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Abstract. We study the multiplicative nested sums, which are gener-
alizations of the harmonic sums, and provide a calculation through mul-
tiplication of index matrices. Special cases interpret the index matrices
as stochastic transition matrices of random walks on a finite number of
sites. Relations among multiplicative nested sums, which are generaliza-
tions of relations between harmonic series and multiple zeta functions,
can be easily derived from identities of the index matrices. Combina-
torial identities and their generalizations can also be derived from this
computation.

1. Introduction

The harmonic sums, defined by [BK99, eq. 4, p. 1]

(1.1) Si1,...,ik (N) :=
∑

N≥n1≥···≥nk≥1

sign (i1)
n1

n
|i1|
1

× · · · × sign (ik)nk

n
|ik|
k

,

and [DMH17, p. 168]

(1.2) Hi1,...,ik (N) :=
∑

N>n1>···>nk≥1

sign (i1)
n1

n
|i1|
1

× · · · × sign (ik)nk

n
|ik|
k

,

are naturally connected to zeta functions. For instance,

1. taking k = 1, i1 = x > 0 and N → ∞, in either (1.1) or (1.2), gives the

Riemann zeta-function ζ(x);

2. when i1, . . . , ik > 0 and N → ∞, (1.2) becomes the multiple zeta value

ζ(i1, . . . , ik).

Applications of harmonic sums appear in various areas, such as [A12, p. 1]

perturbative calculations of massless or massive single scale problems in

quantum field theory. Ablinger [A12, Chpt. 6] implemented the Mathematica

package HarmonicSums.m1, based on the recurrence [B04, eq. 2.1, p. 21] that

is inherited from the quasi-shuffle relations [H00, eq. 1, p. 51], for calculation

of harmonic sums.
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The current work here is to present an alternative calculation for, not

only harmonic sums, but also for the general sums defined as follows.

Definition 1.1. We consider the multiplicative nested sums (MNS): for

m,N ∈ N,

(1.3) S (f1, . . . , fk;N,m) :=
∑

N≥n1≥···≥nk≥m

f1 (n1) · · · fk (nk) ,

and

(1.4) A (f1, . . . , fk;N,m) :=
∑

N>n1>···>nk≥m

f1 (n1) · · · fk (nk) .

That is, the summand is multiplicative f (n1, . . . , nk) = f1 (n1) · · · fk (nk),

and the summation indices are nested. Here, for all l = 1, . . . , k, fl can be

any function defined on {m,m+ 1, . . . , N}, unless N = ∞ when conver-

gence needs to be taken into consideration.

Remark. If fl(x) = sign(il)
x/x|il| for l = 1, . . . , k, then (1.3) gives (1.1)

and (1.4) gives (1.2).

In Section 2, we present the main theorem, i.e., the calculation for MNS,

by associating to each function fl an index matrix and then considering

the multiplications. Since MNS are generalizations of harmonic sums, this

method naturally works for harmonic sums. Rather than recursively apply-

ing the quasi-shuffle relations in [A12], this matrix calculation is more direct

and also simultaneously calculate for multiple pairs of N and m. Properties

of the index matrix, such as inverse, identities, and eigenvalues, eigenvectors,

and diagonalization, follow after the main theorem.

Applications of this matrix calculation, presented in Section 3, connect

different fields. Originally, this idea was inspired by constructing random

walks for special harmonic sums. Different types of random walks appear in

and connect to various fields. For example, the coefficients connecting Euler

polynomials and generalized Euler polynomials [JMV14, eq. 3.8, p. 781]

appear in a random walk over a finite number of sites [JMV14, Note 4.8,

p. 787]. In Subsection 3.1, the special sum when f1 = · · · = fk = x−a for

a ≥ 1 is interpreted as the probability of a certain random walk, while the

index matrix is exactly the corresponding stochastic matrix.

Consider the limit case of harmonic sums (1.1) and (1.2), as N →
∞ and further assuming i1, . . . , ik > 0, i.e., S (1/xi1 , . . . , 1/xik ;∞, 1) and
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A (1/xi1 , . . . , 1/xik ;∞, 1). The relation between them are of great impor-

tance and interest. For instance, the fact

S

(
1

x2
,

1

x
;∞, 1

)
= 2A

(
1

x3
;∞, 1

)
= 2ζ (3)

has been well studied and rediscovered many times. Hoffman [H92, Thm. 2.1,

p. 277, Thm. 2.2, p. 278] obtained the symmetric summation expressions,

in terms of the Riemann zeta-function ζ, for both S(1/xi1 , . . . , 1/xik ;∞, 1)

and A(1/xi1 , . . . , 1/xik ;∞, 1). In particular, the direct relations, for k = 2

and k = 3, between S (1/xi1 , . . . , 1/xik ;∞, 1) and A (1/xi1 , . . . , 1/xik ;∞, 1)

(see [H92, p. 276] or (3.5) and (3.6) below) are also easy to obtain. In

Subsection 3.2, we provide the truncated and generalized version of these

relations, easily derived from the identities of the index matrices.

Finally, we focus on combinatorial identities, where harmonic sums also

appear. For instance, Dilcher [D95, Cor. 3, p. 93] established, for special

harmonic sum, the relation

(1.5) S1, . . . , 1︸ ︷︷ ︸
k

(N) =
N∑
l=1

(
N

l

)
(−1)l−1

lk
,

from q-series of divisor functions. In Subsection 3.3, we present examples

of combinatorial identities, including a generalization of (1.5). Here, those

identities are obtained by applying calculations and properties of the index

matrices. Therefore, all the examples can be viewed as alternative proofs.

2. Matrix representations and properties

In this section, we provide the matrix representations of MNS. The key

is to associate to each function fl an index matrix.

2.1. Index matrices and calculation for MNS.

Definition 2.1. Given a positive integer N and a function f on {1, . . . , N},
we define the following N ×N (lower triangular) index matrices :

(2.1) Sf :=


f (1) 0 0 · · · 0
f (2) f (2) 0 · · · 0

...
...

...
. . .

...
f (N) f (N) f (N) · · · f (N)
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and

(2.2) Af :=


0 0 0 · · · 0 0

f (1) 0 0 · · · 0 0
f (2) f (2) 0 · · · 0 0

...
...

...
. . .

...
...

f (N − 1) f (N − 1) f (N − 1) · · · f (N − 1) 0

 .

Remarks. 1. Shifting Sf downward by one row gives Af , i.e.,

(2.3) Af = (δi−1,j)N×N Sf , where δa,b =

{
1, if a = b;

0, otherwise.

For simplicity, we further denote ∆ := (δi−1,j)N×N so that Af = ∆Sf .

2. When the dimensions of index matrices need to be clarified, we use SN |f

and AN |f .

Through index matrices defined above, we could express MNS through

matrix multiplications, as follows.

Theorem 2.2. Let

P =


1 0 0 · · · 0
1 1 0 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1


N×N

.

Then, we have

(2.4) S (f1, . . . , fk;N,m) =

(
P ·

k∏
l=1

Sfl

)
N,m

,

(2.5) A (f1, . . . , fk;N,m) =

(
P ·

k∏
l=1

Afl

)
N,m

,

where Mi,j denotes the entry located at the ith row and jth column of a

matrix M.

Proof. Since the proof for A(f1, . . . , fk;N,m) is similar, we shall only prove

a stronger result for S(f1, . . . , fk;N,m), i.e., for integers 1 ≤ i, j ≤ N

S (f1, . . . , fk; i, j) =

(
P ·

k∏
l=1

Sfl

)
i,j

.

1. When k = 1, it is easy to see that (P · Sf1)i,j =
i∑

l=j

f1(l) = S (f1; i, j) .
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2. Suppose S (f1, . . . , fk; i, j) =

(
P ·

k∏
l=1

Sfl

)
i,j

. Then,

S (f1, . . . , fk+1; i, j) =

(
P ·

k+1∏
l=1

Sfl

)
i,j

=

((
P ·

k∏
l=1

Sfl

)
· Sfk+1

)
i,j

=
i∑

l=j

S (f1, . . . , fk; i, l) fk+1 (l)

=
i∑

l=j

fk+1 (l)
∑

i≥n1≥···≥nk≥l

f1 (n1) · · · fk (nk)

=
∑

i≥n1≥···≥nk≥l≥j

f1 (n1) · · · fk (nk) fk+1 (l)

= S (f1, . . . , fk+1; i, j) .

�

2.2. Properties of the index matrix S. Now, we study some properties

of the index matrix. To simplify expressions in this section, we denote

Sa :=


a1 0 0 · · · 0
a2 a2 0 · · · 0
...

...
...

. . .
...

aN aN aN · · · aN


and Aa := ∆Sa. In other words, we assume, in (2.1) and (2.2), f(l) = al for

all l = 1, . . . , N , so that we replace the lower index f by a. Next, we give

some properties of Sa.

Proposition 2.3. Assume all ai 6= 0.

1. The inverse of Sa is given by

S−1a =


1/a1 0 0 · · · 0 0
−1/a1 1/a2 0 · · · 0 0

0 −1/a2 1/a3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1/aN−1 1/aN

 .

2. We have the matrix identities

(2.6) S−1a SabS
−1
b = I−∆,

(2.7) Sa∆Sb∆Sc + Sab∆Sc + Sa∆Sbc + Sabc = SaSbSc.
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3. Sa has eigenvalues {a1, . . . , aN}. If all the aj’s are distinct, define Da =

(di,j)N×N and Ea := (ei,j)N×N by

di,j :=
ai
aN

N∏
k=i+1

(
1− ak

aj

)
and ei,j :=

aN
ai

N∏
k=j
k 6=i

1

1− ak
ai

,

if i ≥ j, and di,j = 0 = ei,j otherwise. It follows that (d1,j, . . . , dN,j)
T is an

eigenvector of Sa, with respect to aj, and D−1a = Ea, implying

(2.8) Sa = Da diag (a1, . . . , aN) Ea,

where diag (a1, . . . , aN) means the diagonal matrix with entries {a1, . . . , an}
on the diagonal.

Proof. We omit the straightforward computation and only sketch the idea

here.

1. The inverse can be easily computed.

2. Denote Ia := diag (1/a1, . . . , 1/aN) and ∆a = ∆Ia so that S−1a = Ia−∆a.

Since IaSab = Sb (but SabIb 6= Sa) and ∆aSab = Ab = ∆Sb, one easily

obtains

S−1a SabS
−1
b = (Ia −∆a) SabS

−1
b = SbS

−1
b −∆SbS

−1
b = I−∆.

Similarly, multiplying by S−1a from the left and by S−1c from the right on

(2.7), we obtain

∆Sb∆ + S−1a Sab∆ + ∆SbcS
−1
c + S−1a SabcS

−1
c = Sb,

which reduces to I−∆ = S−1b SbcS
−1
c , i.e., (2.6).

3. The eigenvalues are easy to see. To verify the eigenvectors, it is equivalent

to prove that for all i = j, . . . , N , we have

(2.9)
i∑

l=j

al
ai
aN

N∏
k=l+1

(
1− ak

aj

)
= aj

ai
aN

N∏
k=i+1

(
1− ak

aj

)
,

which can be directly computed by induction on i. The inverse D−1a = Ea

is equivalent to

(2.10) δij =
i∑

t=j

ai
at

(
N∏

k=i+1

(
1− ak

at

))
·

 N∏
k=j
k 6=t

1

1− ak
at

 ,

which reduces to

(2.11)
i∑

t=j

 i∏
k=j
k 6=t

1

at − ak

 = δi,j.
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Now, consider the partial fraction decomposition [Z05, eq. 1, p. 313]

1

(1− ajz) · · · (1− aiz)
=

i∑
t=j

1

1− atz

 i∏
k=j
k 6=t

at
at − al

 .

By multiplying both sides by z and then letting z → ∞, we obtain (2.11).

Thus, the proof is complete. �

Remark. The diagonalization leads to an easy computation of powers of

Sa, namely,

(2.12) (Sa)
k = Da diag

(
ak1, . . . , a

k
N

)
Ea.

3. Applications

Applications of the index matrix (2.1) and matrix expressions of MNS

(2.4) appear in different areas. We shall study related topics in random

walks, relations of harmonic series and multiple zeta values, and combina-

torial identities, where one could see:

1. some index matrices are stochastic transition matrices of random walks;

2. identities of index matrices directly lead to relations among MNS, which

are generalizations of that between harmonic series and multiple zeta values;

3. some combinatorial identities can be proven and generalized through

matrix representations of MNS.

3.1. Random walks. In this subsection, we let fl (x) ≡ Ha (x) := 1/xa for

l = 1, . . . , k, where a ≥ 1. Assume a = 1, then we have

(3.1) SH1 =


1 0 0 · · · 0
1
2

1
2

0 · · · 0
...

...
...

. . .
...

1
N

1
N

1
N
· · · 1

N

 .

Now, label N sites as follows:

•
1
•
2
•
3
· · · •

N−1
•
N

and consider a random walk starting from site “N”, with the rules:

• one can only jump to sites that are NOT to the right of the current

site, with equal probabilities;

• steps are independent.

Let P (i→ j) denote the probability from site “i” to site “j”. For example,

suppose we are at site “6”:

•
1
•
2
•
3
•
4
•
5

here•
6
•
7
•
8
. . . •

N
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then, the next step only allows to walk to sites {1, 2, 3, 4, 5, 6}, with proba-

bilities:

P (6→ 6) = · · · = P (6→ 1) =
1

6
.

Therefore, a typical walk is as follows:

STEP 1: walk from “N” to some site “n1 (≤ N)”, with P (N → n1) = 1
N

;

STEP 2: walk from “n1” to “n2 (≤ n1)”, with P (n1 → n2) = 1
n1

;

· · · · · ·
STEP k + 1: walk nk 7→ nk+1 (≤ nk), with P (nk → nk+1) = 1

nk
.

We consider the event that after k + 1 steps, we arrive the site “m”, i.e.,

P (nk+1 = m). Since the steps are independent,

(3.2)

P (nk+1 = m) =
∑

N≥n1≥···≥nk≥m

1

Nn1 · · ·nk

=
1

N
S

H1, . . . , H1︸ ︷︷ ︸
k

;N,m

 .

Meanwhile, the stochastic transition matrix is exactly given by SH1 , namely,

SH1 = (P (i→ j))N×N . Thus,

(3.3)
(

(SH1)
k+1
)
N,m

= P (nk+1 = m) =
1

N
S

H1, . . . , H1︸ ︷︷ ︸
k

;N,m

 ,

which is a probabilistic interpretation of (2.4) with the slight difference that

P in (2.4) is replaced by SH1 .

As a result, this probabilistic interpretation of harmonic sums easily leads

to the following limit.

Proposition 3.1.

lim
k→∞

S(H1, H1, . . . , H1︸ ︷︷ ︸
k

;N, 1) = lim
k→∞

∑
N≥n1≥···≥nk≥1

1

n1 · · ·nk

= N.

Proof. From (3.2), we see that

S(H1, H1, . . . , H1︸ ︷︷ ︸
k

;N, 1) = N · P (nk+1 = 1) .

Evidently, for a random walk among finite number of sites, the probability

that it reaches the sink, i.e., eventually, this walk ends, is 1. More precisely,

for each site l = 2, . . . , N , the probability for the walk not moving to site 1

is

1− 1

l
≤ 1− 1

N
.

Thus,

P (nk+1 6= 1) ≤
(

1− 1

N

)k+1

→ 0 as k →∞.
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In other words,

lim
k→∞

P (nk+1 = 1) = 1,

which completes the proof. �

Remark. When a > 1, we could also form a similar random walk by

• adding another sink “R”, to the right of “N”, with P (R→ n) = δR,n

for n ∈ {1, . . . , N,R};
• defining for l = 1, 2, . . . , N ,

P (l→ j) =


0, if l < j ≤ N ;
1
la
, if 1 ≤ j ≤ l;

1− 1
la−1 , if j = R.

Now for the stochastic transition matrix,(
Sa ∗
∗ 1

)
⇒
(

Sa ∗
∗ 1

)k+1

=

(
Sk+1
a ∗
∗ 1

)
A similar calculation for P (nk+1 = 1) shows that

(3.4) S

Ha, . . . , Ha︸ ︷︷ ︸
k

;N,m

 = Na
(

(SHa)k+1
)
N,m

.

The analogue of Prop. 3.1 fails, due to more than one sink, i.e.,

lim
k→∞

P(nk+1 = 1) < 1.

3.2. Relations between S and A. Now, we consider the relations between

the harmonic series S (1/xi1 , . . . , 1/xik ;∞, 1) and the multiple zeta values

A (1/xi1 , . . . , 1/xik ;∞, 1). For example, when k = 2, we have

(3.5) S

(
1

xi1
,

1

xi2
;∞, 1

)
= A

(
1

xi1
,

1

xi2
;∞, 1

)
+ A

(
1

xi1+i2
;∞, 1

)
;

and when k = 3,

S

(
1

xi1
,

1

xi2
,

1

xi3
;∞, 1

)
=A

(
1

xi1
,

1

xi2
,

1

xi3
;∞, 1

)
+ A

(
1

xi1+i2
,

1

xi3
;∞, 1

)
+ A

(
1

xi1
,

1

xi2+i3
;∞, 1

)
+ A

(
1

xi1+i2+i3
;∞, 1

)
.(3.6)

Both the identities above can be found, e.g., in [H92, p. 276]. Next, we

will establish the truncated and generalized versions of (3.5) and (3.6), in

the sense that we truncate the series (from both above and below) into

sums, which at the same time allows flexibility for general summands, not

restricted to negative powers.
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Theorem 3.2. For positive integers N and m with N > m, we have

(3.7) S (f, g;N − 1,m) = A (f, g;N,m) + A (fg;N,m)

and

(3.8)
S (f, g, h;N − 1,m) =A (f, g, h;N,m) + A (fg, h;N,m)

+ A (f, gh;N,m) + A (fgh;N,m) .

Proof. By Theorem 2.2, the right-hand side of (3.7) is given by

(PAfAg)N,m + (PAfg)N,m = (P∆ (Sf∆Sg + Sfg))N,m .

From (2.6), we see that

I−∆ = (Sf )−1 Sfg (Sg)
−1 ⇔ Sf∆Sg + Sfg = SfSg.

Noticing the different dimensions, an easy observation shows that(
PN∆NSN |fSN |g

)
N,m

=
(
PN−1SN−1|fSN−1|g

)
N−1,m = S (f, g;N − 1,m) .

Similarly, (2.7) implies (3.8), by the replacement (a, b, c) 7→ (f, g, h). �

3.3. Combinatorial identities. The matrix computations in Section 2,

especially the diagonalization for computing a matrix power, lead to alter-

native proofs for some combinatorial identities and their generalizations.

Example 3.3. Butler and Karasik [BK10, Thm. 4, p. 7] showed that if

G (n, k) satisfies G (n, n) = 1, G (n,−k) = 0 and for k ≥ 1,

G (n, k) = G (n− 1, k − 1) + akG (n− 1, k) ,

then

S

a, . . . , a︸ ︷︷ ︸
k

, N, 1

 :=
∑

N≥n1≥···≥nk≥1

an1 · · · ank
= G (N + k,N) ,

based on a proof related to Stirling numbers of the second kind. Here, we

provide an alternative proof without using Stirling numbers, as follows.

1. When k = 1, an induction on N shows directly that∑
N≥n1≥1

an1 = aNG (N,N) +G (N,N − 1) = G (N + 1, N) .

2. For the inductive step in k, similarly to (3.4), we see, by recurrence,

S

a, . . . , a︸ ︷︷ ︸
k

, N, 1

 = aN

(
k∏

l=1

Sa

)
N,1

= aN

(
Sa

(
k−1∏
l=1

Sa

))
N,1

=
1

aN

N∑
m=1

aN · amG (m+ k − 1,m)

= G (N + k,N) .
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Example 3.4. Suppose the (am)Nm=1 are all distinct. An alternative expres-

sion of the previous example can be obtained by diagonalization.

S

a, . . . , a︸ ︷︷ ︸
k

, N, 1

 =
1

aN

(
DHa diag

{
ak+1
1 , . . . , ak+1

N

}
EHa

)
N,1

=
1

aN

N∑
j=1

ak+1
j

aN
aj

N∏
m=1
m 6=j

1

1− am
aj


=

N∑
j=1

 N∏
m=1
m 6=j

1

1− am
aj

 akj .

This recovers a general result [Z05, eq. 2, p. 313], which, when we take

aj = (a − bqj+i−1)/(c − zqj+i−1) and N = n − i + 1, “turns out to be

a common source of several q-identities” [Z05, p. 314]. The special case

am = ma yields

(3.9) Sa, . . . , a︸ ︷︷ ︸
k

(N) =
N∑
l=1

 N∏
n=1
n 6=l

na

na − la

 1

lak
,

which gives (1.5) when a = 1.

Remark. When a = m ∈ Z and m > 1, consider the factorization

nm − lm = (n− l) (n− ξml) · · ·
(
n− ξm−1m l

)
,

where ξm := exp (2πi/m), and i2 = −1. We could obtain the following

binomial-type expression

Sa, . . . , a︸ ︷︷ ︸
k

(N) =
N∑
l=1

(
m−1∏
t=0

(
N

ξtml

)
π (1− ξtm) l

sin (πξtml)

)
1

lmk
,

which is similar to (1.5) and the usual binomial coefficient is generalized as(
x
y

)
:= Γ (x+ 1) / (Γ (x+ 1) Γ (x− y + 1)).
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