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Abstract

Using changes of probability measure developed by Grama and Haeusler (Stochastic Process. Appl.,
2000), we extend the deviation inequalities of Lanzinger and Stadtmüller (Stochastic Process. Appl.,
2000) and Fuk and Nagaev (Theory Probab. Appl., 1971) to the case of martingales. Our inequalities
recover the best possible decaying rate in the independent case. In particular, these inequalities
improve the results of Lesigne and Volný (Stochastic Process. Appl., 2001) under a stronger condition
that the martingale differences have bounded conditional moments. Applications to linear regressions
with martingale difference innovations, weak invariance principles for martingales and self-normalized
deviations are provided. In particular, we establish a type of self-normalized deviation bounds for
parameter estimation of linear regressions. Such type bounds have the advantage that they do not
depend on the distribution of the regression random variables.
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1. Introduction

Assume that (ξi)i≥1 is a sequence of centered random variables. Denote by Sn =
∑n

i=1 ξi the
partial sums of (ξi)i≥1. If (ξi)i≥1 are independent and identically distributed (i.i.d.) and satisfy the
following subexponential condition: for a constant α ∈ (0, 1),

Kα := E[ξ21 exp{(ξ+1 )α}] < ∞, (1.1)

where x+ = max{x, 0}, Lanzinger and Stadtmüller [26] have obtained the following subexponential
inequality: for any x, y > 0,

P
(
Sn ≥ x

)
≤ exp

{
− x

y1−α

(
1− nKα

2xy1−α

)}
+

n

ey
α E[exp{(ξ+1 )α}]. (1.2)
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In particular, by taking y = x, inequality (1.2) implies that for any x > 0,

lim sup
n→∞

1

nα
logP

(
Sn ≥ nx

)
≤ −xα (1.3)

and

P
(
Sn ≥ n

)
= O

(
exp

{
− c nα

})
, n → ∞, (1.4)

where c > 0 does not depend on n and can be any value smaller than c0 = sup{t > 0 : E[exp{t(ξ+1 )α}] <
∞} (see [26], Remark 3). The last two results (1.3) and (1.4) are the best possible under the present
condition, since a large deviation principle (LDP) with good rate function xα can be obtained in
situations where some more information on the tail behavior of ξ1 is available; see Theorem 2.3. Under
the subexponential condition (1.1), more precise estimations on tail probabilities, or large deviation
expansions, can be found in Nagaev [32, 33], Saulis and Statulevičius [36] and Borovkov [3, 4].

Recently, the generalizations of (1.4) have attracted certain interest. Doukhan and Neumann [10]
have established a generalization of (1.4) under a new concept of weak dependence which extends usual
mixing assumptions. This concept is particularly well suited for deriving estimates for the cumulants of
sums of random variables. For a LDP for weighted sum of i.i.d. random variables satisfying conditions
similar to (1.1) we refer to Kiesel and Stadtmüller [25] and Gantert, Ramanan and Rembart [17].

Our first aim is to give a generalization of (1.4) for martingales. Let (ξi,Fi)i≥1 be a sequence of mar-
tingale differences with respect to the filtration (Fi)i≥1. Under the Cramér condition supi E[exp{|ξi|}] <
∞, Lesigne and Volný [27] first proved that (1.4) holds with α = 1/3, and that the power 1/3 is optimal
even for the class of stationary and ergodic sequences of martingale differences. Later, Fan, Grama
and Liu [12] generalized the result of Lesigne and Volný by proving that (1.4) holds under the more

general exponential moment condition supiE[exp{|ξi|
2α
1−α }] < ∞, α ∈ (0, 1), and that the power α in

(1.4) is optimal for the class of stationary sequences of martingale differences. It is obvious that the

condition supiE[exp{|ξi|
2α
1−α }] < ∞ is much stronger than condition (1.1). Thus, the result in [12]

does not imply (1.4) in the i.i.d. case.
To fill this gap, we consider the case of the martingale differences having bounded conditional

subexponential moments. Under this assumption, we can recover the inequalities (1.2), (1.3) and
(1.4); see Theorem 2.1. Denote by ||ξ||∞ the essential supremum of a random variable ξ. Our first
result implies that if

un := max

{∣∣∣
∣∣∣

n∑

i=1

E[ξ2i exp{(ξ+i )α}|Fi−1]
∣∣∣
∣∣∣
∞
, 1

}
< ∞,

then, for any x > 0,

P
(

max
1≤k≤n

Sk ≥ x
)

≤ 2 exp

{
− x2

2(un + x2−α)

}
. (1.5)

To illustrate the bound (1.5), consider the simple case where (ξi)i≥1 is a sequence of i.i.d. random
variables: in this case un = O(n) as n → ∞. It is interesting to see that when 0 ≤ x = o(n1/(2−p)),
our bound (1.5) is sub-Gaussian. When x = ny with y > 0 fixed, the bound (1.5) is subexponential
exp { − cyn

α}, where cy > 0 does not depend on n, thus recovering (1.4).
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For martingale differences (ξi,Fi)i≥1 satisfying un = o(n2−α), we find an improved version of the
inequality (1.3); see Corollary 2.2. To show the best value of the constant in (1.3), for i.i.d. random
variables we establish large deviation principles for Sn

n = 1
n

∑n
i=1 ξi and

1
n max1≤k≤n Sk in Theorem

2.3.
For the methods, an approach for obtaining subexponential bound is to combine the method of

the tower property of conditional expectation and uniform norm. This approach has been applied in
Fuk [16], Chung and Lu [5], Liu and Watbled [30] and Dedecker and Fan [6]. With this approach, one
can obtain inequality (1.2) with

nKα =

n∑

i=1

∣∣∣
∣∣∣E[ξ2i exp{(ξ+i )α}|Fi−1]

∣∣∣
∣∣∣
∞
. (1.6)

However, this result is not the best possible in some cases. It turns out that with the method based
on the change of probability measure for martingales from Grama and Haeusler [18] one can obtain
better bounds. Using this method, we show that the inequality (1.2) holds with

nKα =
∣∣∣
∣∣∣

n∑

i=1

E[ξ2i exp{(ξ+i )α}|Fi−1]
∣∣∣
∣∣∣
∞
. (1.7)

Such a refinement has been first proved by Freedman [14] for improving Fuk’s inequality [16] for
martingales, and similar analogs were established by Haeusler [19], van de Geer [38], de la Peña [8]
and [11]. Since the latter nKα is less than the former one, i.e.,

∣∣∣
∣∣∣

n∑

i=1

E[ξ2i exp{(ξ+i )α}|Fi−1]
∣∣∣
∣∣∣
∞

≤
n∑

i=1

∣∣∣
∣∣∣E[ξ2i exp{(ξ+i )α}|Fi−1]

∣∣∣
∣∣∣
∞
,

our method has certain advantage. To illustrate it, consider the following example. Assume that
(εi)i≥1 is a sequence of independent and unbounded random variables, and that (εi)i≥1 is independent
of (ξi,Fi)i≥1. Assume that

∣∣∣
∣∣∣E[ξ2i |Fi−1]

∣∣∣
∣∣∣
∞

≥ 1 and
∣∣∣
∣∣∣E[ξ2i exp{|ξi|α}|Fi−1]

∣∣∣
∣∣∣
∞

≤ D

for a constant D and all i ≥ 1. Denote by ξ′i = ξiεi

/√∑n
k=1 ε

2
k and F ′

i = σ{εj , 1 ≤ j ≤ i,Fi, |εk|, 1 ≤
k ≤ n}. Then (ξ′i,F ′

i)i≥1 is also a sequence of martingale differences. It is easy to see that

∣∣∣
∣∣∣

n∑

i=1

E[(ξ′i)
2 exp{((ξ′i)+)α}|F ′

i−1]
∣∣∣
∣∣∣
∞

≤
∣∣∣
∣∣∣

n∑

i=1

ε2i∑n
k=1 ε

2
k

E[ξ2i exp{|ξi|α}|Fi−1]
∣∣∣
∣∣∣
∞

≤ D,

and that, by the fact that (εi)i≥1 are unbounded,

n∑

i=1

∣∣∣
∣∣∣E[(ξ′i)

2 exp{((ξ′i)+)α}|F ′
i−1]

∣∣∣
∣∣∣
∞

≥
n∑

i=1

∣∣∣∣
∣∣∣∣

ε2i∑n
k=1 ε

2
k

E[ξ2i |Fi−1]

∣∣∣∣
∣∣∣∣
∞

≥
n∑

i=1

∣∣∣∣
∣∣∣∣

ε2i∑n
k=1 ε

2
k

∣∣∣∣
∣∣∣∣
∞

= n.
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Hence

sup
n

∣∣∣
∣∣∣

n∑

i=1

E[(ξ′i)
2 exp{((ξ′i)+)α}|F ′

i−1]
∣∣∣
∣∣∣
∞

≤ D,

and

sup
n

n∑

i=1

∣∣∣
∣∣∣E[(ξ′i)

2 exp{((ξ′i)+)α}|F ′
i−1]

∣∣∣
∣∣∣
∞

= ∞.

Thus our extension (1.7) in the right hand-side of (1.2) is nontrivial, while with (1.6) it is infinite.
Using the same method, we also generalize the following Fuk inequality for martingales (cf. Corol-

lary 3′ of Fuk [16]; see also Nagaev [33] for independent case): assume that ||E[|ξi|p|Fi−1]||∞ < ∞ for
some p ≥ 2 and all i ∈ [1, n], then for any x > 0,

P

(
max
1≤k≤n

Sk ≥ x

)
≤ exp

{
− x2

2Ṽ 2

}
+

C̃p

xp
, (1.8)

where

Ṽ 2 :=
1

4
(p+ 2)2ep

n∑

i=1

∣∣∣
∣∣∣E[ξ2i |Fi−1]

∣∣∣
∣∣∣
∞

and C̃p :=
(
1 +

2

p

)p n∑

i=1

∣∣∣
∣∣∣E[|ξi|p|Fi−1]

∣∣∣
∣∣∣
∞
.

In Corollary 2.5, we prove that (1.8) holds true when Ṽ 2 and C̃p are replaced by the following two
smaller values V 2 and Cp respectively, where

V 2 :=
1

4
(p+ 2)2ep

∣∣∣
∣∣∣

n∑

i=1

E[ξ2i |Fi−1]
∣∣∣
∣∣∣
∞

and Cp :=
(
1 +

2

p

)p ∣∣∣
∣∣∣

n∑

i=1

E[|ξi|p|Fi−1]
∣∣∣
∣∣∣
∞
.

To illustrate this improvement on Fuk’s inequality (1.8), consider the following comparison between Cp

and C̃p in the case of self-normalized deviations. Assume that (εi)i=1,...,n is a sequence of independent,
unbounded and symmetric random variables. Denote by ξi = εi/(

∑n
k=1 |εk|p)1/p, and Fi = σ{εj , j ≤

i, |εk|, 1 ≤ k ≤ n}. Then (ξi,Fi)i=1,...,n is a sequence of martingale differences. It is easy to see that

∣∣∣
∣∣∣

n∑

i=1

E[|ξi|p|Fi−1]
∣∣∣
∣∣∣
∞

=

n∑

i=1

|εi|p∑n
k=1 |εk|p

= 1,

and that, by the fact that (εi)i=1,...,n are unbounded,

n∑

i=1

∣∣∣
∣∣∣E[|ξi|p|Fi−1]

∣∣∣
∣∣∣
∞

=

n∑

i=1

∣∣∣∣
∣∣∣∣

|εi|p∑n
k=1 |εk|p

∣∣∣∣
∣∣∣∣
∞

= n.

Hence Cp is of order O(1) while C̃p is of order O(n), which implies a significant improvement on Fuk’s
inequality (1.8).

Under the condition that (ξi,Fi)i≥1 satisfy supiE[|ξi|p] < ∞ for a p ≥ 2, Lesigne and Volný [27]
proved that

P
(
Sn ≥ n

)
= O

( 1

np/2

)
, n → ∞. (1.9)
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Under a stronger condition on the conditional moments, we obtain an improvement on the inequality
of Lesigne and Volný (1.9). Assume either

sup
i

E[|ξi|p+δ] < ∞ and sup
i

||E[ξ2i |Fi−1]|| < ∞

or
sup
i

||E[|ξi|p|Fi−1]|| < ∞

for two positive constants δ and p ≥ 2 (do not depend on n). Then we have for any α ∈ (12 ,∞),

P
(

max
1≤k≤n

Sk ≥ nα
)

= O
( 1

nαp−1

)
, n → ∞. (1.10)

Since p−1 ≥ p/2 for p ≥ 2, it follows that (1.10) is an improvement of (1.9). We refer to our Theorem
2.6 and Corollary 2.5 where we give more precise bounds. From Theorem 4.1 of Hao and Liu [22] it
follows that (1.10) is close to the optimal. For necessary and sufficient conditions to have (1.10) we
refer to [22].

The paper is organized as follows. We present our main results in Section 2, and discuss the
applications to linear regressions with martingale difference innovations, weak invariance principles
for martingales and self-normalized deviations in Section 3. The proofs of theorems are given in
Sections 4 - 9.

2. Main results

Assume that we are given a sequence of real-valued martingale differences (ξi,Fi)i=0,...,n defined
on some probability space (Ω,F ,P), where ξ0 = 0 and {∅,Ω} = F0 ⊆ ... ⊆ Fn ⊆ F are increasing
σ-fields. So, by definition, E[ξi|Fi−1] = 0, i = 1, ..., n. Define the martingale S := (Sk,Fk)k=0,...,n by
setting

S0 = 0 and Sk =

k∑

i=1

ξi, k = 1, ..., n. (2.1)

Denote by 〈S〉 the quadratic characteristic of the martingale S :

〈S〉0 = 0 and 〈S〉k =

k∑

i=1

E[ξ2i |Fi−1], k = 1, ..., n. (2.2)

For any α ∈ (0, 1), set

Υ(S)k =
k∑

i=1

E[ξ2i exp{(ξ+i )α}|Fi−1], k ∈ [1, n]. (2.3)

Our first result is a subexponential inequality on tail probabilities for martingales. A similar
inequality for separately Lipschitz functionals has been obtained recently by Dedecker and Fan [6].
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Theorem 2.1. Assume

Cn :=

n∑

i=1

E[ξ2i exp{(ξ+i )α}] < ∞ (2.4)

for some α ∈ (0, 1). Then for all x, u > 0,

P
(
Sk ≥ x and Υ(S)k ≤ u for some k ∈ [1, n]

)

≤





exp

{
− x2

2u

}
+ Cn

(
x

u

)2/(1−α)

exp

{
−
(u
x

)α/(1−α)
}

if 0 ≤ x < u1/(2−α)

exp

{
− xα

(
1− u

2x2−α

)}
+Cn

1

x2
exp

{
− xα

}
if x ≥ u1/(2−α).

(2.5)

It is obvious that
Cn = E[Υ(S)n] ≤ ||Υ(S)n||∞.

Hence, when u ≥ max{||Υ(S)n||∞, 1}, from (2.5) we get the following rough bounds

P
(

max
1≤k≤n

Sk ≥ x
)

≤





2 exp

{
− x2

2u

}
if 0 ≤ x < u1/(2−α)

2 exp

{
− 1

2
xα
}

if x ≥ u1/(2−α)

(2.6)

≤ 2 exp

{
− x2

2(u+ x2−α)

}
. (2.7)

Thus for moderate x ∈ (0, u1/(2−α)), the bound (2.5) is sub-Gaussian. For x ≥ u1/(2−α), the bound

(2.5) is subexponential of the order exp
{
− 1

2x
α
}
. Moreover, when x

u1/(2−α) → ∞, by (2.5), this order

can be improved to exp
{
− (1− ε)xα

}
, for any given small ε > 0.

For any α ∈ (0, 1) and k ∈ [1, n], set

Υ̂(S)k =

k∑

i=1

E[ξ2i exp{|ξi|α}|Fi−1].

Since Υ(S)k ≤ Υ̂(S)k, it is obvious that (2.5) is also an upper bound on the tail probabilities

P
(
± Sk ≥ x and Υ̂(S)k ≤ u for some k ∈ [1, n]

)
.

Moreover, if ||Υ̂(S)n||∞ ≤ u, then (2.5) is an upper bound on tail probabilities of the maxima and
minima of the partial sums P(max1≤k≤n Sk ≥ x) and P(−min1≤k≤n Sk ≥ x).

When (ξi)i≥1 are i.i.d. random variables, we have Cn = Υ(S)n = c0n with c0 = E[ξ21 exp{(ξ+1 )α}].
In this case, inequality (2.6) implies the following large deviation bound: for any x > 0 and n
sufficiently large,

P
(

max
1≤k≤n

Sk ≥ nx
)

≤ 2 exp
{
− cxn

α
}

(2.8)
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with cx = xα

2 . In fact, the constant cx in (2.8) is close to xα, as shown by the following large deviation
bound for martingales, which is a consequence of Theorem 2.1.

Corollary 2.2. Assume condition (2.4), for some α ∈ (0, 1). If

||Υ(S)n||∞ = o(n2−α), n → ∞, (2.9)

then for any x ≥ 0,

lim sup
n→∞

1

nα
logP

(
1

n
max
1≤k≤n

Sk ≥ x

)
≤ −xα. (2.10)

The bound (2.10) cannot be improved under condition (2.9). This is shown by the following large
deviation principles on Sn

n = 1
n

∑n
i=1 ξi and

1
n max1≤k≤n Sk which hold true for i.i.d. random variables

(ξi)i≥1 with subexponential tails.

Theorem 2.3. Consider an i.i.d. sequence (ξi)i≥1 with E[ξ1] = 0.

(i) If E[ξ21 ] < ∞ and for some constants α ∈ (0, 1) and c > 0,

lim
x→∞

1

xα
logP

(
ξ1 ≥ x

)
= −c, (2.11)

then for all x > 0,

lim
n→∞

1

nα
logP

(
1

n
max
1≤k≤n

Sk ≥ x

)
= lim

n→∞
1

nα
logP

(
Sn

n
≥ x

)
= −c xα. (2.12)

(ii) If for some constant α ∈ (0, 1) and c > 0,

lim
x→∞

1

xα
logP

(
|ξ1| ≥ x

)
= −c, (2.13)

then for all x > 0,

lim
n→∞

1

nα
logP

(
1

n
max
1≤k≤n

Sk ≥ x

)
= lim

n→∞
1

nα
logP

(
Sn

n
≥ x

)
= −c xα (2.14)

and

lim
n→∞

1

nα
logP

(
1

n
min

1≤k≤n
Sk ≤ −x

)
= lim

n→∞
1

nα
logP

(
Sn

n
≤ −x

)
= −c xα. (2.15)

In the special case where ξ1 has a density p(x) satisfying p(x) ∼ exp { − |x|α} as x → ∞, the
asymptotic (2.12) for P

(
Sn
n ≥ x

)
follows from Theorem 3 in Nagaev [32] (we also refer to Gantert,

Ramanan and Rembart [17] for related results). Notice that condition (2.13) is weaker than that used
in [32].

Since the rate function x 7→ c xα is continuous and strictly increasing on R+ = [0,∞), by Lemma
4.4 in Huang and Liu [23] we can reformulate the results of the previous theorem as large deviation
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principles (the proof therein was given for two sided tails but it can be easily adapted to one sided
tails). We give the details below.

From part (i) of the previous theorem it follows that, if E[ξ21 ] < ∞ and (2.11) holds, then Sn
n and

1
n max1≤k≤n Sk verify a LDP with norming factor 1/nα and rate function x 7→ xα on R+ : for any
Borel set B ⊂ R+, we have

− inf
x∈B0

c xα = lim inf
n→∞

1

nα
logP

(
Sn

n
∈ B

)
≤ lim sup

n→∞

1

nα
logP

(
Sn

n
∈ B

)
= − inf

x∈B
c xα, (2.16)

where B0 and B denote the interior and the closure of B respectively; moreover the result (2.16)
remains true when Sn is replaced by max1≤k≤n Sk.

From part (ii) it follows that, if (2.13) holds, then Sn
n and 1

n max1≤k≤n Sk verify a LDP with
norming factor 1/nα and rate function x 7→ xα on R = (−∞,∞), that is (2.16) holds for any Borel
set B ⊂ R.

Now we consider the case when the martingale differences (ξi,Fi)i=0,...,n have absolute moments
of order p ≥ 2. For any p > 2 denote

Ξ(S)k =

k∑

i=1

E[(ξ+i )
p|Fi−1], k ∈ [1, n].

We prove the following inequality, which is similar to the results of Haeusler [19] and [11].

Theorem 2.4. Let p ≥ 2. Assume E[|ξi|p] < ∞ for all i ∈ [1, n]. Then for all x, y, v, w > 0,

P
(
Sk ≥ x, 〈S〉k ≤ v and Ξ(S)k ≤ w for some k ∈ [1, n]

)

≤ exp

{
− α2x2

2epv

}
+ exp

{
− βx

y
log
(
1 +

βxyp−1

w

)}
+P

(
max
1≤i≤n

ξi > y

)
, (2.17)

where

α =
2

p+ 2
and β = 1− α . (2.18)

Setting y = βx, we obtain the following generalization of the Fuk-Nagaev inequality (1.8).

Corollary 2.5. Let p ≥ 2. Assume ||E[|ξi|p|Fi−1]||∞ < ∞ for all i ∈ [1, n]. Then for all x > 0,

P
(

max
1≤k≤n

Sk ≥ x
)

≤ exp

{
− x2

2V 2

}
+

Cp

xp
, (2.19)

where

V 2 =
1

4
(p+ 2)2ep

∣∣∣
∣∣∣ 〈S〉n

∣∣∣
∣∣∣
∞

and Cp =
(
1 +

2

p

)p ∣∣∣∣
∣∣∣∣

n∑

i=1

E[|ξi|p|Fi−1]

∣∣∣∣
∣∣∣∣
∞
. (2.20)

8



It is worth noting that if supi ||E[|ξi|p|Fi−1]||∞ ≤ C for a constant C, then, by Jensen’s inequality,
it holds supi ||E[ξ2i |Fi−1]||∞ ≤ C2/p. Therefore, inequality (2.19) implies the following sub-Gaussian
bound: for any x = O(

√
n (log n)β), n → ∞, with β satisfying β > 0 if p = 2 and β ∈ (0, 1/2] if p > 2,

P
(

max
1≤k≤n

Sk ≥ x
)

= O

(
exp

{
− C

x2

n

})
, (2.21)

where C > 0 does not depend on x and n. Inequality (2.19) also implies that for any α ∈ (12 ,∞) and
any x > 0,

P
(

max
1≤k≤n

Sk > nαx
)

= O
( cx
nαp−1

)
, n → ∞, (2.22)

where cx > 0 does not depend on n. The asymptotic (2.22) was first obtained by Fuk [16] and it is
the best possible under the stated condition even for the sums of independent random variables (cf.
Fuk and Nagaev [15]).

When the martingale differences (ξi,Fi)i≥1 satisfy supiE[|ξi|p] < ∞, Lesigne and Volný [27] proved
that for any x > 0,

P
(
Sn > nx

)
= O

( cx

np/2

)
, n → ∞, (2.23)

where cx > 0 does not depend on n, and that the order n−p/2 is optimal for the class of stationary and
ergodic sequences of martingale differences. When α = 1, equality (2.22) implies the following large
deviation convergence rate: for any x > 0,

P
(

max
1≤k≤n

Sk > nx
)

= O
( cx
np−1

)
, n → ∞, (2.24)

where cx > 0 does not depend on n. When p ≥ 2, it holds p− 1 ≥ p/2. Thus (2.24) refines the bound
(2.23) under the stronger assumption that the p -th conditional moments are uniformly bounded
supi ||E[|ξi|p|Fi−1]||∞ < ∞. Moreover, the following proposition of Lesigne and Volný [27] shows that
the estimate of (2.24) cannot be essentially improved even in the i.i.d. case.

Proposition A. Let p ≥ 1 and (cn)n≥1 be a real positive sequence approaching zero. There exists a
sequence of i.i.d. random variables (ξi)i≥1 such that E[|ξi|p] < ∞, E[ξi] = 0 and

lim sup
n→∞

np−1

cn
P(|Sn| ≥ n) = ∞.

When E[|ξi|2|Fi−1] and E[|ξi|p], i = 1, ..., n, are uniformly bounded for some p > 2, (but for the
same p the condition E[|ξi|p|Fi−1] ≤ C may be violated for some i ∈ [1, n]), we have the following
result.

Theorem 2.6. Let p ≥ 2. Assume E[|ξi|p+δ] < ∞ for a small δ > 0 and all i ∈ [1, n]. Then for all
x, v > 0,

P
(
Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)

≤ exp



− x2

2
(
v2 + 1

3x
(2p+δ)/(p+δ)

)



+

1

xp

n∑

i=1

E
[
|ξi|p+δ1{ξi>xp/(p+δ)}

]
. (2.25)
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In particular, as a consequence of (2.25), if supiE[|ξi|p+δ] < ∞ and supi ||E[ξ2i |Fi−1]||∞ < ∞, we
obtain that for any α ∈ (12 ,∞) and any x > 0,

P
(

max
1≤k≤n

Sk ≥ nαx
)

≤ exp

{
− cx min

{
n

αδ
p+δ , n2α−1

}}
+

C/xp

nαp−1

= O
( cx
nαp−1

)
, n → ∞, (2.26)

where cx > 0 does not depend on n.
Note that (2.22) and (2.26) have the same convergence rate. To highlight the difference between the

conditions under which we obtain (2.22) and (2.26), notice that the assumption supi ||E[|ξi|p|Fi−1]||∞ <
∞ has been replaced by the two assumptions supiE[|ξi|p+δ] < ∞ and supi ||E[ξ2i |Fi−1]||∞ < ∞. It
is obvious that the two assumptions supi ||E[|ξi|p|Fi−1]||∞ < ∞ and supi E[|ξi|p+δ] < ∞ do not im-
ply each other. Therefore Corollary 2.5 and Theorem 2.6 do not imply each other. Actually, Hao
and Liu [22, Theorem 4.1] gave necessary and sufficient conditions for (2.26) to hold, in particu-
lar from their result it follows that (2.26) holds under the weaker conditions supiE[|ξi|p] < ∞ and
supi ||E[ξ2i |Fi−1]||∞ < ∞ and the exponent in (2.26) is optimal.

The following corollary of Theorem 2.6 is obvious.

Corollary 2.7. Assume the condition of Theorem 2.6. Then for all x, v > 0,

P
(

max
1≤k≤n

Sk ≥ x
)
≤ exp

{
− x2

2(nv2 + 1
3x

(2p+δ)/(p+δ))

}

+
1

xp

n∑

i=1

E
[
|ξi|p+δ1{ξi>xp/(p+δ)}

]
+

1

vp+δ
E
[∣∣∣〈S〉n

n

∣∣∣
(p+δ)/2]

. (2.27)

Moreover,

E
[∣∣∣〈S〉n

n

∣∣∣
(p+δ)/2]

≤ 1

n

n∑

i=1

E[|ξi|p+δ]. (2.28)

Inequality (2.28) implies that if supiE[|ξi|p] < ∞ for a p ≥ 2, then E[|〈S〉n/n|p/2] are uniformly
bounded for all n.

Compared to Theorem 2.6, Corollary 2.7 is simpler, since it only requires the moment of 〈S〉n
instead of bounding 〈S〉n uniformly in n.

Assume supi E[|ξi|p+δ] < ∞ for same p ≥ 2 (without any condition on 〈S〉n). Applying (2.28) to
(2.27) with nv2 = 2

3x
(2p+δ)/(p+δ), we obtain for all x, v > 0,

P
(

max
1≤k≤n

Sk ≥ x
)

≤ exp

{
−1

2
xδ/(p+δ)

}
+

nC

xp
+
(3n

2

) p+δ
2 C

xp+δ/2
. (2.29)

The last inequality shows that for any x > 0,

P
(

max
1≤k≤n

Sk ≥ n
)

= O
( 1

np/2

)
, n → ∞. (2.30)

Since δ > 0 is arbitrary small, the asymptotic (2.30) is close to the best possible large deviation
convergence rate n−(p+δ)/2 given by Lesigne and Volný [27] (cf. (2.23)).
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3. Applications

The exponential concentration inequalities for martingales have many applications. McDiarmid
[31], Rio [35] and Dedecker and Fan [6] applied such type inequalities to estimate the concentration of
separately Lipschhitz functions. Liu and Watbled [30] adopted these inequalities to deduce asymptotic
properties of the free energy of directed polymers in a random environment. We refer to Bercu and
Touati [1] and [13] for more interesting applications of the concentration inequalities for martingales. In
the sequel, we provide some applications of our results to linear regressions with martingale difference
innovations, weak invariance principles for martingales and self-normalized deviations.

(a). Linear regressions

Linear regressions can be used to investigate the impact of one variable on the other, or to predict
the value of one variable based on the other. For instance, if one wants to see impact of footprint size
on height, or predict height according to a certain given value of footprint size. The stochastic linear
regression model is given by, for all k ∈ [1, n],

Xk = θφk + εk , (3.1)

where (Xk)k=1,...,n, (φk)k=1,...,n and (εk)k=1,...,n are the observations, the regression random variables
and the driven noises, respectively. We assume that (φk)k=1,...,n is a sequence of independent random
variables, and that (εk)k=1,...,n is a sequence of martingale differences with respect to the natural
filtration. Moreover, we suppose that (φk)k=1,...,n and (εk)k=1,...,n are independent. Our interest is to
estimate the unknown parameter θ. The well-known least-squares estimator θn is given below

θn =

∑n
k=1 φkXk∑n
k=1 φ

2
k

. (3.2)

Recently, Bercu and Touati [1] have obtained some very precise exponential bounds on the tail prob-
abilities P (|θn − θ| ≥ x) . However, their precise bounds depend on the distribution of the regression
random variables (φk)k=1,...,n, which restricts the applications of these bounds when the distributions
of the regression variables are unknown. When (εk)k=1,...,n are independent normal random variables
with a common variation σ2 > 0, Liptser and Spokoiny [29] have established the following estimation:
for all x ≥ 1,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
≤
√

2

π

σ

x
exp

{
− x2

2σ2

}
. (3.3)

When (εk)k=1,...,n are conditionally sub-Gaussian, similar estimation is allowed to be obtained in
Liptser and Spokoiny [29]. An interesting feature of bound (3.3) is a type of self-normalized deviations
and the bound does not depend on the distribution of the regression random variables. Thus the self-

normalized approximation (θn − θ)
√

Σn
k=1φ

2
k has certain advantage on the usual approximation of

θn − θ.
Next, we would like to consider the case that (εk)k=1,...,n are martingale differences. When the

regression random variables are constants, such case has been considered in Section 5 of Dedecker and
Merlevède [7], where the authors gave rate of convergence for the normal approximation of θn − θ in
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terms of minimal distance. In the following theorems, we will assume that the regression variables

are random. More importantly, we will consider the self-normalized approximation (θn − θ)
√
Σn
k=1φ

2
k

instead of the usual approximation of θn − θ considered in Bercu and Touati [1] and Dedecker and
Merlevède [7].

Theorem 3.1. Assume for two constants α ∈ (0, 1) and D,

E
[
ε2i e

|εi|α
∣∣∣ σ{εj , j ≤ i− 1}

]
≤ D

for all i ∈ [1, n]. Then for any u ≥ max{D, 1} and all x > 0,

P

(
±(θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
≤





2 exp

{
− x2

2u

}
if 0 ≤ x < u1/(2−α)

2 exp

{
− 1

2
xα
}

if x ≥ u1/(2−α)

(3.4)

≤ 2 exp

{
− x2

2(u+ x2−α)

}
. (3.5)

In particular, it holds for any x > 0,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ √

nx

)
= O

(
exp

{
− cxn

α/2
})

, n → ∞, (3.6)

where cx > 0 does not depend on n.

If (εk)k=1,...,n have the Weibull distributions and the conditional variances are uniformly bounded,
then we have the following inequality which has the same exponentially decaying rate of (3.6).

Theorem 3.2. Assume for three constants α ∈ (0, 1), E and F,

E
[
ε2i

∣∣∣ σ{εj , j ≤ i− 1}
]
≤ E and E

[
exp{|εi|

α
1−α }

]
≤ F

for all i ∈ [1, n]. Then for all x > 0,

P

(
±(θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
≤ exp

{
− x2

2(E + 1
3x

2−α)

}
+ nF exp

{
− xα

}
. (3.7)

In particular, equality (3.6) holds.

If (εk)k=1,...,n have finite conditional moments, by Corollary 2.5, then we have the following result.

Theorem 3.3. Let p ≥ 2. Assume for a constant A,

E
[
|εi|p

∣∣∣σ{εj , j ≤ i− 1}
]
≤ A

12



for all i ∈ [1, n]. Then for all x > 0,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
≤ exp

{
− x2

2V 2

}
+

Cp

xp
, (3.8)

where

V 2 =
1

4
(p+ 2)2epA2/p and Cp =

(
1 +

2

p

)p
A. (3.9)

In particular, it holds for any x > 0,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ √

nx

)
= O

(
cx

np/2

)
, n → ∞, (3.10)

where cx > 0 does not depend on n.

A similar inequality can be obtained by applying the Fuk inequality (1.8) to the martingale dif-
ference sequence (cf. (7.1) for the definition of (ξi,Fi)i=1,...,n). The Fuk inequality implies that for all
x > 0,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
≤ exp

{
− x2

2nV 2

}
+

nCp

xp
, (3.11)

where V 2 and Cp are defined by (3.9). In particular, it implies that for any x > 0,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ √

nx

)
= O

(
cx

np/2−1

)
, n → ∞, (3.12)

where cx > 0 does not depend on n. The order of (3.10) is much better than that of (3.12). Thus the
refinement of (3.8) on (3.11) is significant.

If (εk)k=1,...,n have finite moments and uniformly bounded conditional variances, by Theorem 2.6,
we obtain the following result which has the same polynomially decaying rate of Theorem 3.3.

Theorem 3.4. Let p ≥ 2. Assume for two constants A and B,

E
[
ε2i

∣∣∣ σ{εj , j ≤ i− 1}
]
≤ A and E

[
|εi|p+δ

]
≤ B

for a small δ > 0 and all i ∈ [1, n]. Then for all x > 0,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
≤ exp



− x2

2
(
A+ 1

3x
(2p+δ)/(p+δ)

)



+

B

xp
. (3.13)

In particular, equality (3.10) holds.

In the following theorem, we assume that (εi)i=1,...,n have only a moment of order p ∈ [1, 2].
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Theorem 3.5. Let p ∈ [1, 2]. Assume for a constant A,

E[|εi|p] ≤ A

for all i ∈ [1, n]. Then for all x > 0,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
≤ 2A

xp
. (3.14)

In particular, equality (3.10) holds.

Theorems 3.1 and 3.5 focus on obtaining the large deviation inequalities. These inequalities do not
depend on the distribution of input random variables (φk)k=1,...,n. Similar bounds are also expected to
be obtained via the decoupling techniques of de la Peña [8] and de la Peña and Giné [9]. In particular,
if (εk)k=1,...,n are independent random variables (instead of martingale differences), with the method
of conditionally independent in de la Peña and Giné [9], more precise bounds, but depending on the
distribution of input random variables, may be established.

Haeusler and Joos [20] proved that if the martingale differences satisfy E[|ξi|2+δ ] < ∞ for a constant
δ > 0 and all i ∈ [1, n], then there exists a constant Cδ, depending only on δ, such that for all x ∈ R,

∣∣∣∣P(Sn ≤ x)− Φ(x)

∣∣∣∣ ≤ Cδ

( n∑

i=1

E
[
|ξi|2+δ

]
+E

[
|〈S〉n − 1|1+δ/2

])1/(3+δ) 1

1 + |x|2+δ
, (3.15)

where Φ(x) = 1√
2π

∫ x
−∞ exp{−t2/2}dt is the standard normal distribution; see also Hall and Heyde [21]

with the larger factor 1

1 + |x|4(1+δ/2)2/(3+δ)
replacing 1

1 + |x|2+δ . Using (3.15), we obtain the following

nonuniform Berry-Esseen bound, which depends on the distribution of input random variables.

Theorem 3.6. Let p > 2. Assume that (εi)i=1,...,n satisfy E[ε2i |σ{εj , j ≤ i − 1}] = σ2 a.s. for a
positive constant σ and all i ∈ [1, n]. Assume E[|εi|p] ≤ A for a constant A and all i ∈ [1, n]. Then
for all x ∈ R,

∣∣∣∣P
(
(θn − θ)

√
Σn
k=1φ

2
k ≤ xσ

)
−Φ(x)

∣∣∣∣ ≤ Cp

(
n∑

i=1

E

[∣∣∣∣
φi√

Σn
k=1φ

2
k

∣∣∣∣
p
])1/(1+p)

1

1 + |x|p , (3.16)

where Cp is a constant depending only on A, σ and p.

Notice that
n∑

i=1

E

[∣∣∣∣
φi√

Σn
k=1φ

2
k

∣∣∣∣
p
]
≤

n∑

i=1

E

[∣∣∣∣
φi√

Σn
k=1φ

2
k

∣∣∣∣
2
]
= 1.

Thus (3.16) implies that the tail probability P
(
(θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
has the decaying rate x−p as

x → ∞, which is coincident with the inequalities (3.8) and (3.13).
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(b). Weak invariance principles

In this subsection, let (ξi,Fi)i≥1 be a sequence of martingale differences. The following rate of
convergence in the central limit theorem (CLT) for martingale difference sequences is due to Ouchti (cf.
Corollary 1 of [34]). Assume that there exists a constant M > 0 such that E[|ξi|3|Fi−1] ≤ ME[ξ2i |Fi−1]
a.s. for all i ∈ N. If the series

∑∞
i=1 E[ξ2i |Fi−1] diverges a.s. then there is a constant CM > 0, depending

on M , such that

sup
x∈R

∣∣∣∣P
(
Sv(n) ≤ x

√
n
)
− Φ(x)

∣∣∣∣ ≤ CM

n1/4
, (3.17)

where
v(n) = inf

{
k ∈ N, 〈S〉k ≥ n

}
.

Define the process {Hn(t), 0 ≤ t ≤ 1} by

Hn(t) =
1√
n
Sv(k) for 0 ≤ t ≤ 1,

for tk = k/n and k = 0, . . . , n and by interpolation on the interval (tk−1, tk] for k = 1, . . . , n. Then the
following invariance principle holds.

Theorem 3.7. Assume that there exists a constant M > 0 such that E[|ξi|3|Fi−1] ≤ ME[ξ2i |Fi−1] a.s.
for all i ∈ N. If the series

∑∞
i=1 E[ξ2i |Fi−1] diverges a.s., then the sequence of processes {Hn(t), 0 ≤

t ≤ 1} converges in distribution to the standard Wiener process in the space D[0,1] endowed with the
Srorokhod metric.

The result can be obtained from Theorem 2 of Chapter 7 (see also Theorem 2 of Chapter 5) of
Liptser and Shiryaev [28]. As an illustration of our Theorem 2.4, we will give a short proof of the
tightness of the processes {Hn(t), 0 ≤ t ≤ 1} which is much simpler than the proof in [28].

(c). Self-normalized deviation inequalities

Consider the self-normalized deviations for independent random variables. Assume that (ξi)i=1,...,n

is a sequence of independent and symmetric random variables. Denote by

Vn(β) =
( n∑

i=1

|ξi|β
)1/β

for a constant β ∈ (1, 2]. We have the following self-normalized deviation inequality.

Theorem 3.8. Assume that (ξi)i=1,...,n is a sequence of independent and symmetric random variables.
Let t0 be a positive number such that

1

2

(
ex−t0|x|β + e−x−t0|x|β

)
≤ 1 (3.18)

for a constant β ∈ (1, 2] and all x ∈ R. Then for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
≤ exp

{
−C(β, t0) x

β
β−1

}
, (3.19)
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where

C(β, t0) =
( 1

t0

) 1
β−1
( 1
β

) β
β−1

(β − 1).

Remark 3.9. Let us comment on Theorem 3.8.

1. Ideally we want to make bound (3.19) as small as possible. Since C(β, t0) is decreasing in t0, it
is enough to choose t0 satisfying (3.18) as small as possible for a given β, i.e.,

t0(β) = inf
{
t > 0,

1

2

(
ex−t|x|β + e−x−t|x|β

)
≤ 1 for all x ∈ R

}
.

It is obvious that t0(β) = ∞ for β > 2 since for β > 2,

ex−t0|x|β + e−x−t0|x|β = 2 + x2 + o(x2), x → 0.

Moreover, t0(β) → 1 as β is decreasing to 1, t0(β) → 1/2 as β is increasing to 2, and

t0(β) ≤ 1 for all x ∈ R and β ∈ (1, 2].

For practical purposes one can use the following table:

β 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

t0 0.742 0.627 0.554 0.504 0.470 0.448 0.436 0.436 0.450 0.5

2. For certain special cases, Jing, Liang and Zhou [24] have obtained the following self-normalized
moderate deviation principle (MDP) result (see also Shao [37] for self-normalized LDP result).
Assume that

P(ξi ≥ x) = P(ξi ≤ −x) ∼ c

xα
hi(x), x → ∞,

where α ∈ (0, 2), c > 0 and hi(x)’s are slowly varying at ∞. Under certain regularity conditions
on the tail probabilities of ξi (cf. Theorem 2.3 of [24] for details), the following limit holds for
xn → ∞ and xn = o(n(β−1)/β) and β > max{1, α},

lim
n→∞

x
− β

β−1
n logP (Sn/Vn(β) ≥ xn) = −(β − 1)Cα(β), (3.20)

where Cα(β) is a positive constant depending on α and β. For self-normalized sums of symmetric
random variables, the constant Cα(β) is the solution of

∫ ∞

0

2− exp{βx− xβ/Cβ−1} − exp{−βx− xβ/Cβ−1}
x1+α

dx = 0. (3.21)

According to the MDP result of Jing, Liang and Zhou [24], the power β
β−1 in the right hand sides

of (3.19) is the best possible for moderate x’s.

3. For β ∈ (1, 2], inequality (3.19) implies the following upper bounds of LDP

lim sup
n→∞

1

n
logP

(
max
1≤k≤n

Sk

Vn(β)
≥ xn

β−1
β

)
≤ −C(β, t0) x

β
β−1 , x ∈ (0, 1]. (3.22)

According to the LDP result of Shao [37], the power β
β−1 in the right hand side of (3.19) is also

the best possible for large x’s.
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4. Proof of Theorem 2.1

To prove Theorem 2.1, we need the following technical lemma based on a truncation argument.

Lemma 4.1. Assume E[ξ2i exp{|ξi|α}] < ∞ for a constant α ∈ (0, 1). Set ηi = ξi1{ξi≤y} for y > 0.
Then for all λ > 0,

E[eληi |Fi−1] ≤ 1 +
λ2

2
E[η2i exp{λy1−α(η+i )

α}|Fi−1].

The proof of Lemma 4.1 can be found in the proof of Proposition 3.5 in Dedecker and Fan [6].
However, instead of using the tower property of conditional expectation as in Dedecker and Fan [6],
we use changes of probability measure in the proof of this theorem. Set ηi = ξi1{ξi≤y} for some y > 0.
The exact value of y is given later. Then (ηi,Fi)i=1,...,n is a sequence of supermartingale differences,
and it holds E[exp {ληi}] < ∞ for all λ ∈ (0,∞) and all i. Define the exponential multiplicative
martingale Z(λ) = (Zk(λ),Fk)k=0,...,n, where

Zk(λ) =

k∏

i=1

exp {ληi}
E [exp {ληi} |Fi−1]

, Z0(λ) = 1.

If T is a stopping time, then ZT∧k(λ) is also a martingale, where

ZT∧k(λ) =
T∧k∏

i=1

exp {ληi}
E [exp {ληi} |Fi−1]

, Z0(λ) = 1.

Thus, the random variable ZT∧k(λ) is a probability density on (Ω,F ,P), i.e.

∫
ZT∧k(λ)dP = E[ZT∧k(λ)] = 1.

Define the conjugate probability measure

dPλ = ZT∧n(λ)dP, (4.1)

and denote by Eλ the expectation with respect to Pλ. Since ξi = ηi + ξi1{ξi>y}, it follows that for any
x, y, u > 0,

P
(
Sk ≥ x and Υ(S)k ≤ u for some k ∈ [1, n]

)

≤ P

(
k∑

i=1

ηi ≥ x and Υ(S)k ≤ u for some k ∈ [1, n]

)

+ P

(
k∑

i=1

ξi1{ξi>y} > 0 for some k ∈ [1, n]

)

=: P1 +P

(
max
1≤i≤n

ξi > y

)
. (4.2)
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For any x, u > 0, define the stopping time

T (x, u) = min

{
k ∈ [1, n] :

k∑

i=1

ηi ≥ x and Υ(S)k ≤ u

}
,

with the convention that min ∅ = 0. Then,

1{Sk≥x and Υ(S)k≤u for some k∈[1,n]} =
n∑

k=1

1{T (x,u)=k}.

By the change of measure (9.2), we deduce that for any x, λ, u > 0,

P1 = Eλ

[
ZT∧n(λ)

−11{Sk≥x and Υ(S)k≤u for some k∈[1,n]}

]

=

n∑

k=1

Eλ

[
exp

{
− λ

( k∑

i=1

ηi

)
+Ψk(λ)

}
1{T (x,u)=k}

]
, (4.3)

where

Ψk(λ) =

k∑

i=1

logE [exp {ληi} |Fi−1] . (4.4)

Set λ = yα−1. By Lemma 4.1 and the inequality log(1 + t) ≤ t for all t ≥ 0, it is easy to see that for
any x > 0,

Ψk(λ) ≤
k∑

i=1

log

(
1 +

λ2

2
E[η2i exp{λy1−α(η+i )

α}|Fi−1]

)

≤
k∑

i=1

λ2

2
E[η2i exp{λy1−α(η+i )

α}|Fi−1]

≤ 1

2
y2α−2Υ(S)k.

Using the fact that
∑k

i=1 ηi ≥ x and Ψk(λ) ≤ 1
2y

2α−2u on the set {T (x, u) = k}, we find that for any
x, u > 0,

P1 ≤ exp

{
−λx+

1

2
y2α−2u

}
Eλ

[ n∑

k=1

1{T (x,u)=k}
]

≤ exp

{
−yα−1x+

1

2
y2α−2u

}
.

From (4.2), it follows that

P
(
Sk ≥ x and Υ(S)k ≤ u for some k ∈ [1, n]

)

≤ exp

{
−yα−1x+

1

2
y2α−2u

}
+P

(
max
1≤i≤n

ξi > y

)
. (4.5)
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By the exponential Markov inequality, we have the following estimation: for any y > 0,

P

(
max
1≤i≤n

ξi > y

)
≤

n∑

i=1

P (ξi > y)

≤ 1

y2
exp{−yα}

n∑

i=1

E[ξ2i exp{(ξ+i )α}]

≤ Cn

y2
exp {−yα} . (4.6)

Taking

y =





(u
x

)1/(1−α)
if 0 ≤ x < u1/(2−α)

x if x ≥ u1/(2−α),

from (4.5) and (4.6), we obtain the desired inequality. This completes the proof of Theorem 2.1. �

Proof of Corollary 2.2. Set un = ||Υ(S)n||∞. Then un = o(n2−α), n → ∞, by the assumptions of
Theorem 2.2. For any x > 0, by Theorem 2.1, we have

P

(
max
1≤k≤n

Sk ≥ nx

)
≤ exp

{
−(nx)α

(
1− un

2 (nx)2−α

)}
+

Cn

(nx)2
exp

{
− (nx)α

}

≤
(
1 +

Cn

(nx)2

)
exp

{
−(nx)α

(
1− un

2 (nx)2−α

)}
.

Since un ≥ Cn, we have Cn = o(n2−α), n → ∞. Hence it holds

lim sup
n→∞

1

nα
logP

(
max
1≤k≤n

Sk ≥ nx

)
≤ −xα .

This completes the proof of Corollary 2.2. �

Proof of Theorem 2.3. (i) We suppose that c = 1 by considering c1/αξi instead of ξi. Let ε ∈ (0, 1)
be fixed and consider ξ′i = ξi(1 − ε)β with β > 1/α. By the assumption of the theorem P(ξ1 ≥ x) ≤
e−(1−ε)xα

for x > 0 large enough, so that P(ξ′1 ≥ x) ≤ e−(1−ε)1−βαxα
for x > 0 large enough, and

E[(ξ
′+
1 )2 exp{(ξ′+

1 )α}] =

∫ ∞

0
P(ξ′1 ≥ x)

(
2x+ αx1+α

)
ex

α
dx < ∞.

Together with E[(ξ
′

1)
2] < ∞ this implies that c0 := E[(ξ

′

1)
2 exp{(ξ′+

1 )α}] < ∞. Thus Υ(S′)n :=∑n
i=1 E[(ξ

′

1)
2 exp{(ξ′+

1 )α}] = nc0 = o(n2−α) as n → ∞. Hence, from Corollary 2.2 applied to (ξ′i)i≥1

we have for any x > 0,

lim sup
n→∞

1

nα
logP

(
(1− ε)β max

1≤k≤n
Sk ≥ nx

)
≤ −xα ,
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which implies that for any x > 0,

lim sup
n→∞

1

nα
logP

(
max
1≤k≤n

Sk ≥ nx

)
≤ −(1− ε)βαxα .

Letting ε → 0 we obtain for any x > 0,

lim sup
n→∞

1

nα
logP

(
max
1≤k≤n

Sk ≥ nx

)
≤ −xα . (4.7)

We now consider the lower bound. By the independence of ξi’s, it is easy to see that for any
x, ε > 0, we have

P

(
max
1≤k≤n

Sk ≥ nx

)
≥ P

(
Sn ≥ nx

)

≥ P

( n∑

i=2

ξi ≥ −nε, ξ1 ≥ n(x+ ε)

)

= P
( n∑

i=2

ξi ≥ −nε
)
P
(
ξ1 ≥ n(x+ ε)

)
.

The first probability on the right-hand side converges to 1 as n → ∞ due to the law of large numbers.
By (2.11), the second term on the right-hand side has the following lower bound

P
(
ξ1 ≥ n(x+ ε)

)
≥ exp

{
−
(
n(x+ ε)

)α
(1 + ε)

}

for all n large enough. Hence

lim inf
n→∞

1

nα
logP

(
Sn

n
≥ x

)
≥ −(x+ ε)α(1 + ε).

Letting ε → 0, we obtain

lim inf
n→∞

1

nα
logP

(
Sn

n
≥ x

)
≥ −xα. (4.8)

Combining the lower bound (4.8) with the upper bound (4.7), we get (2.12). This ends the proof of
part (i).

(ii) The proof of (2.14) is similar to that of part (i). The assertion (2.15) follows from (2.14)
applied to (−ξi)i≥1. �

5. Proof of Theorem 2.4

To prove Theorem 2.4, we need the following technical lemma.
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Lemma 5.1. Let p ≥ 2. Assume E[|ξi|p] < ∞ for all i ∈ [1, n]. Set ηi = ξi1{ξi≤y} for y > 0. Then
for all λ > 0,

E[eληi |Fi−1] ≤ 1 +
1

2
epλ2E[ξ2i |Fi−1] + f(y)E[(ξ+i )

p|Fi−1] ,

where the function

f(u) =
eλu − 1− λu

up
, u > 0. (5.1)

Proof. We argue as in Fuk and Nagaev [15] (see also Fuk [16]). Using a two term Taylor’s expansion,
we have for some θ ∈ [0, 1],

eληi ≤ 1 + ληi +
λ2

2
η2i 1{ληi≤p}e

λθηi + f(ηi)(η
+
i )

p1{ληi>p}.

Remark that the function f is positive and increasing for λu ≥ p. Since E[ηi|Fi−1] ≤ E[ξi|Fi−1] = 0
and ηi ≤ y, it follows that

E[eληi |Fi−1] ≤ 1 +
1

2
epλ2E[η2i |Fi−1] + f(y)E[(η+i )

p|Fi−1]

≤ 1 +
1

2
epλ2E[ξ2i |Fi−1] + f(y)E[(ξ+i )

p|Fi−1] ,

which gives the desired inequality. �

We make use of Lemma 5.1 to prove Theorem 2.4. Set ηi = ξi1{ξi≤y} for y > 0. Define the
conjugate probability measure dPλ by (9.2) and denote by Eλ the expectation with respect to Pλ.
Since ξi = ηi + ξi1{ξi>y}, it follows that for any x, y, u,w > 0,

P (Sk > x, 〈S〉k ≤ v and Ξ(S)k ≤ w for some k ∈ [1, n])

≤ P

(
k∑

i=1

ηi ≥ x, 〈S〉k ≤ v and Ξ(S)k ≤ w for some k ∈ [1, n]

)

+ P

(
k∑

i=1

ξi1{ξi>y} > 0 for some k ∈ [1, n]

)

=: P2 +P

(
max
1≤i≤n

ξi > y

)
. (5.2)

For any x, v, w > 0, define the stopping time T :

T (x, v, w) = min

{
k ∈ [1, n] : Sk ≥ x, 〈S〉k ≤ v and Ξ(S)k ≤ w

}
,

with the convention that min ∅ = 0. Then

1{Sk>x, 〈S〉k≤v and Ξ(S)k≤w for some k∈[1,n]} =
n∑

k=1

1{T=k}.
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By the change of measure (9.2), we deduce that for any x, y, λ, u,w > 0,

P2 = Eλ

[
ZT∧n(λ)

−11{Sk>x, 〈S〉k≤v and Ξ(S)k≤w for some k∈[1,n]}

]

=

n∑

k=1

Eλ

[
exp

{
− λ

( k∑

i=1

ηi

)
+Ψk(λ)

}
1{T=k}

]
,

where Ψk(λ) is defined by (4.4). By Lemma 5.1 and the inequality log(1 + t) ≤ t for t ≥ 0, it is easy
to see that for any x, y, λ, u,w > 0,

Ψk(λ) ≤
k∑

i=1

log

(
1 +

1

2
epλ2E[ξ2i |Fi−1] + f(y)E[(ξ+i )

p|Fi−1]

)

≤
k∑

i=1

(
1

2
epλ2E[ξ2i |Fi−1] + f(y)E[(ξ+i )

p|Fi−1]

)
,

where f(y) is defined by (5.1). By the fact that
∑k

i=1 ηi ≥ x and Ψk(λ) ≤ 1
2e

pλ2v + f(y)w on the set
{T = k}. we find that for any x, y, λ, u,w > 0,

P2 ≤ exp

{
−λx+

1

2
epλ2v + f(y)w

}
Eλ

[ n∑

k=1

1{T=k}
]

≤ exp

{
−λx+

1

2
epλ2v + f(y)w

}
.

Next we carry out an argument as in Fuk and Nagaev [15]. Then

P2 ≤ exp

{
− α2x2

2epv

}
+ exp

{
− βx

y
log
(
1 +

βxyp−1

w

)}
, (5.3)

where α and β are defined by (2.18). Combining the inequalities (5.2) and (5.3) together, we obtain
the desired inequality. This completes the proof of Theorem 2.4 �

Proof of Corollary 2.5. When y = βx, from (2.17), it is easy to see that for all x > 0,

P

(
max
1≤i≤n

ξi > y

)
≤

n∑

i=1

P
(
ξi > βx

)
≤ 1

βpxp

n∑

i=1

E[|ξi|p] ≤ Cp

xp

and

exp

{
− βx

y
log
(
1 +

βxyp−1

w

)}
≤ w

βxyp−1 + w
≤ w

βpxp
≤ Cp

xp
,

where Cp is defined by (2.20). Thus (2.17) implies (2.19). �
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6. Proofs of Theorem 2.6 and Corollary 2.7

To prove Theorem 2.6, we need the following inequality whose proof can be found in Fan, Grama
and Liu [11] (cf. Corollary 2.3 and Remark 2.1 therein).

Lemma 6.1. Assume E[ξ2i ] < ∞ for all i ∈ [1, n]. Then for all x, y, v > 0,

P
(
Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)

≤ exp

{
− x2

2(v2 + 1
3xy)

}
+P

(
max
1≤i≤n

ξi > y

)
.

Proof of Theorem 2.6. By Lemma 6.1 and the Markov inequality, it follows that for all x, y, v > 0,

P
(
Sk ≥ x and 〈S〉k ≤ v2 for some k ∈ [1, n]

)

≤ exp

{
− x2

2(v2 + 1
3xy)

}
+

n∑

i=1

P
(
ξi > y

)

≤ exp

{
− x2

2(v2 + 1
3xy)

}
+

1

yp+δ

n∑

i=1

E
[
|ξi|p+δ1{ξi>y}

]
.

Taking y = xp/(p+δ) in the last inequality, we obtain the desired inequality. This completes the proof
of Theorem 2.6. �

Proof of Corollary 2.7. Notice that p+ δ > 2. It is easy to see that for any x, v > 0,

P
(

max
1≤k≤n

Sk ≥ x
)

≤ P
(

max
1≤k≤n

Sk ≥ x and 〈S〉n ≤ nv2
)
+P

(
〈S〉n > nv2

)

≤ P
(
Sk ≥ x and 〈S〉k ≤ nv2 for some k ∈ [1, n]

)
+P

(
〈S〉n > nv2

)

≤ P
(
Sk ≥ x and 〈S〉k ≤ nv2 for some k ∈ [1, n]

)

+
E[|〈S〉n|(p+δ)/2]

n(p+δ)/2vp+δ
,

which gives the first desired inequality. By the Hölder inequality, it follows that

n∑

i=1

ai ≤ n1−2/(p+δ)
( n∑

i=1

a
(p+δ)/2
i

)2/(p+δ)
, ai ≥ 0, i = 1, ..., n.

Hence ( n∑

i=1

ai

)(p+δ)/2
≤ n(p−2+δ)/2

n∑

i=1

a
(p+δ)/2
i , ai ≥ 0, i = 1, ..., n.

Then we have

E[|〈S〉n|(p+δ)/2] ≤ n(p−2+δ)/2
n∑

i=1

E
[
E[ξ2i |Fi−1]

(p+δ)/2
]
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≤ n(p−2+δ)/2
n∑

i=1

E
[
E[|ξi|p+δ|Fi−1]

]

= n(p−2+δ)/2
n∑

i=1

E[|ξi|p+δ].

This completes the proof of corollary. �

7. Proofs of Theorems 3.1 - 3.6

From (3.1) and (3.2), it is easy to see that

θn − θ =

n∑

k=1

φkεk
Σn
k=1φ

2
k

.

For any i = 1, ..., n, set

ξi =
φiεi√
Σn
k=1φ

2
k

and Fi = σ
{
φk, εk, 1 ≤ k ≤ i, φ2

k, 1 ≤ k ≤ n
}
. (7.1)

Then (ξi,Fi)i=1,...,n is a sequence of martingale differences, and satisfies

Sn =

n∑

i=1

ξi = (θn − θ)
√

Σn
k=1φ

2
k .

Proof of Theorem 3.1. Notice that

Υ(S)n ≤
n∑

i=1

φ2
i

Σn
k=1φ

2
k

E[ε2i exp{|εi|α}|Fi−1] ≤
n∑

i=1

φ2
iD

Σn
k=1φ

2
k

= D.

Applying Theorem 2.1 to (ξi,Fi)i=1,...,n, we find that (2.6), with u ≥ max{D, 1}, is an upper bound

on the tail probabilities P
(
(θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
.

Similarly, applying Theorem 2.1 to (−ξi,Fi)i=1,...,n, we find that (2.6), with u ≥ max{D, 1}, is
also an upper bound on the tail probabilities P

(
−(θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
. This completes the proof

of Theorem 3.1. �

Proof of Theorem 3.2. By the fact

E[ε2i |Fi−1] = E[ε2i |σ{εk, 1 ≤ k ≤ i− 1}] ≤ E,

it follows that

〈S〉n ≤
n∑

i=1

φ2
i

(Σn
k=1φ

2
k)
E[ε2i |Fi−1] ≤ E.
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Similarly, by the fact E[ exp{|εi|
α

1−α }] ≤ F, it is easy to see that

E[exp{|ξi|
α

1−α }] ≤ E[ exp{|εi|
α

1−α }] ≤ F.

Applying Theorem 2.2 of Fan, Grama and Liu [12] to (±ξi,Fi)i=1,...,n, we obtain the desired inequality.
�

Proof of Theorem 3.3. By the fact

E[|εi|p|Fi−1] = E[|εi|p|σ{εk, 1 ≤ k ≤ i− 1}] ≤ A,

it follows that

〈S〉n ≤
n∑

i=1

φ2
i

(Σn
k=1φ

2
k)
E[ε2i |Fi−1] ≤

n∑

i=1

φ2
i

(Σn
k=1φ

2
k)

(
E[|εi|p|Fi−1]

)2/p
= A2/p

and
n∑

i=1

E[|ξi|p|Fi−1] ≤
n∑

i=1

φ2
i

(Σn
k=1φ

2
k)
E[|εi|p|Fi−1] ≤ A.

Applying Corollary 2.5 to (±ξi,Fi)i=1,...,n, we obtain the desired inequality. �

Proof of Theorem 3.4. By the fact

E[ε2i |Fi−1] = E[ε2i |σ{εk, 1 ≤ k ≤ i− 1}] ≤ A,

it follows that

〈S〉n ≤
n∑

i=1

φ2
i

(Σn
k=1φ

2
k)
E[ε2i |Fi−1] ≤ A.

Similarly, by the fact E[|εi|p+δ] ≤ B, it follows that

n∑

i=1

E[|ξi|p+δ] =
n∑

i=1

E

[∣∣∣ φ2
i

Σn
k=1φ

2
k

∣∣∣
p+δ
2

]
E[|εi|p+δ] ≤ E

[ n∑

i=1

φ2
i

Σn
k=1φ

2
k

]
B = B.

Applying Theorem 2.6 to (±ξi,Fi)i=1,...,n, we obtain the desired inequality. �

Proof of Theorem 3.5. Let p ∈ [1, 2]. By the inequality

( n∑

i=1

ai

)α
≤

n∑

i=1

aαi , ai ≥ 0 and α ∈ (0, 1],

we have
n∑

i=1

E[|ξi|p] =

n∑

i=1

E

[
(φ2

i )
p/2

(Σn
k=1φ

2
k)

p/2

]
E[|εi|p] ≤ E

[
(
∑n

i=1 φ
2
i )

p/2

(Σn
k=1φ

2
k)

p/2

]
A = A.

By the inequality of von Bahr and Esseen (cf. Theorem 2 of [39]), we get

E[|Sn|p] ≤ 2

n∑

i=1

E[|ξi|p] ≤ 2A.
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Then for all x > 0,

P

(
± (θn − θ)

√
Σn
k=1φ

2
k ≥ x

)
= P

(
± Sn ≥ x

)
≤ E[|Sn|p]

xp
≤ 2A

xp
.

This completes the proof of theorem. �

Proof of Theorem 3.6. It is obvious that

θn − θ

σ

√
Σn
k=1φ

2
k =

n∑

i=1

ηi,

where ηi = ξi/σ. Notice that E[ε2i |Fi−1] = E[ε2i |σ{εj , j ≤ i− 1}] = σ2 a.s.. Then we have

n∑

i=1

E[η2i |Fi−1] =
〈S〉n
σ2

=

n∑

i=1

φ2
i

(Σn
k=1φ

2
k)

E[ε2i |Fi−1]

σ2
=

n∑

i=1

φ2
i

Σn
k=1φ

2
k

= 1

and
n∑

i=1

E[|ηi|p|Fi−1] ≤
n∑

i=1

E

[∣∣∣∣
φi√

Σn
k=1φ

2
k

∣∣∣∣
p]

E[|εi|p|Fi−1]

σp
≤ A

σp

n∑

i=1

E

[∣∣∣∣
φi√

Σn
k=1φ

2
k

∣∣∣∣
p]
.

Applying inequality (3.15) to the martingale difference sequence (ηi,Fi)i=1,...,n with δ = p − 2, we
obtain the desired inequality. �

8. Proof of tightness in Theorem 3.7

By Theorem 8.4, Chapter 3, Section 8 of Billingsley [2] (see also Chapter 3, Section 16 for the
convergence in the space ), we only need to show that for any ε > 0, there exist a λ > 1 and an integer
n0 such that for every n ≥ n0,

P

(
max

k≤i≤k+n
|Si − Sk| ≥ λ

√
n

)
≤ ε

λ2
. (8.1)

Since
E[|ξi|3|Fi−1] ≤ ME[ξ2i |Fi−1],

we deduce that

(E[ξ2i |Fi−1])
3/2 ≤ E[|ξi|3|Fi−1] ≤ ME[ξ2i |Fi−1]. (8.2)

This, in turn, implies that

E[ξ2i |Fi−1] ≤ M2, 〈S〉k+n − 〈S〉k ≤ nM2 and
k+n∑

i=k

E[|ξi|3|Fi−1] ≤ nM3.
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Applying (2.17) with p = 3, x = 2y = λ
√
n, we obtain, by (8.2),

P

(
max

k≤i≤k+n
|Si − Sk| ≥ λ

√
n

)

≤ 2 exp

{
− 2λ2

25e3M2

}
+ 2exp

{
− 6

5
log

(
1 +

3λ3√n

20M3

)}

+ P

(
max

k≤i≤k+n
ξi >

1

2
λ
√
n

)
+P

(
max

k≤i≤k+n
(−ξi) >

1

2
λ
√
n

)

≤ 2 exp

{
− 4λ2

50e3M2

}
+ 2

(
3λ3√n

20M3

)−6/5

+
16

λ3n3/2

k+n∑

i=k

E
[
|ξi|3

]

≤ ε

λ2
,

provided that λ is sufficiently large, which proves (8.1). �

9. Proof of Theorem 3.8

For any i = 1, ..., n, set

ηi =
ξi

Vn(β)
, F0 = σ

(
|ξj |, 1 ≤ j ≤ n

)
and Fi = σ

(
ξk, 1 ≤ k ≤ i, |ξj |, 1 ≤ j ≤ n

)
. (9.1)

Since (ξi)i=1,...,n are independent and symmetric, then

E[ξi > y | Fi−1] = E[ξi > y | |ξi|] = E[− ξi > y | | − ξi|] = E[−ξi > y | Fi−1].

Thus (ηi,Fi)i=1,...,n is a sequence of conditionally symmetric martingale differences, i.e.

E[ηi > y | Fi−1] = E[−ηi > y | Fi−1].

It is easy to see that

Sn

Vn(β)
=

n∑

i=1

ηi

is a sum of martingale differences, and that (ηi,Fi)i=1,...,n satisfies

n∑

i=1

E[|ηi|β| Fi−1] =
n∑

i=1

|ηi|β =
n∑

i=1

|ξi|β
Vn(β)β

= 1.

For any x > 0, define the stopping time T :

T (x) = min
{
k ∈ [1, n] :

k∑

i=1

ηi ≥ x
}
,
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with the convention that min ∅ = 0. Then it follows that

1{max1≤k≤n Sk/Vn(β)≥x} =
n∑

k=1

1{T (x)=k}.

For any nonnegative number λ, define the martingale M(λ) = (Mk(λ),Fk)k=0,...,n, where

Mk(λ) =

k∏

i=1

exp {ληi}
E [exp {ληi} |Fi−1]

, M0(λ) = 1.

Since T is a stopping time, then MT∧k(λ), λ > 0, is also a martingale. Define the conjugate probability
measure Pλ on (Ω,F):

dPλ = MT∧n(λ)dP. (9.2)

Denote Eλ the expectation with respect to Pλ. Denote by

Ψk(λ) =

k∑

i=1

logE

[
exp {ληi}

∣∣∣∣Fi−1

]
, k ∈ [1, n].

Using the change of probability measure (9.2), we have for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
= Eλ

[
MT∧n(λ)

−11{max1≤k≤n Sk/Vn(β)≥x}
]

=
n∑

k=1

Eλ

[
exp

{
− λ

k∑

i=1

ηi +Ψk(λ)

}
1{T (x)=k}

]

≤
n∑

k=1

Eλ

[
exp

{
− λx+Ψk(λ)

}
1{T (x)=k}

]
, (9.3)

where the last line follows by the fact that
∑k

i=1 ηi ≥ x on the set {T (x) = k}. Since (ηi,Fi)i=1,...,n is
conditionally symmetric, one has

E
[
exp {ληi}

∣∣∣Fi−1

]
= E

[
exp {−ληi}

∣∣∣Fi−1

]
,

and thus it holds
E
[
exp {ληi}

∣∣∣Fi−1

]
= E

[
cosh(ληi)

∣∣∣Fi−1

]
.

Notice that η2i is Fi−1−measurable, and that

cosh(x) =

∞∑

k=0

1

(2k)!
x2k.

Thus

Ψk(λ) =

k∑

i=1

log
(
cosh(ληi)

)
.
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Let t0 be a number such that

1

2

(
ex−t0|x|β + e−x−t0|x|β

)
≤ 1 for all x ∈ R. (9.4)

Then we have

Ψk(λ) ≤
k∑

i=1

log
(
et0|ληi|

β
)
= t0λ

β
k∑

i=1

|ηi|β ≤ t0λ
β.

and

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
≤ inf

λ>0
exp

{
− λx+ t0λ

β

}

= exp

{
− C(β, t0)x

β
β−1

}
. (9.5)

This completes the proof.
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[9] de la Peña, V. H., Giné, E., 1999. Decoupling: from dependence to independence. Springer.

[10] Doukhan, P., Neumann, M. H., 2007. Probability and moment inequalities for sums of weakly
dependent random variables, with applications. Stochastic Process. Appl. 117(7): 878–903.

29



[11] Fan, X., Grama, I., Liu, Q., 2012. Hoeffding’s inequality for supermartingales. Stochastic Process.
Appl. 122(10): 3545–3559.

[12] Fan, X., Grama, I., Liu, Q., 2012. Large deviation exponential inequalities for supermartingales.
Electron. Commun. Probab. 17(59): 1–8.

[13] Fan, X., Grama, I. and Liu, Q., 2015. Exponential inequalities for martingales with applications.
Electron. J. Probab. 20(1): 1–22.

[14] Freedman, D.A., 1975. On tail probabilities for martingales. Ann. Probab. 3, No. 1, 100–118.

[15] Fuk, D. Kh., Nagaev, S. V., 1971. Probabilistic inequalities for partial sums of independent
variables. Theory Probab. Appl. 16(4): 660–675.

[16] Fuk, D. Kh., 1973. Some probabilistic inequalities for martingales. Siberian. Math. J. 14(1):
185–193.

[17] Gantert, N., Ramanan, K., Rembart, F., 2014. Large deviations for weighted sums of stretched
exponential random variables. Electron. Commun. Probab. 19(41): 1–14.

[18] Grama, I., Haeusler, E., 2000. Large deviations for martingales via Cramér’s method. Stochastic
Process. Appl. 85(2): 279–293.

[19] Haeusler, E., 1984. An exact rate of convergence in the functional central limit theorem for special
martingale difference arrays. Probab. Theory Relat. Fields 65(4): 523–534.

[20] Haeusler, E., Joos, K., 1988. A nonuniform bound on the rate of convergence in the martingale
central limit theorem. Ann. Probab. 16(4): 1699–1720.

[21] Hall, P., Heyde, C. C., 1980. Martingale Limit Theory and Its Application. Academic Press.

[22] Hao, S., Liu, Q., 2014. Convergence rates in the lax of large numbers for arrays of martingale
differences. J. Math. Anal. Appl. 417(2): 733–773.

[23] Huang, C., Liu, Q., 2012. Moments, moderate and large deviations for a branching process in a
random environment. Stoch. Proc. Appl. 122: 522–545.

[24] Jing, B. Y., Liang, H. Y., Zhou, W., 2012. Self-normalized moderate deviations for independent
random variables. Sci. China Math. 55(11): 2297–2315

[25] Kiesel, R., Stadtmüller, U., 2000. A large deviation principle for weighted sums of independent
and identically distributed random variables. J. Math. Anal. Appl. 251(2): 929–939.

[26] Lanzinger, H., Stadtmüller, U., 2000. Maxima of increments of partial sums for certain subexpo-
nential distributions. Stochastic Process. Appl. 86(2): 307–322.
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