10−14 and the following starting points
with � = 5, denoted by ST:

(a) (0, 0, . . . , 0)�, (b) (−0.5, −0.5, . . . ,−0.5)�,

(c) (−1, −1, . . . ,−1)�, (d) (0.5, 0.5, . . . , 0.5)�.

From Table 1, we can see that the parameter � does not arrive at zero before the algorithm terminates and the algorithm
is very efficient in solving the problem.
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Example 5.2. Consider the problem of finding x∗ ∈ Rn such that{
x ∈ K = {v ∈ Rn|Av�0},
Nx + d ∈ K◦ = {v ∈ Rn|v = A��, � ∈ Rs+},
x�(Nx + d) = 0.

The matrix A and vector d will be generated following the pattern similar to [18, Example 6.2]. For the matrix N,
different from the choice in [18], we always let it be symmetric, i.e., N = QDNQ, where Q is an Householder matrix
Q = I − 2uu�/‖u‖2 and the components u are generated randomly from the interval (−1, 1), DN ∈ Rn×n is the
diagonal matrix whose diagonal elements are generated randomly from (−10, 10).

For this problem, we only consider the following two cases: (1) N is indefinite and (2) N is positive definite. Similar
to the notation used in [18], we call a case successful if the value T is less than 10−10 in 1 minute, SP denotes the
successful rate. For all successful cases, the following data are included: Iter denotes the average number of iterations,
Inner denotes the average number of the inner iterations, CPU denotes the working time of the computer excluding
input/output time.

The numerical results are reported in Table 2 with z = (0, 0, . . . , 0) and � = 2 being the starting point. From the
numerical results we can see our algorithm perform well when it is applied to the problem in symmetric and positive
definite case.
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