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Abstract. In recent years, the focus of bioinformatics research has turned to bio-

logical data processing and information extraction. New mining algorithm was 

designed to mine target gene fragment efficiently from a huge amount of gene 

data and to study specific gene expression in this paper. The extracted gene data 

was filtered in order to remove redundant gene data. Then the binary tree was 

constructed according to the Pearson correlation coefficient between gene data 

and processed by gSpan frequent subgraph mining algorithm. Finally, the results 

were visually analyzed in grayscale image way which helped us to find out the 

target gene. Compared with the existing target gene mining algorithms, such as 

integrated decision feature gene selection algorithm, our approach enjoys the ad-

vantages of higher accuracy and processing high-dimensional data. The proposed 

algorithm has sufficient theoretical basis, not only makes the results more effi-

cient, but also makes the possibility of error results less. Moreover, the dimension 

of the data is much higher than the dimension of the data set used by the existing 

algorithm, so the algorithm is more practical. 

Keywords: GSpan gene mining algorithm, Gene expression data, Data mining, 

Visual analysis. 

1 Introduction 

1.1 A Subsection Sample 

With the rapid development of high-throughput technology, various types of biology 

research mass data have been produced. Bioinformatics and computational biology 

have been developing corresponding theories and technologies to analyze the infor-

mation. Moreover, as the focus of human genome research shifts to functional genome, 

the emphasis of bioinformatics research has quietly turned from the accumulation of 

biological data to the processing and information extraction of biological data. And it 

has become an urgent problem to be solved in [1]. Similarly, it is still a difficult problem 

to understand and explain complex life phenomena. The process of life activity and the 

factors involved in it are a complex network system. The study of biological networks 

is a key to understanding complex life activities [2].  Among the various types of net-

works, of special relevance are collaborative networks.  Collaborative networks have 
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been used in many cases to develop and implement software in different domains that 

must jointly identify problems and provide solutions [3].  And collaborative networks 

have also been widely used in manufacturing successfully [4]. In this paper, we use the 

cooperative mutual information between two sets to calculate the correlation between 

gene data. And we designed a target gene mining algorithm based on gSpan to solve 

above problems. The data used in the experiment was divided into two parts, the exper-

iment group and the test group. Data cleaning algorithm was applied to the all the data 

for primary dimensionality reduction. Then, the binary tree was processed by gSpan 

frequent subgraph mining algorithm after calculating the Pearson correlation coeffi-

cient between different data samples, which was constructed by the filtered data set. 

Finally, target gene was analyzed with the support of visual methods, which were in-

cluded line chart and grayscale image and other algorithms.  

2 Target gene mining algorithm based on gSpan 

2.1 Gene data sources and features 

When extracting the gene data used in the paper, we compare the gene probe on a 

gene probe chip with a corresponding gene fragment of the sample, and we can obtain 

a value representing the difference between the gene probe and the gene fragment. And 

taking a logarithm of 2 as the base, a gene data can be received. 

Table 1 is a sample of a gene dataset. Where the numbers in the first row represent 

the number of that data. In the following, each row represents the gene data measured 

with a specific gene probe chip for each gene sample fragment. The first column in the 

table shows the names of the gene probes, such as “TC01003440.hg.1” and 

“TC01003573.hg.1”.  

Table 1. An example of gene data sets. 

Number of Samples 1 2 3 4 5 6 

TC01003440.hg.1 3.773364  4.266670  4.701382  4.891576  4.373340  3.786559  

TC01003573.hg.1 1.979416  2.225050  2.472456  1.904527  2.572532  2.624649  

TC01003581.hg.1 2.411289  2.630495  3.164683  2.468128  1.821613  0.894983  

TC01003634.hg.1 1.023536  4.366745  1.049543  1.032603  0.694951  0.805963  

TC01003635.hg.1 3.908017  4.654112  4.519364  3.662154  3.416480  3.878956  

TC01003707.hg.1 4.680764  4.819676  5.480835  5.273236  4.406693  4.900424  

TC01003855.hg.1 2.900651  4.433520 4.448808  3.992489  4.582560  3.164090  

TC01003992.hg.1 3.537443  4.958187  4.264466  3.472608  3.246787  3.903415  

TC01005205.hg.1 3.519913  3.387307  4.837730  4.734122  4.124148  3.688145  

TC01005809.hg.1 3.091624  3.081775  4.138366  4.133202  3.486166  3.385050  

TC02000261.hg.1 4.983322  4.684757  5.213353  5.376272  4.915276  5.093583  
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According to gene data, they were divided into experimental group and control 

group. The experimental group were similar in character, while the control group had 

the opposite character in group.  

2.2 Data cleaning based on the overall characteristics of gene samples 

Considering that not all the genes in the data sample are target genes, we need to 

clean the genes to reduce the number of redundant genes [5-7].  

Data cleaning between different groups: 

Different samples from different groups are thought to have great diversity in gene 

expressions, which can be measured by variance [8]. For a gene fragment, the variance 

among all the samples is: 

𝜎2 =
∑(𝑋−𝜇)2

𝑁
                                                                            (1) 

Where σ is the variance and 𝑋 represents the number of the amount of all these gene 

fragments in a sample.  𝜇 denotes the mean and 𝑁 is the total sample number. 

Data cleaning in every group: 

In terms of gene expression for studying traits, there is a small difference between 

the same set of samples. Similar to group cleaning, in this part, variance can also be 

used to measure differences in groups. Variance can also be used to measure differences 

within a group. In this paper, we set a threshold, if the variance is greater than the 

threshold gene fragment, which indicates that the gene fragment is not similar to the 

same group of samples, and it does not conform to the principle of small differences 

between the target gene fragment within the group sample. So these gene fragments are 

cleaned from all the gene fragments. 

Gene filtering: 

The threshold was set to the result of above two data cleaning. And those gene frag-

ments of low variance were filtered, which means these gene fragments were similar 

for all the samples and didn’t show different gene expressions between different groups. 

On the contrary, those gene fragments of high variance were filtered. 

2.3 Data cleaning based on the characteristics of the specific sample 

After preliminary cleaning of genetic data using variance, according to the authen-

ticity of data samples among individuals, a more accurate and detailed method is 

adopted to sort out the selected data samples.  

First, consider that for the same trait, there is a high probability that two of the sam-

ples exhibiting the same or similar trait will have the same gene expression pattern 

when the sample size is large [9]. Thus, Pearson correlation coefficient was calculated 

in all the couples after coupling the samples in the same group [10-12].  

For two random scalars 𝑋 and 𝑌, the Pearson correlation coefficient between them 

is: 

                                                𝜌 =
𝑐𝑜𝑣(𝑋,𝑌)

√𝐷𝑋√𝐷𝑌
，                                               (2) 

             𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸((𝑋 − 𝐸(𝑋)) ∙ (𝑌 − 𝐸(𝑌))).                          (3) 

In this case, genes with high similarity in low correlation combinations are more 

likely to contain target genes in [13]. And the union of similar gene fragments in every 
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couple was included in the set of gene fragments to construct the graph. Similarly, con-

sidering the nature between two different groups of sample individuals, paired combi-

nations of data samples from all different groups with high correlation can highlight the 

target genes with low similarity. And we select the more dissimilar gene fragments 

from these combinations and merge them as another part of the final composition of the 

gene fragment set [14].  
For two random variables, mutual information can be seen as reducing the uncer-

tainty of one variable by knowing the value of another variable. The average mutual 

information is calculated by 

                                                          𝐼(X; Y) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋𝑌)                                         (4) 

  𝐻(𝑋) = − ∑ 𝑝(𝑥) log 𝑝(𝑥)𝑝(𝑥)                                               (5) 

𝐻(𝑋𝑌) = − ∑ ∑ 𝑝(𝑥𝑦) log 𝑝(𝑥𝑦)𝑦𝑥                               (6)  

where 𝐼(𝑋; 𝑌) represents the average mutual information of random variables X and 

𝑌, which are gene data of two samples. The 𝐻(𝑋) and 𝐻(𝑌) represent the entropies of 

𝑋 and 𝑌. The 𝐻(𝑋𝑌) is the joint entropy of X and Y. The 𝑝(𝑥) represents the probabil-

ity distribution of 𝑋. The 𝑝(𝑥𝑦) is the joint probability distribution of 𝑋 and 𝑌. 

3 The construction of the graph 

3.1 Basis of construction 

For a dataset that has 𝑛 samples and the selected sample is  𝑃, 𝐺𝐴 and 𝐺𝐵 are the 

two gene fragments needed to be calculated. The mutual information 𝑀𝐼(𝑛) of 𝐺𝐴 and 

𝐺𝐵 and their corresponding gene data 𝐺𝐴(𝑛) and 𝐺𝐵(𝑛), was calculated firstly. Then, 

the gene data of sample 𝑃 on gene fragments 𝐺𝐴 and 𝐺𝐵 were removed from 𝐺𝐴(𝑛) 

and 𝐺𝐵(𝑛) ,  get ting gene data 𝐺𝐴(𝑛 − 1)  and 𝐺𝐵(𝑛 − 1)  and calculate the  

mutual information 𝑀𝐼 (𝑛 − 1) between them. When the mutual information 𝑀𝐼(𝑛) is 

higher than 𝑀𝐼(𝑛 − 1), which means that the gene data added to the sample P lead to 

the increase of the amount of mutual information between 𝐺𝐴(𝑛) and 𝐺𝐵(𝑛) and also 

means the gene data 𝐺𝐴 of samples has close relationship with the gene data 𝐺𝐵 of 

sample 𝑃. 

Based on this, MIP, which is calculated by the difference between MI(n-1) and 

𝑀𝐼(𝑛), is used as a criterion to measure the correlation between gene data of sample 𝑃 

on 𝐺𝐴 and 𝐺𝐵. The larger the MIP, the greater the correlation between the two gene 

fragments. And the smaller the MIP, the smaller the correlation between the two gene 

fragments. 

3.2 Construction procedure 

To simplify the calculation, gene data was constructed to be a binary tree. The frag-

ment that has the smallest variance in the group after data cleaning was placed as the 

root [15]. The root of a node’s left subtree was the most correlative gene fragment to 

the node, and the root of the node’s right subtree was the second most correlative gene 

fragment to the node [16]. All the gene fragments were inserted in the binary tree based 

on breadth-first principle. 
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4 gSpan algorithm 

The gSpan algorithm is the most widely used by the subgraph mining algorithm in 

the world, which was proposed by Yan and Han in [17].  

4.1  Definition 

Frequent subgraph: given a graph set 𝐷 =  [G1, G2, ⋯ , Gn] and a graph g, The 

number of the graph g included in set 𝐷 is called G's support and recorded as sup-

port(g). For a given minimum threshold minSup, if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑔)  ≥  𝑚𝑖𝑛𝑆𝑢𝑝 , g is 

called a frequent subgraph of 𝐷 . DFS Lexicographic Order: let 𝑍 =
 {𝑐𝑜𝑑𝑒(𝐺, 𝑇)|𝑇 𝑖𝑠 𝑎 𝐷𝐹𝑆 𝑡𝑟𝑒𝑒 𝑜𝑓 𝑔𝑟𝑎𝑝ℎ 𝐺}. Assuming there is a linear sequence 𝑄 in 

a label set, then the lexicographic combination of  𝑇 and 𝑄 is a linear sequence in set 

𝐸𝑇 × 𝐿 × 𝐿 × 𝐿.  

The definition of DFS lexicographic order is that for 𝑎 =  𝑐𝑜𝑑𝑒(𝐺𝑎 , 𝑇𝑎) =
(𝑎0, 𝑎1, … , 𝑎𝑛) , 𝑏 =  𝑐𝑜𝑑𝑒(𝐺𝑏 ,  𝑇𝑏) = (𝑏0,  𝑏1, … ,  𝑏𝑛) and 𝑎, 𝑏 belong to 𝑍, we con-

clude 𝑎 ≤ 𝑏 if and only if the following condition is true: 

(1) there exists a 𝑡, 0 ≤ 𝑡 ≤ 𝑚𝑖𝑛(𝑚, 𝑛),𝑎𝑘 = 𝑏𝑘, 𝑘 < 𝑡, the lexicography combi-

nation of 𝑎𝑡 and 𝑏𝑡 is the mentioned above linear sequence. 

(2) 𝑎𝑘 = 𝑏𝑘, 0 ≤ 𝑘 ≤ 𝑚 and 𝑚 ≤ 𝑛. 

DFS code: gSpan algorithm uses five parameters to code the edge in the graph by 

the way like (𝑖, 𝑗, 𝑙𝑖 ,  𝑙(𝑖,𝑗), 𝑙𝑗), in which 𝑙𝑖 and 𝑙𝑗  are the vertexes of edge 𝑙(𝑖,𝑗). 

Smallest DFS code: for a given graph 𝐺, 𝑍 =  {𝑐𝑜𝑑𝑒(𝐺, 𝑇)|𝑇 𝑖𝑠 𝑎 𝐷𝐹𝑆 𝑡𝑟𝑒𝑒 𝑜𝑓  
𝑔𝑟𝑎𝑝ℎ 𝐺}, 𝑚𝑖𝑛(𝑍(𝐺)), according to DFS lexicographic order, which is called the  

smallest DFS code of 𝐺. 

DFS code tree: in DFS, each node represents a DFS code, the relationship between 

the parent node and child node obey the abovementioned parent-child relationship. Re-

lationships between brothers and sisters are consistent with DFS lexicographic order, 

which means the preorder traversal of DFS code tree obeys DFS lexicographic order. 

4.2 The gSpan algorithm 

The thinking in the gSpan algorithm is shown in table 2 and table 3 as fake codes. 

Table 2. gSpan main program. 

Algorithm 1. GraphSet_Projection (D, S). 

1: Sort the labels of vertexes and edges in 𝐷 by frequency; 

2: Delete infrequent vertexes and edges; 

3: Remark the remaining vertexes and edges 

4: Save the frequent edges of 𝐷 into set S1; 

5: Sort S1 by DFS lexicographic order； 

6: S ← S1; 

7: for each edge 𝑒 that belongs to S1 do; 

8. Use 𝑒 to initialize 𝑠, putting all the graphs that include 𝑒 into set 𝐷; 
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9.Subgraph_Mining (𝐷, 𝑆, 𝑠); 

10.𝐷 ← 𝐷 − 𝑒; 

11. if |𝐷| < minSup; 

12.break; 

Table 3. gSpan subprogram. 

Subprogram 1 Subgraph_Mining(D, S, s). 

1: if 𝑠 ≠ 𝑚𝑖𝑛(𝑠) 

2: return; 

3: 𝑆 ← 𝑆 ∪ {𝑠}; 

4: Enumerate 𝑠 in all the graphs that belongs to set 𝐷 and count the amount of its subgraph; 

5: for each 𝑒 which is the subgraph of 𝑠 do 

6: if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑒)  ≥  𝑚𝑖𝑛𝑆𝑢𝑝; 

7: 𝑠 ←  𝑒; 

8: Subgraph_Mining(𝐷𝑠, 𝑆, 𝑠); 

4.3 Description of target gene mining algorithm based on gSpan 

The gSpan frequent subgraph mining algorithm was applied to the graph sets which 

is constructed by experiment group and test group to get their frequent subgraphs. Then 

the set of target gene fragment was got by analyzing two groups’ frequent subgraphs. 

5 Visual analysis of gene data 

5.1 The decision with visual analysis 

An appropriate threshold was needed while doing gene cleaning in every group and 

between groups. Line chart was used to help us to make the decision quickly and 

properly by analyzing the result of data cleaning when threshold changed. The inflec-

tion points in the threshold’s line chart were considered to be possible choices of thresh-

old values based on the characteristic that the inflection point in a line chart always 

represented the critical state. 

5.2 Grayscale image of gene data 

Grayscale image was applied to the gene data to make the visual analysis process 

more convenient and intuitive, which started with mapping all the raw gene data to a 

grayscale interval that was from 0 to 1. The mapping procedures are as follows: 

（1） Selecting the biggest gene data 𝑀 from all the raw gene data; 

（2） Rounding up 𝑀 to get an integer 𝑁; 

（3） Dividing all the original gene data by integer N, and get the gray value after 

mapping.  

Table 4 shows some raw gene data and their grayscale values after mapping. 
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Table 4. Examples of mapping raw gene data to grayscale value. 

Raw gene data Grayscale values 

3.773364 0.7546728 

1.979416 0.3958832 

2.411289 0.4822578 

1.023536 0.2047072 

3.908017 0.7816034 

4.680764 0.9361528 

2.900651 0.5801302 

3.537443 0.7074886 

3.519913 0.7039826 

3.091624 0.6183248 

4.983322 0.9966644 

Then a single column vector that contained all the grayscale values was inserted 

into an 𝑁 ∗ 𝑁 matrix and 𝑁 was an integer which was got by rounding up the square 

root of the data number. The blank areas in the matrix were filled with 0. Table 5 was 

the matrix filled with the grayscale values in table 4. 

Table 5. The example of grayscale value filling. 

0.7546728 0.7816034 0.6183248 0 

0.3958832 0.9361528 0.9966644 0 

0.4822578 0.5801302 0 0 

0.2047072 0.7074886 0 0 

The grayscale matrix was used as an input value to get a grayscale image. And 

Fig. 1 was an example of grayscale images. 

 
Fig. 1.  An example of grayscale images 
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6 Experiment results and analysis 

6.1 Experiment results 

Dental caries is one of the most common chronic diseases, and it is easy for individ-

uals to suffer from this disease throughout their lives. In recent years, many researchers 

have studied the prevention of dental caries and some oral health mechanisms [18-19]. 

And the gene data used in the experiment was selected from the University of Califor-

nia, Los Angeles, which was extracted to study the pathogenic and resistance gene 

about dental caries in the human body. And the data consist of 21 samples, which are 

divided into two groups. One group is of high S.mutans and high caries, abbreviated as 

HSHC in the following, which has 10 samples. Another group is of high S.mutans and 

low caries, abbreviated as HSLC in the following, which has 11 samples. Data which 

were selected from 70523 gene probe chips were included in the raw gene data and 

each gene probe chip corresponded to a gene fragment. 

Some frequent subgraphs are obtained in this experiment by using the gSpan algo-

rithm. Considering that some frequent subgraphs are meaningless due to the default 

value of the algorithm in the process of constructing gene fragment graphs. After re-

moving these meaningless subgraphs, we can obtain two frequent subgraphs, which are 

shown as Fig. 2 and Fig. 3. The relationships between nodes in the frequent subgraphs 

and serial numbers of gene probe chips were listed in table 6. The gene fragments cor-

responding to the nodes were the result of this experiment. 

 
Fig. 2. Frequent subgraph of group HSLC  

 
Fig. 3.  Frequent subgraph of group HSHC 
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Table 6.   Relationships between nodes in the frequent subgraphs and serial num-

bers of gene probe chips 

Group HSLC Group HSHC 

Nodes Serial numbers Nodes Serial numbers 

4 TC01000938.hg.1 3 TC01000711.hg.1 

5 TC01001103.hg.1 4 TC01000938.hg.1 

10 TC01001464.hg.1 5 TC01001103.hg.1 

11 TC01001809.hg.1 6 TC01001120.hg.1 

20 TC01003427.hg.1 8 TC01001143.hg.1 

21 TC01003428.hg.1 9 TC01001291.hg.1 

26 TC01003573.hg.1 21 TC01003428.hg.1 

35 TC02000261.hg.1 22 TC01003431.hg.1 

36 TC02000500.hg.1 28 TC01003634.hg.1 

After verifying, nodes 4, 5, 21 in group HSLC (e.g. the gene fragments corre-

sponding to gene probe chips number “TC01000938.hg.1” “TC01001103.hg.1” 

“TC01003428.hg.1”), were the target gene fragments to determine the gene fragment 

of dental caries in this experiment. Thus, the coverage rate to dental caries was 100% 

and dental caries gene occupied 33.3% of the results, which meant the experiment fin-

ished with good consequence. 

6.2 Experiment result analysis 

Comparing with existing target gene mining algorithms, there were two advantages 

of gSpan target gene mining algorithm: 

(1) Higher accuracy. Although some existing algorithms also have 100% coverage 

rate to dental caries, the dental caries gene can only occupy for 15%-20% of the results. 

By constructing the gene data into graph during data process creatively and using sub-

graph mining algorithm, which makes the result can be more accurate and target gene 

can occupy a higher percentage of the result. 

(2) Higher data dimensions. Existing algorithms always have dimension under 

10,000 and extract some uncommon situations. The dataset used in this experiment 

came from raw gene data with a dimension of 70523, which is much higher than the 

dimension used by existing algorithms and is also much more practical. 

7 Conclusion 

The gSpan target gene mining algorithm was proposed in this paper in order to help 

mine target gene from a huge amount of gene data. And this paper focused on the fol-

lowing aspects: 
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(1) We mainly introduced the data cleaning algorithm, graph construction algorithm 

and gSpan frequent subgraph mining algorithm. And a target gene mining algorithm 

based on gSpan was proposed on the basis of the algorithms mentioned above. 

(2) To verify the effectiveness of algorithm, the gene data about human dental caries 

extracted by the University of California, Los Angeles was used as data set. According 

to the experiment, the results’ coverage rate to dental caries was 100%, which was the 

same as existing algorithms. And dental caries gene occupied 33.3% of the results, 

which was higher than existing algorithms which showed that the new algorithm had 

the better effect. 

(3) Grayscale image and line chart were introduced to help visually analyze the result 

of the algorithm and make the decision. 

And the edges of the graph only had two statuses, existing or not. Thus, the data 

can be constructed into weighted undirected graphs, in which the weight of each edge 

represents the correlation between two node genes. And the gSpan algorithm can be 

replaced by algorithms that can process weighted undirected graphs. Moreover, net-

work models can also be introduced to help us find new ways to do the filtering, con-

struction and target gene finding work [20]. Thus, a lot of work can be done to optimize 

the target gene mining algorithm in the future. 
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