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Abstract

Let (ξi)i≥1 be a sequence of independent and symmetric random variables. We obtain some upper
bounds on tail probabilities of self-normalized deviations

P
(

max
1≤k≤n

k∑

i=1

ξi

/
(

n∑

i=1

|ξi|β)1/β ≥ x
)

for x > 0 and β > 1. Our bound is the best that can be obtained from the Bernstein inequality under
the present assumption. An application to Student’s t-statistic is also given.
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1. Introduction

Let (ξi)i≥1 be a sequence of independent, centered and nondegenerate real-valued random variables
(r.v.s). Denote by

Sn =

n∑

i=1

ξi and Vn(β) =
( n∑

i=1

|ξi|β
)1/β

, β > 1.

The study of the tail probabilities P(Sn/Vn(β) ≥ x) certainly has attracted some particular attentions.
In the case where r.v.s (ξi)i≥1 are identically distributed and E|ξ1|β = ∞, β > 1, Shao [9] proved the
following deep large deviation principle (LDP) result: for any x > 0,

lim
n→∞

P
( Sn

Vn(β)n1−1/β
≥ x

)1/n
= sup

c≥0
inf
t≥0

E
[
exp

{
t
(
cX − x

( 1

β
|X|β +

β − 1

β
cβ/(β−1)

))}]
.

The related moderate deviation principles (MDP) are also given by Shao [9] and Jing, Liang and Zhou
[6]. However, the LDP and MDP results do not diminish the need for tail probability inequalities valid
for given n. Such inequalities have been obtained in particular by Wang and Jing [10]. For instance,
they proved that if the r.v.s (ξi)i≥1 are symmetric (around 0), then for all x > 0,

P

(
Sn

Vn(2)
≥ x

)
≤ exp

{
−x2

2

}
. (1)
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This bound is rather tight for moderate x’s. Indeed, as showed by the MDP result of Shao [9] (cf.
Theorem 3.1), for certain class of r.v.s it holds that

x−2
n lnP

(
Sn

Vn(2)
≥ xn

)
= −1

2
, (2)

for xn → ∞ and xn = o(
√
n ) as n → ∞. See also Theorem 2.1 of Jing, Liang and Zhou [6] for non

identically distributed r.v.s. In Fan, Grama and Liu [3], inequality (1) has been further extended to
the case of partial maximum: for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(2)
≥ x

)
≤ exp

{
−x2

2

}
. (3)

On the other hand, by the Cauchy-Schwarz inequality, it is easy to see that S2
n ≤ n (Vn(2))

2. Therefore,
for all x >

√
n,

P

(
Sn

Vn(2)
≥ x

)
≤ P

(
max
1≤k≤n

Sk

Vn(2)
≥ x

)
= 0, (4)

which cannot be deduced from (1) and (3). Hence, the inequalities (1) and (3) are not tight enough
for large x’s.

In this paper we give an improvement on inequality (3); see inequality (5). Our inequality coincides
with (4). More general, we establish an upper bound on tail probabilities P(max1≤k≤n Sk/Vn(β) ≥
x), x > 0, for symmetric r.v.s (ξi)i≥1. In particular, we show that our inequality is the best that can
be obtained from the classical Bernstein inequality: P(X > x) ≤ infλ>0E[eλ(X−x)]. An application to
Student’s t-statistic is also given.

The paper is organized as follows. Our main results and applications are stated and discussed in
Section 2. Proofs are deferred to Section 3.

2. Main results

In the following theorem, we give a self-normalized deviation inequality for independent and sym-
metric random variables.

Theorem 2.1. Assume that (ξi)i≥1 is a sequence of independent, symmetric and nondegenerate ran-
dom variables. Denote by

Vn(β) =
( n∑

i=1

|ξi|β
)1/β

, β ∈ (1,∞).

Then for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
≤ Bn(β, x) :=

1

2n

(√
t+

1√
t

)n

t−
1
2
n1/βx 1{x≤n(β−1)/β}, (5)

where

t =
n(β−1)/β + x

n(β−1)/β − x
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with the convention that Bn(β, n
(β−1)/β) = 2−n. Moreover, Bn(2, x) is increasing in n and for any

x > 0,

lim
n→∞

Bn(2, x) = exp

{
−x2

2

}
.

Hölder’s inequality implies that Sn ≤ Vn(β)n
(β−1)/β . Thus when x > n(β−1)/β , it holds that

P
(

max
1≤k≤n

Sk

Vn(β)
≥ x

)
= 0. (6)

This feature coincides with the fact that Bn(β, x) = 0 for all x > n(β−1)/β .
Notice that bound (5) is the best that can be obtained from the following Bernstein inequality

P

(
Sn

Vn(β)
≥ x

)
≤ inf

λ≥0
E
[
e
λ( Sn

Vn(β)
−x)

]
. (7)

Indeed, if ξi = ±a, a > 0, with probabilities 1/2, then it holds for all 0 < x <
√
n,

inf
λ≥0

E
[
e
λ( Sn

Vn(β)
−x)

]
= inf

λ≥0
E
[
e
λ( Sn

an1/β
−x)

]
= inf

λ≥0
e−λx

(
cosh(

λ

n1/β
)
)n

= Bn(β, x).

Moreover, when x ր n(β−1)/β , bound (5) tends to 2−n, which is the best possible at x = n(β−1)/β .
Indeed, for the ξi’s mentioned above, it holds

P

(
max
1≤k≤n

Sk

Vn(β)
≥ n(β−1)/β

)
= P

(
ξi = a for all i ∈ [1, n]

)
=

1

2n
.

Since the r.v.s (ξi)i≥1 are symmetric, it is obvious that for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(β)
≤ −x

)
≤ Bn(β, x),

where Bn(β, x) is defined by (5).
When β ∈ (1, 2], inequality (5) implies the following bound.

Corollary 2.1. Assume condition of Theorem 2.1. If β ∈ (1, 2], then for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
≤ exp

{
−x2

2
n

2
β
−1

}
. (8)

In particular, the last inequality implies that for any β ∈ (1, 2),

Sn

Vn(β)
→ 0, n → ∞,

in probability.
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For β ∈ (1, 2], inequality (8) implies the following upper bound of LDP:

lim sup
n→∞

1

n
lnP

(
max
1≤k≤n

Sk

Vn(β)n(β−1)/β
≥ x

)
≤ −x2

2
, x ∈ (0, 1]. (9)

It also implies the following upper bound of MDP: for any α ∈ (β−2
2β , β−1

β ),

lim sup
n→∞

1

n2α+ 2
β
−1

lnP

(
max
1≤k≤n

Sk

Vn(β)nα
≥ x

)
≤ −x2

2
, x ∈ (0,∞). (10)

With certain regularity conditions on tail probabilities of ξi, the LDP and MDP results are allowed
to be established. We refer to Shao [9] and Jing, Liang and Zhou [6].

Wang and Jing [10] proved that for all x > 0,

P

(
Sn

Vn(2)
≥ x

)
≤ exp

{
−x2

2

}
. (11)

An earlier result similar to (11) can be found in [5], where Hitczenko has obtained the same upper
bound on tail probabilities P(Sn ≥ x ||Vn(2)||∞). When β = 2, inequality (8) reduces to the following
inequality of Fan et al. [3]: for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(2)
≥ x

)
≤ exp

{
−x2

2

}
. (12)

Thus inequality (8) can be regarded as a generalization of (11) and (12). Moreover, since bound (5)
is less than bound (12), our inequality (5) improves on (12).

If (ξi)i≥1 have (2 + δ)th moments with 0 < δ ≤ 1, the inequalities (11) and (12) can be further
improved. For instance, Jing, Shao and Wang [7] proved the following Cramér type large deviations
for i.i.d. (not necessarily symmetric) r.v.s:

P
(
Sn ≥ xVn(2)

)
=

(
1− Φ(x)

)(
1 + o(1)

)
, n → ∞, (13)

uniformly for all 0 ≤ x = o(nδ/(4+2δ)). Similarly, Liu, Shao and Wang [8] proved the following result
for the maximum of sums:

P
(

max
1≤k≤n

Sk ≥ xVn(2)
)
= 2

(
1− Φ(x)

)(
1 + o(1)

)
, n → ∞, (14)

uniformly for all 0 ≤ x = o(nδ/(4+2δ)). Moreover, these asymptotic estimations are also more precise
than (5) for moderate x’s.

Let (Yi)i≥1 be a sequence of independent nondegenerate r.v.s, and (di)i≥1 be a sequence of inde-
pendent Rademacher r.v.s, i.e. P(di = ±1) = 1

2 . Let ξi = diYi. Assume that (Yi)i≥1 and (di)i≥1 are
independent. Then we now have

Sn =

n∑

i=1

diYi, Vn(β) =
( n∑

i=1

|Yi|β
)1/β

, β > 1.

The following result easily follows from Theorem 2.1 and Corollary 2.1.
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Corollary 2.2. Let ξi = diYi for all i ≥ 1. If β ∈ (1, 2], then for all 0 < x ≤ n(β−1)/β ,

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
≤ Bn(β, x)

≤ exp

{
−x2

2
n

2
β
−1

}
.

In particular, the last inequality implies that for any β ∈ (1, 2),

Sn

Vn(β)
→ 0, n → ∞,

in probability.

Consider Student’s t-statistic Tn defined by

Tn =
√
n ξn/σ̂,

where

ξn =
Sn

n
and σ̂2 =

n∑

i=1

(ξi − ξn)
2

n− 1
.

It is known that for all x > 0,

P
(
Tn ≥ x

)
= P

(
Sn√
[S]n

≥ x
( n

n+ x2 − 1

)1/2
)
;

see Efron [1]. Notice that for all x > 0, it holds that 0 < x
(

n
n+x2−1

)1/2
< n1/2. Using inequality (5),

we have the following exponential bound for Student’s t-statistic.

Theorem 2.2. Assume that (ξi)i≥1 is a sequence of independent, symmetric and nondegenerate ran-
dom variables. Then for all x > 0,

P
(
Tn ≥ x

)
≤ Bn

(
2, x

( n

n+ x2 − 1

)1/2
)
, (15)

where Bn(2, x) is defined by (5).

3. Proofs of Theorem 2.1 and Corollary 2.1

The proof of Theorem 2.1 is based on a method called change of probability measure for martin-
gales. The method is developed by Grama and Haeusler [4]. See also Fan, Grama and Liu [2].
Proof of Theorem 2.1. For any i ≥ 1, set

ηi =
ξi

Vn(β)
, F0 = σ

(
|ξj |, 1 ≤ j ≤ n

)
and Fi = σ

(
ξk, 1 ≤ k ≤ i, |ξj |, 1 ≤ j ≤ n

)
. (16)
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Since (ξi)i≥1 are independent and symmetric, then

E[ξi > y | Fi−1] = E
[
ξi > y

∣∣∣ |ξi|
]
= E

[
− ξi > y

∣∣∣ | − ξi|
]
= E[−ξi > y | Fi−1].

Thus (ηi,Fi)i=1,...,n is a sequence of conditionally symmetric martingale differences, i.e. E[ηi > y| Fi−1] =
E[−ηi > y| Fi−1]. It is easy to see that

Sn

Vn(β)
=

n∑

i=1

ηi (17)

is a sum of martingale differences, and that (ηi,Fi)i=1,...,n satisfies

n∑

i=1

|ηi|β =

n∑

i=1

|ξi|β
Vn(β)β

= 1.

For any x > 0, define the stopping time T :

T (x) = min
{
k ∈ [1, n] :

k∑

i=1

ηi ≥ x
}
,

with the convention that min ∅ = 0. Then it follows that

1{max1≤k≤n Sk/Vn(β)≥x} =

n∑

k=1

1{T (x)=k}.

For any nonnegative number λ, define the martingale M(λ) = (Mk(λ),Fk)k=0,...,n, where

Mk(λ) =

k∏

i=1

exp {ληi}
E [exp {ληi} |Fi−1]

, M0(λ) = 1.

Since T is a stopping time, then MT∧k(λ), λ > 0, is also a martingale. Define the conjugate probability
measure Pλ on (Ω,F):

dPλ = MT∧n(λ)dP. (18)

Denote by Eλ the expectation with respect to Pλ. Using the change of probability measure (18), we
have for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
= Eλ

[
MT∧n(λ)

−11{max1≤k≤n Sk/Vn(β)≥x}
]

=

n∑

k=1

Eλ

[
exp

{
− λ

k∑

i=1

ηi +Ψk(λ)
}
1{T (x)=k}

]
, (19)

where

Ψk(λ) =

k∑

i=1

logE
[
exp {ληi}

∣∣∣Fi−1

]
.
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Since (ηi,Fi)i=1,...,n is conditionally symmetric, one has

E [exp {ληi} |Fi−1] = E [exp {−ληi} |Fi−1] ,

and thus it holds

E [exp {ληi} |Fi−1] = E [cosh(ληi)|Fi−1] . (20)

Since

cosh(x) =

∞∑

k=0

1

(2k)!
x2k

is an even function, then cosh(ληi) is Fi−1−measurable. Thus (20) implies that

E[ exp {ληi} |Fi−1] = cosh(ληi).

Notice that the function g(x) = log ( cosh(x)) is even and convex in x ∈ R and increasing in x ∈ [0,∞).
Since |∑n

i=1 ηi| ≤ n1−1/β(
∑n

i=1 |ηi|β)1/β = n1−1/β , it holds

Ψk(λ) ≤ Ψn(λ) =

n∑

i=1

g
(
ληi

)
≤ ng

( 1

n

n∑

i=1

ληi

)
≤ ng

( λ

n1/β

)
.

By the fact
∑k

i=1 ηi ≥ x on the set {T (x) = k}, inequality (19) implies that for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
≤

n∑

k=1

Eλ

[
exp

{
−λx+ ng

( λ

n1/β

)}
1{T=k}

]

≤ exp

{
−λx+ ng

( λ

n1/β

)}
Eλ

[ n∑

k=1

1{T=k}

]

≤ exp

{
−λx+ ng

( λ

n1/β

)}
. (21)

The last inequality attains its minimum at

λ = λ(x) =
n1/β

2
log

(
n(β−1)/β + x

n(β−1)/β − x

)
, x ∈ (0, n(β−1)/β).

Substituting λ = λ(x) in (21), we obtain the desired inequality (5) for all x ∈ (0, n(β−1)/β). When
x = n(β−1)/β , we have

P

(
max
1≤k≤n

Sk

Vn(β)
≥ n(β−1)/β

)
= lim

xրn(β−1)/β
P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
≤ lim

xրn(β−1)/β
Bn(β, x) = 2−n.

When x > n(β−1)/β , the desired inequality follows from (6).
Notice that the function h(x) = g(

√
x) is convex and increasing in x ∈ [0,∞). Therefor g(

√
x)/x

is increasing in x, and g(
√

λ2/n)/(λ2/n) is decreasing in n. Thus

Bn(2, x) = inf
λ≥0

exp

{
−λx+ ng

( λ

n1/2

)}
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is increasing in n. Since ng( λ
n1/2 ) → λ2/2, n → ∞, we obtain

lim
n→∞

Bn(2, x) = sup
n

Bn(2, x) = inf
λ≥0

exp

{
−λx+

λ2

2

}
= exp

{
−x2

2

}
.

This completes the proof of Theorem 2.1. �

Proof of Corollary 2.1. Since cosh(x) ≤ exp{x2/2}, we have

ng
( λ

n1/β

)
≤ λ2

2
n1− 2

β (22)

for all λ > 0. Thus, from (21), for all x > 0,

P

(
max
1≤k≤n

Sk

Vn(β)
≥ x

)
≤ inf

λ>0
exp

{
−λx+ ng

( λ

n1/β

)}

≤ inf
λ>0

exp

{
−λx+

λ2

2
n
1− 2

β

}

= exp

{
− x2

2
n

2
β
−1

}
, (23)

which gives the desired inequality (8). �
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