A NOTE ON THE 4-GIRTH-THICKNESS OF $K_{n, n, n}$

XIA GUO AND YAN YANG

Abstract

The 4 -girth-thickness $\theta(4, G)$ of a graph G is the minimum number of planar subgraphs of girth at least four whose union is G. In this paper, we obtain that the 4 -girth-thickness of complete tripartite graph $K_{n, n, n}$ is $\left\lceil\frac{n+1}{2}\right\rceil$ except for $\theta\left(4, K_{1,1,1}\right)=2$. And we also show that the 4 -girth-thickness of the complete graph K_{10} is three which disprove the conjecture posed by RubioMontiel concerning to $\theta\left(4, K_{10}\right)$.

1. Introduction

The thickness $\theta(G)$ of a graph G is the minimum number of planar subgraphs whose union is G. It was defined by W.T.Tutte [10] in 1963. Then, the thicknesses of some graphs have been obtained when the graphs are hypercube [7], complete graph $[1,2,11]$, complete bipartite graph [3] and some complete multipartite graphs $[5,12,13]$.

In 2017, Rubio-Montiel [8] define the g-girth-thickness $\theta(g, G)$ of a graph G as the minimum number of planar subgraphs whose union is G with the girth of each subgraph is at least g. It is a generalization of the usual thickness in which the 3 -girth-thickness $\theta(3, G)$ is the usual thickness $\theta(G)$. He also determined the 4-girth-thickness of the complete graph K_{n} except K_{10} and he conjecture that $\theta\left(4, K_{10}\right)=4$. Let $K_{n, n, n}$ denote a complete tripartite graph in which each part contains $n(n \geq 1)$ vertices. In [13], Yang obtained $\theta\left(K_{n, n, n}\right)=\left\lceil\frac{n+1}{3}\right\rceil$ when $n \equiv 3(\bmod 6)$.

In this paper, we determine $\theta\left(4, K_{n, n, n}\right)$ for all values of n and we also give a decomposition of K_{10} with three planar subgraphs of girth at least four, which shows $\theta\left(4, K_{10}\right)=3$.

2. THE 4-GIRTH-THICKNESS OF $K_{n, n, n}$

Lemma 1. [4] A planar graph with n vertices and girth g has at most $\frac{g}{g-2}(n-2)$ edges.

Theorem 2. The 4-girth-thickness of $K_{n, n, n}$ is

$$
\theta\left(4, K_{n, n, n}\right)=\left\lceil\frac{n+1}{2}\right\rceil
$$

except for $\theta\left(4, K_{1,1,1}\right)=2$.

[^0]Proof. It is trivial for $n=1, \theta\left(4, K_{1,1,1}\right)=2$. When $n>1$, because $\left|E\left(K_{n, n, n}\right)\right|=$ $3 n^{2},\left|V\left(K_{n, n, n}\right)\right|=3 n$, from Lemma 1, we have

$$
\theta\left(4, K_{n, n, n}\right) \geq\left\lceil\frac{3 n^{2}}{2(3 n-2)}\right\rceil=\left\lceil\frac{n}{2}+\frac{1}{3}+\frac{2}{3(3 n-2)}\right\rceil=\left\lceil\frac{n+1}{2}\right\rceil
$$

In the following, we give a decomposition of $K_{n, n, n}$ into $\left\lceil\frac{n+1}{2}\right\rceil$ planar subgraphs of girth at least four to complete the proof. Let the vertex partition of $K_{n, n, n}$ be (U, V, W), where $U=\left\{u_{1}, \ldots, u_{n}\right\}, V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $W=\left\{w_{1}, \ldots, w_{n}\right\}$. In this proof, all the subscripts of vertices are taken modulo $2 p$.

Case 1. When $n=2 p(p \geq 1)$.
Let G_{1}, \ldots, G_{p+1} be the graphs whose edge set is empty and vertex set is the same as $V\left(K_{2 p, 2 p, 2 p}\right)$.
Step 1: For each $G_{i}(1 \leq i \leq p)$, arrange all the vertices $u_{1}, v_{3-2 i}, u_{2}, v_{4-2 i}$, $u_{3}, v_{5-2 i}, \ldots, u_{2 p}, v_{2 p-2 i+2}$ on a circle and join u_{j} to $v_{j+2-2 i}$ and $v_{j+1-2 i}, 1 \leq j \leq 2 p$. Then we get a cycle of length $4 p$, denote it by $G_{i}^{1}(1 \leq i \leq p)$.
Step 2: For each $G_{i}^{1}(1 \leq i \leq p)$, place the vertex $w_{2 i-1}$ inside the cycle and join it to $u_{1}, \ldots, u_{2 p}$, place the vertex $w_{2 i}$ outside the cycle and join it to $v_{1}, \ldots, v_{2 p}$. Then we get a planar graph $G_{i}^{2}(1 \leq i \leq p)$.
Step 3: For each $G_{i}^{2}(1 \leq i \leq p)$, place vertices $w_{2 j}$ for $1 \leq j \leq p$ and $j \neq i$, inside of the quadrilateral $w_{2 i-1} u_{2 i-1} v_{1} u_{2 i}$ and join each of them to vertices $u_{2 i-1}$ and $u_{2 i}$. Place vertices $w_{2 j-1}$, for $1 \leq j \leq p$ and $j \neq i$, inside of the quadrilateral $w_{2 i} v_{2 i-1} u_{k} v_{2 i}$, in which u_{k} is some vertex from U. Join each of them to vertices $v_{2 i-1}$ and $v_{2 i}$. Then we get a planar graph $\bar{G}_{i}(1 \leq i \leq p)$.
Step 4: For G_{p+1}, join $w_{2 i-1}$ to both $v_{2 i-1}$ and $v_{2 i}$, join $w_{2 i}$ to both $u_{2 i-1}$ and $u_{2 i}$, for $1 \leq i \leq p$, then we get a planar graph \bar{G}_{p+1}.

For $\bar{G}_{1} \cup \cdots \cup \bar{G}_{p+1}=K_{n, n, n}$, and the girth of $\bar{G}_{i}(1 \leq i \leq p+1)$ is at least four, we obtain a 4 -girth planar decomposition of $K_{2 p, 2 p, 2 p}$ with $p+1$ planar subgraphs. Figure 1 shows a 4 -girth planar decomposition of $K_{4,4,4}$ with three planar subgraphs.

Figure 1. A 4-girth planar decomposition of $K_{4,4,4}$

Case 2. When $n=2 p+1(p>1)$.
Base on the 4 -girth planar decomposition $\left\{\bar{G}_{1}, \cdots, \bar{G}_{p+1}\right\}$ of $K_{2 p, 2 p, 2 p}$, by adding vertices and edges to each $\bar{G}_{i}(1 \leq i \leq p+1)$ and some other modifications on it, we will get a 4 -girth planar decomposition of $K_{2 p+1,2 p+1,2 p+1}$ with $p+1$ subgraphs.
Step 1: (Add u to $\left.\bar{G}_{i}, 1 \leq i \leq p\right)$ For each $\bar{G}_{i}(1 \leq i \leq p)$, we notice that the order of the $p-1$ interior vertices $w_{2 j}, 1 \leq j \leq p$, and $j \neq i$ in the quadrilateral $w_{2 i-1} u_{2 i-1} v_{1} u_{2 i}$ of \bar{G}_{i} has no effect on the planarity of \bar{G}_{i}. We adjust the order of them, such that $w_{2 i-1} u_{2 i-1} w_{2 p-2 i+2} u_{2 i}$ is a face of a plane embedding of \bar{G}_{i}. Place the vertex u in this face and join it to both $w_{2 i-1}$ and $w_{2 p-2 i+2}$. We denote the planar graph we obtain by $\widehat{G}_{i}(1 \leq i \leq p)$.
Step 2: (Add v and w to \widehat{G}_{1}) Delete the edge $v_{1} u_{2}$ in \widehat{G}_{1}, put both v and w in the face $w_{k} u_{1} v_{1} w_{t} v_{2} u_{2}$ in which w_{k} is some vertex from $\left\{w_{2 j} \mid 1<j \leq p\right\}$ and w_{t} is some vertex from $\left\{w_{2 j-1} \mid 1<\underset{\sim}{j} \leq p\right\}$. Join v to w, join v to u_{1}, u_{2}, and join w to v_{1}, v_{2}, we get a planar graph \widetilde{G}_{1}.
Step 3: (Add v and w to $\left.\widehat{G}_{i}, 2 \leq i \leq p\right)$ For each $\widehat{G}_{i}(2 \leq i \leq p)$, place the vertex v in the face $w_{k} u_{2 i-1} v_{1} u_{2 i}$ in which w_{k} is some vertex from $\left\{w_{2 j} \mid 1 \leq\right.$ $j \leq p$ and $j \neq i\}$, and join it to $u_{2 i-1}$ and $u_{2 i}$. Place the vertex w in the face $w_{k} v_{2 i-1} u_{t} v_{2 i}$ in which w_{k} is some vertex from $\left\{w_{2 j-1} \mid 1 \leq j \leq p\right.$ and $\left.j \neq i\right\}$ and u_{t} is some vertex from U. Join w to both $v_{2 i-1}$ and $v_{2 i}$, we get a planar graph \widetilde{G}_{i} $(2 \leq i \leq p)$.
Step 4: (Add u, v and w to $\left.\bar{G}_{p+1}\right)$ We add u, v and w to \bar{G}_{p+1}. For $1 \leq i \leq 2 p$, join u to each v_{i}, join v to each w_{i}, join w to each u_{i}, join u to both v and w, and join v_{1} to u_{2}, then we get a planar graph \widetilde{G}_{p+1}. Figure 2 shows a plane embedding of \widetilde{G}_{p+1}.

For $\widetilde{G}_{1} \cup \cdots \cup \widetilde{G}_{p+1}=K_{n, n, n}$, and the girth of $\widetilde{G}_{i}(1 \leq i \leq p+1)$ is at least four, we obtain a 4 -girth planar decomposition of $K_{2 p+1,2 p+1,2 p+1}$ with $p+1$ planar subgraphs. Figure 3 shows a 4 -girth planar decomposition of $K_{5,5,5}$ with three planar subgraphs.

Case 3. When $n=3$, Figure 4 shows a 4 -girth planar decomposition of $K_{3,3,3}$ with two planar subgraphs.

Summarizing the above, the theorem is obtained.

Figure 2. The graph \widetilde{G}_{p+1}

(a) The graph \widetilde{G}_{1}

(b) The graph \widetilde{G}_{2}

(c) The graph \widetilde{G}_{3}

Figure 3. A 4-girth planar decomposition of $K_{5,5,5}$

3. THE 4-GIRTH-THICKNESS OF K_{10}

In [8], the author posed the question whether $\theta\left(4, K_{10}\right)=3$ or 4 , and conjectured that it is four. We disprove his conjecture by showing $\theta\left(4, K_{10}\right)=3$.

Theorem 3. The 4-girth-thickness of K_{10} is three.
Proof. From [8], we have $\theta\left(4, K_{10}\right) \geq 3$. We draw a 4 -girth planar decomposition of K_{10} with three planar subgraphs in Figure 5 , which shows $\theta\left(4, K_{10}\right) \leq 3$. The theorem follows.

Figure 4. A 4-girth planar decomposition of $K_{3,3,3}$

Figure 5. A 4-girth planar decomposition of K_{10}

We would like to state that after submitting this paper for review, we notice that there exist two results regarding the 4 -girth-thickness of $K_{2 p, 2 p, 2 p}$ and K_{10}. Rubio-Montiel [9] obtained the exact value of the 4-girth-thickness of the complete multipartite graph when each part has an even number of vertices. And by computer, Castañeda-López et al. [6] found the other two decompositions of K_{10} into three planar subgraphs of girth at least four. In this paper, we give these results in a constructive way.

References

[1] V.B. Alekseev and V.S. Gončhakov, The thickness of an arbitrary complete graph, Math. Sbornik., 30(2) (1976), 187-202.
[2] L.W. Beineke and F. Harary, The thickness of the complete graph, Canad. J. Math., 17 (1965), 850-859.
[3] L.W. Beineke, F. Harary and J.W. Moon, On the thickness of the complete bipartite graph, Proc. Cambridge Philos. Soc., 60 (1964), 1-5.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[5] Y.C. Chen and Y. Yang, The thickness of the complete multipartite graphs and the join of graphs, J. Combin. Optim., (2016), 34(1) (2017), 194-202.
[6] H. Castañeda-López, P.C. Palomino, A.B. Ramos-Tort, C. Rubio-Montiel, C. Silva-Ruíz, The 6-girth-thickness of the complete graph, ArXiv: 1709.07466.
[7] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory, 3 (1967), 10-15.
[8] C. Rubio-Montiel, The 4-girth-thickness of the complete graph, Ars Math.Contemp., 14(2) (2018), 319-327.
[9] C. Rubio-Montiel, The 4-girth-thickness of the complete multipartite graph, ArXiv: 1709.03932.
[10] W.T. Tutte, The thickness of a graph, Indag. Math., 25 (1963), 567-577.
[11] J.M. Vasak, The thickness of the complete graph, Notices Amer. Math. Soc., 23 (1976), A-479.
[12] Y. Yang, A note on the thickness of $K_{l, m, n}$, Ars Combin., 117 (2014), 349-351.
[13] Y. Yang, Remarks on the thickness of $K_{n, n, n}$, Ars Math.Contemp., 12(1) (2017), 135-144.
School of Mathematics, Tianjin University, 300072, Tianjin, China
E-mail address: guoxia@tju.edu.cn
School of Mathematics, Tianjin University, 300072, Tianjin, China
E-mail address: yanyang@tju.edu.cn (Corresponding author: Yan YANG)

[^0]: 2010 Mathematics Subject Classification. 05C10.
 Key words and phrases. thickness; 4-girth-thickness; complete tripartite graph.
 This work was supported by NNSF of China under Grant No. 11401430.

