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Abstract Panel count data occur in many clinical and observational stud-

ies, and in many situations, the observation process may be informative

and also there may exist a terminal event such as death which stops the

follow-up. In this article, we propose a new joint model for the analysis of

panel count data in the presence of both informative observation process

and a dependent terminal event via two latent variables. For the inference

on the proposed model, a class of estimating equations is developed and the

resulting estimators are shown to be consistent and asymptotically normal.

In addition, a lack-of-fit test is provided for assessing the adequacy of the

model. Simulation studies suggest that the proposed approach works well

for practical situations. Also an illustrative example from a bladder cancer

clinical trial is used to illustrate the methods.
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1 Introduction

Panel count data usually occur in longitudinal follow-up studies that concern occurrence

rates of certain recurrent events. This kind of data usually arise from event history studies

that concern some recurrent events and in which subjects are monitored or observed only

at discrete time points instead of continuously. The fields in which one often sees such data

include demographical and epidemiological studies, medical researches, reliability experi-

ments, tumorgenicity experiments and sociological studies (Kalbfleisch and Lawless, 1985;

Thall and Lachin, 1988; Sun, 2006).

Many authors have investigated the analysis of panel count data. For example, Sun

and Kalbfleisch (1995) considered the estimation of the mean function of the underlying

point process that yields panel count data. Balakrishnan and Zhao (2009, 2010, 2011),

Park, et al. (2007), Sun and Fang (2003) and Zhao and Sun (2011) presented some non-

parametric test procedures for the comparison of the mean functions of counting processes

based on panel count data. Hu et al. (2003) and Sun and Wei (2000) developed some

estimating equation-based methods for regression analysis of panel count data. Wellner

and Zhang(2007) and Zhang (2002) also discussed regression analysis of panel count data

and gave some likelihood-based approaches. Furthermore, Huang et al. (2006) and Sun et

al. (2007) considered regression analysis of panel count data with dependent observation

times. Li et al. (2010) proposed a class of semiparametric transformation models for panel

count data with dependent observation process. Zhang, et al. (2013) presented a robust

joint model for multivariate panel count data via latent variables. Tong, et al. (2009)

and Zhang, et al. (2013) considered the variable selection issues on panel count data. A

relatively complete references on panel count data can be found in Sun and Zhao (2013).

Most of the existing methods for panel count data assume that there is no terminal

event and the observation process is independent of the underlying recurrent event process

unconditionally or conditional on the covariates. In many situations, however, the follow-up

of the study subjects could be stopped by a terminal event, such as death, which precludes

2



further recurrent events. For example, in a tumourigenicity study, tumours would not

develop after death. Furthermore, it is often the case that the terminal event is strongly

correlated with the recurrent events of interest as well as the observation process. In the

presence of terminal events, there exists considerable work on the analysis of recurrent event

data and longitudinal data analysis, and two approaches are commonly adopted. One is

the marginal model approach (Cook and Lawless, 1997; Ghosh and Lin, 2002; Zhao, et

al., 2011), and the other is the frailty model approach (Huang and Wang, 2004; Liu et al.,

2004; Ye et al. 2007; Zeng and Cai, 2010, Sun, et al., 2012). However, the problem is much

harder for panel count data. To deal with these problems, we propose a new joint model for

the analysis of panel count data in the presence of both informative observation times and

a dependent terminal event via two latent variables. The association among the recurrent

event process, the observation times, and the terminal event is modeled nonparametrically.

The proposed joint model is flexible and robust in that the distributions of the latent

variables and the dependence structures are left unspecified.

The rest of this paper is organized as follows. In Section 2, we introduce some notation

and describe the proposed models that will be used throughout the paper. Specifically,

we will describe the joint model of the recurrent event process, the observation times,

and the terminal event through two latent variables. In Section 3, an estimating equation

approach is developed for the estimation of the regression parameters. Also we establish

the asymptotic properties of the proposed estimates. In Section 4, we develop a technique

for checking the adequacy of the proposed model. Section 5 reports some results from

simulation studies conducted for evaluating the proposed methods. In Section 6, we apply

our proposed method to a bladder cancer study and some concluding remarks are provided

in Section 7. Details of the proof are give in the Appendix.
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2 Notation and Models

Consider a recurrent event study and let N(t) denote the number of the occurrences of the

recurrent event of interest up to time t, 0 ≤ t ≤ τ , where τ is a known constant representing

the end of study. For each subject, suppose that a d× 1 vector of covariates X is observed

and let D be the time of the terminal event, such as death, and C be the censoring time.

Define T = C∧D and δ = I(D ≤ C), where a∧b = min(a, b), I(·) is the indicator function.

Let u and v be two latent variables which are independent of X. For any time t, suppose

that given (u, v,X) and D ≥ t, the mean function of N(t) has the form,

E{N(t)|X,D ≥ t, u, v} = µN(t;u) exp(X
′β0), (1)

where µN(t;u) is an unknown baseline mean function, and β0 is a vector of unknown

regression parameters.

Let H(t) denote the observation process, and assume that H(t) is independent of N(t)

conditional on (u, v,X) and D ≥ t, and follows the rate model,

E{dH(t)|X,D ≥ t, u, v} = exp(X ′γ0)dµH(t; v), (2)

where γ0 is a vector of unknown regression parameters, and µH(t; v) is an unknown baseline

mean function with µH(0; v) = 0. The recurrent event and observation processe are related

to the terminal event through latent variables u and v, respectively. The condition D ≥ t

is used because it is of interest in many studies to make inference for subjects who are

currently alive (Ye et al., 2007; Zeng and Cai, 2010; Zhao et al., 2011).

For the terminal event, we assume that it follows the Cox model,

log Λ0(D) = −X ′η0 + ϵ, (3)

where η0 is a vector of unknown regression parameters, Λ0(t) is an unspecified baseline

cumulative hazard function, and ϵ is a random error with extreme-value distribution. In

the following, the joint distribution of u, v and ϵ will be left unspecified. Hence the joint
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model (1), (2) and (3) are extensive since µN(t;u) and µH(t; v) are both nonparametric

and depend on latent random variables which are associated with the terminal event via

ϵ in an arbitrary way. In what follows, we assume that given X, the censoring time C is

independent of {u, v,D,N(·), H(·)}. For a sample of n subjects, the observed data consist

of {Ni(t)dHi(t), Ti, δi, Xi, Hi(t), 0 ≤ t ≤ Ti, i = 1, · · · , n}.

3 Inference Procedure

Now we discuss the estimation of the parameters β0 and γ0. For this, note that D can

be censored and the latent variables u and v are unobservable and thus it is impossible to

make inference for the parameters of interest directly. To overcome this problem, we first

consider the observed mean function given the observed endpoint T , in which the resulting

nonparametric component depends on latent variables. Then we will derive an expression of

the nonparametric component which can be estimated using the observed data for given β

and γ. Then the resulting estimator makes the latent variables disappear. The details are as

follows: Let A0(t;u, v) =
∫ t

0
µN(z;u)dµH(z; v) and define dR(t, s) = E{dA0(t;u, v)|ϵ ≥ s}.

Following the assumption that (u, v, ϵ) is independent of (X,C), we obtain that

E{N(t)dH(t)|X,T ≥ t} = exp{X ′(β0 + γ0)}dR(t, log Λ0(t) +X ′η0), (4)

and

dR(t, s) =
E[N(t)dH(t)I{log Λ0(T ) +X ′η0 ≥ s ≥ log Λ0(t) +X ′η0}]

E[exp{X ′(β0 + γ0)}I{log Λ0(T ) +X ′η0 ≥ s ≥ log Λ0(t) +X ′η0}]
. (5)

So log Λ0(T ) +X ′η0 ≥ s ≥ log Λ0(t) +X ′η0 implies T ≥ t. The derivation of (4) and (5) is

given in the Appendix.

To obtain an estimate of dR(t, s), we have to give the estimates of η0 and Λ0(t) from

model (3). According to Fleming and Harrington (1991), we can get the maximum partial
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likelihood estimator η̂ and the Breslow estimator Λ̂0(t). Then given β and γ, we have

dR̂(t, s; β, γ) =

n∑
i=1

Ni(t)dHi(t)I{log Λ̂0(Ti) +X ′
iη̂ ≥ s ≥ log Λ̂0(t) +X ′

iη̂}
n∑

j=1

exp{X ′
j(β + γ)}I{log Λ̂0(Tj) +X ′

j η̂ ≥ s ≥ log Λ̂0(t) +X ′
j η̂}

.

For given γ, to estimate β0, motivated by (4) and the generalized estimating equation

approach (Liang and Zeger, 1986), we propose the following estimating function for β0,

U(β; γ) =
n∑

i=1

∫ τ

0

W (t){Xi − X̄i(t; β, γ)}∆i(t)
[
Ni(t)dHi(t)− exp{X ′

i(β + γ)}

×

n∑
j=1

Nj(t)dHj(t)Φ̂j(t,Xi)

n∑
j=1

exp{X ′
j(β + γ)}Φ̂j(t,Xi)

]
, (6)

where ∆i(t) = I(Ti ≥ t), W (t) is a possibly data-dependent weight function,

Φ̂j(t,Xi) = I{log Λ̂0(Tj) +X ′
j η̂ ≥ log Λ̂0(t) +X ′

iη̂ ≥ log Λ̂0(t) +X ′
j η̂},

X̄i(t; β, γ) =

n∑
j=1

Xj exp{X ′
j(β + γ)}Φ̂j(t,Xi)

n∑
j=1

exp{X ′
j(β + γ)}Φ̂j(t,Xi)

.

Of course in reality, γ0 is unknown. From Zeng and Cai (2010), we propose the following

estimating equation for γ0,

Ũ(γ) =
n∑

i=1

∫ τ

0

Q(t){Xi − X̄∗
i (t; γ)}∆i(t){dHi(t)− exp(X ′

iγ)dH̄i(t; γ)} = 0, (7)

where Q(t) is a possibly data-dependent weight function, and

X̄∗
i (t; γ) =

n∑
j=1

Xj exp(X
′
jγ)Φ̂j(t,Xi)

n∑
j=1

exp(X ′
jγ)Φ̂j(t,Xi)

,

dH̄i(t; γ) =

n∑
j=1

dHj(t)Φ̂j(t,Xi)

n∑
j=1

exp(X ′
jγ)Φ̂j(t,Xi)

.
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Denote γ̂ as the solution to estimating equation (7), and β̂ as the solution to U(β; γ̂) = 0.

According to the law of large numbers and the consistency of η̂ and Λ̂0(t), we can obtain

that β̂ and γ̂ are consistent. The following theorem presents the asymptotic normality of

β̂ and γ̂, and the proof details are given in the Appendix.

Theorem 1. Assume that the regularity conditions C.1-C.3 stated in the Appendix hold,

then n1/2(β̂−β0) and n1/2(γ̂−γ0) have an asymptotic multivariate normal distribution with

mean zero and covariance matrix A−1Σ(A−1)′, where A and Σ are defined in the Appendix.

We need to estimate the asymptotic covariance of β̂ and γ̂. First, A can be consistently

estimated by Â, where

Â = −n−1

∂U(β̂; γ̂)/∂β ∂U(β̂; γ̂)/∂γ

0 ∂Ũ(γ̂)/∂γ

 .

Our next goal is to estimate Σ, but Σ is complicated and involves the Hadamard deriva-

tives of dM̄0(t,X; η,Λ) and dH̄0(t,X; η,Λ) with respect to Λ, thus direct estimation of Σ

is not feasible. Here dM̄0(t,X; η,Λ) and dH̄0(t,X; η,Λ) are defined in the Appendix. To

deal with this problem, we propose the following Monte Carlo method: from the proof

of Theorem 1, we know that the variation of U(β0; γ0) comes from dMi(t) − exp{X ′
i(β0 +

γ0)}dM̄(t,Xi; η̂, Λ̂0), the empirical summation in the numerator and denominator of M̄(t,Xi; η̂, Λ̂0)

and the plug-in estimator (η̂, Λ̂0). Here dMi(t) and dM̄(t,X; η,Λ) are defined in the Ap-

pendix. We will use resampling approach to capture all this variation. We generate n

independent and identically distributed random variables Z1, · · · ,Zn from the standard

normal distribution. Then the three sources of variation of U(β0; γ0) can be expressed by

the following functions of Z1, · · · ,Zn,

Ω∗
1 =

n∑
i=1

Zi

∫ τ

0

W (t){Xi − X̄i(t; β̂, γ̂)}∆i(t)
[
Ni(t)dHi(t)− exp{X ′

i(β̂ + γ̂)}

×

n∑
j=1

Nj(t)dHj(t)Φ̂j(t,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(t,Xi)

]
,
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Ω∗
2 =

n∑
i=1

∫ τ

0

W (t){Xi − X̄i(t; β̂, γ̂)}∆i(t) exp{X ′
i(β̂ + γ̂)}

[
−

n∑
j=1

ZjNj(t)dHj(t)Φ̂j(t,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(t,Xi)

+

n∑
j=1

Nj(t)dHj(t)Φ̂j(t,Xi)

[
n∑

j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(t,Xi)]2

n∑
j=1

Zj exp{X ′
j(β̂ + γ̂)}Φ̂j(t,Xi)

]
.

Define

η̂∗ = η̂ + Ω̂−1n−1

n∑
i=1

Zi

∫ τ

0

{Xi − X̄D(t, η̂)}dM̂D
i (t),

and

Λ̂∗
0(t) = Λ̂0(t) + n−1

n∑
i=1

Zi

∫ t

0

dM̂D
i (z)

S(0)(z, η̂)
−
∫ t

0

X̄D(z, η̂)′dΛ̂0(z)(η̂
∗ − η̂),

where HD
i (t) = I(Ti ≤ t, δi = 1), M̂D

i (t) = HD
i (t) −

∫ t

0
∆i(z) exp(X

′
iη̂)dΛ̂0(z), S

(0)(t, η) =

n−1
∑n

i=1∆i(t) exp(X
′
iη), S

(1)(t, η) = n−1
∑n

i=1∆i(t)Xi exp(X
′
iη), X̄

D(t, η̂) = S(1)(t, η̂)/S(0)(t, η̂),

S(2)(t, η) = n−1
∑n

i=1∆i(t)X
⊗2
i exp(X ′

iη), Ω̂ = n−1
∑n

i=1

∫ τ

0
[S

(2)(t,η̂)

S(0)(t,η̂)
− {S(1)(t,η̂)

S(0)(t,η̂)
}⊗2]dHD

i (t),

and for a vector a, a⊗2 = aa′. Furthermore, the pure variation due to (η̂, Λ̂0) is characterized

by

Ω∗
3 =

n∑
i=1

∫ τ

0

W (t){Xi − X̄i(t; β̂, γ̂)}∆i(t) exp{X ′
i(β̂ + γ̂)}

×


n∑

j=1

Nj(t)dHj(t)Φ̂j(t,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(t,Xi)

−

n∑
j=1

Nj(t)dHj(t)Φ̂
∗
j(t,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂∗

j(t,Xi)

 ,

where Φ̂∗
j(t,Xi) is defined the same way as Φ̂j(t,Xi) except that (η̂, Λ̂0) is replaced with

(η̂∗, Λ̂∗
0). In a similar way, the variation of Ũ(γ0) comes from dHi(t)− exp(X ′

iγ0)dH̄i(t; γ0),

the empirical summations in the numerator and denominator of H̄i(t; γ0) and (η̂, Λ̂0). Sim-

ilarly, the variation of Ũ(γ0) can be characterized by the following three terms,

Ω∗
4 =

n∑
i=1

Zi

∫ τ

0

Q(t){Xi − X̄∗
i (t; γ̂)}∆i(t){dHi(t)− exp(X ′

iγ̂)dH̄i(t; γ̂)},
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Ω∗
5 =

n∑
i=1

∫ τ

0

Q(t){Xi − X̄∗
i (t; γ̂)}∆i(t) exp(X

′
iγ̂)

[
−

n∑
j=1

ZjdHj(t)Φ̂j(t,Xi)

n∑
j=1

exp(X ′
j γ̂)Φ̂j(t,Xi)

+

n∑
j=1

dHj(t)Φ̂j(t,Xi)

[
n∑

j=1

exp(X ′
j γ̂)Φ̂j(t,Xi)]2

n∑
j=1

Zj exp(X
′
j γ̂)Φ̂j(t,Xi)

]
,

and

Ω∗
6 =

n∑
i=1

∫ τ

0

Q(t){Xi − X̄∗
i (t; γ̂)}∆i(t) exp(X

′
iγ̂)[dH̄i(t; γ̂)− dH̄∗

i (t; γ̂)],

where H̄∗
i (t; γ̂) is defined the same way as H̄i(t; γ̂) except that (η̂, Λ̂0) is replaced with

(η̂∗, Λ̂∗
0). Define Υ̂ = (Υ̂′

1, Υ̂
′
2)

′, where Υ̂1 = n−1/2(Ω∗
1 + Ω∗

2 + Ω∗
3) and Υ̂2 = n−1/2(Ω∗

4 +

Ω∗
5 + Ω∗

6). Given the observed data {Ni(t)dHi(t), Ti, δi, Xi, Hi(t)}, we can estimate Σ by

the empirical covariance matrix of Υ̂ with the help of repeating generation of the random

samples (Z1, · · · ,Zn). The following theorem justifies the Monte Carlo method. The proof

is given in the Appendix.

Theorem 2. Let EZ denotes the conditional expectation with respect to Z1, · · · ,Zn giv-

en the observed data. Then EZ(Υ̂
⊗2)

P−→ Σ, where
P−→ denotes convergence in probability.

4 Model Diagnostics

In this section, we will propose some graphical and numerical procedures for checking the

adequacy of model (1). Following Lin et al. (2000), we propose the following cumulative

sums of residual,

F(t, x) = n−1/2

n∑
i=1

∫ t

0

I(Xi ≤ x)dM̂∗
i (z), (8)
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where I(Xi ≤ x) means that each of the components of Xi is no larger than the correspond-

ing component of x, and

dM̂∗
i (t) = ∆i(t)

[
Ni(t)dHi(t)− exp{X ′

i(β̂ + γ̂)} ×

n∑
j=1

Nj(t)dHj(t)Φ̂j(t,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(t,Xi)

]
.

Here the null hypothesis H0 is defined as the correct specification of model (1). Similarly

to U(β0; γ0), the variation of F(t, x) can be characterized by the following three terms:

Ω∗
7(t, x) =

n∑
i=1

Zi

∫ t

0

I(Xi ≤ x)∆i(z)
[
Ni(z)dHi(z)− exp{X ′

i(β̂ + γ̂)}

×

n∑
j=1

Nj(z)dHj(z)Φ̂j(z,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(z,Xi)

]
.

Ω∗
8(t, x) =

n∑
i=1

∫ t

0

I(Xi ≤ x)∆i(z) exp{X ′
i(β̂ + γ̂)}

[
−

n∑
j=1

ZjNj(z)dHj(z)Φ̂j(z,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(z,Xi)

+

n∑
j=1

Nj(z)dHj(z)Φ̂j(z,Xi)

[
n∑

j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(z,Xi)]2

n∑
j=1

Zj exp{X ′
j(β̂ + γ̂)}Φ̂j(z,Xi)

]
.

Ω∗
9(t, x) =

n∑
i=1

∫ t

0

I(Xi ≤ x)∆i(z) exp{X ′
i(β̂ + γ̂)}

[ n∑
j=1

Nj(z)dHj(z)Φ̂j(z,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(z,Xi)

−

n∑
j=1

Nj(z)dHj(z)Φ̂
∗
j(z,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂∗

j(z,Xi)

]
.
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Define

Γ̂1(t, x) = n−1

n∑
i=1

∫ t

0

I(Xi ≤ x)△i (z){Xi − X̄i(z; β̂, γ̂)} exp{X ′
i(β̂ + γ̂)}

×

n∑
j=1

Nj(z)dHj(z)Φ̂j(z,Xi)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φ̂j(z,Xi)

,

and Γ̂(t, x) = (Γ̂1(t, x)
′, Γ̂1(t, x)

′)′. Then the null distribution of F(t, x) can be obtained

from the following theorem with the proof presented in the Appendix.

Theorem 3. Suppose that the conditions in Theorem 1 hold, then under H0, the null

distribution of F(t, x) can be approximated by the following zero-mean Gaussian process,

F̂(t, x) = n−1/2{Ω∗
7(t, x) + Ω∗

8(t, x) + Ω∗
9(t, x)− Γ̂(t, x)′Â−1Υ̂}. (9)

Based on Theorem 3, it is easy to see that we can obtain a large number of realiza-

tion of F(t, x) by repeatedly generating the standard normal random sample (Z1, · · · ,Zn)

while fixing the observed data. To assess the adequacy of model (1), we can plot these

realizations of F̂(t, x) along with the observed F(t, x) and examine any unusual pattern

of F̂(t, x) compared with the F(t, x). More formally, we can apply the supremum test

statistic supt,x |F(t, x)| to conduct the lack-of-fit test, where the p-value can be obtained

by comparing the observed value of supt,x |F(t, x)| to a large number of realization from

supt,x |F̂(t, x)|.

5 A Simulation Study

In this section we will present some results from an extensive simulation study. In the s-

tudy, the covariate Xi was generated from a Bernoulli distribution with success probability

0.5. The terminal event time was generated through log(Di/4) = −0.5Xi+ ϵi, where ϵi was

generated from the extreme-value distribution. And the censoring time Ci was taken as

min(C∗
i , τ), where C∗

i followed a uniform distribution over (2,10) and τ = 6, which yielded
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23% censoring for the terminal event. Let ui = exp(ϕ1ϵi/5), vi = ρi exp(−ϕ2ϵi/5) where

ϕ1=−1, 0 or 1, ϕ2=−1, 0 or 1, and ρi followed a uniform distribution over (0.5, 1.5). Given

Xi, ui, vi and Ti = min(Ci, Di), we generated the observation process from a nonhomoge-

neous Poisson process with intensity function

λi(t) = vi exp(γ0Xi)I(Ti ≥ t).

The average number of observations per subject is about 3.

The recurrent event process Ni(t) was generated from a Poisson process N∗
i (t) with the

following intensity function:

λ∗
i (t|Xi, ui, vi, ωi) = ωiui exp(β0Xi),

where ωi was an independent gamma random variable with mean 1 and variance σ2. Specif-

ically, let (ti,1, · · · , ti,Ki
) be the observation times for the ith subject, then Ni(ti,j), j =

1, · · · , Ki were generated piecewisely by generating Ni(ti,j)−Ni(ti,j−1) from a Poisson dis-

tribution with the mean functions ωi(ti,j − ti,j−1)ui exp(β0Xi), where ti,0 was set to be 0.

It is easy to verify that Ni(t) = N∗
i (t ∧ D) and Ni(t) satisfies (1). Note that ϕ1 and ϕ2

reflected the dependence among the recurrent event process, the observation times and the

terminal event. For example, ϕ1 = 0 and ϕ2 = 0 implied that the recurrent event process,

the observation times and the terminal event were independent, while ϕ1 ̸= 0 and ϕ2 ̸= 0

reflected that the three processes were related with each other. In the simulation study,

we set β0 = 0.5 and −0.5, γ0 = 0.5, W (t) = Q(t) = 1. We found that 100 resamplings is

enough for the variance estimation. All the results reported below were computed based

on 1000 replications with sample sizes n = 100 and n = 200.

Tables 1 and 2 report the simulation results on the estimates for β0 and γ0, where

include the bias (BIAS) given by the difference of sample means of estimator and the true

value, the sampling standard errors (SSE), the sampling means of the estimated standard

errors(SEE), and the 95% empirical coverage probabilities(CP). It can be seen from the

table that the estimators seem to be unbiased and the proposed variance estimation seems

12



to work well. Also the coverage probabilities are reasonable and consistent with the normal

levels.

For comparison, we also considered the original method of Sun and Wei (2000) (denoted

by SW). Here we generated the data in the same way as before except that we consider

the parameter η = 0 and 0.5. Hence, when η = 0 and (ϕ1, ϕ2) = (0, 0), the model of

Sun and Wei (2000) was satisfied. However, it is easy to find that the SW estimator is

consistent when η = 0, whatever values of (ϕ1, ϕ2). Table 3 gives the comparison results for

estimation of β0, As expected, the SW’s method yielded consistent estimators when η = 0,

with smaller bias and larger variance. However, when η = 0.5, for which the model of SW

was violated, the SW’s method results in biased estimates. Thus, the proposed method

seems to be much more efficient and reliable than the SW method.

6 An Application

In this section, we applied the proposed methods to the bladder cancer data that have been

discussed by Sun and Wei (2000) among others. This study was conducted by the Veterans

Administration Cooperative Urological Research Group. The patients were randomly as-

signed to placebo and thiotepa treatment groups at the beginning of the study. The tumors

were removed at the patients’ clinic visit, but may recurrent again. For each patient, the

number of initial tumors before entering the study and the size of the largest initial tumor

were measured as baseline covariates. In the following, the observed information includes

the clinical visit times (in month) and the number of bladder tumors that occurred between

clinical visits, where 85 bladder cancer patients were included in the study, among those, 47

in the placebo group and 38 in the thiotepa treatment group. The follow up of 22 patients

were terminated by death, 12 in the treatment group and 10 in the placebo group. Here

we focus on the effects of thiotepa treatment and the number of initial tumors on the panel

count of cumulative number of tumors in the presence of both informative observation times

and a dependent terminal event.

13



For the analysis, we define Ni(t) as the cumulative number of observed tumors at time

t, i = 1, ..., 85. Let Xi1 = 1 if the patient was in the thiotepa group and 0 if the patient was

in the placebo group, and Xi2 to be the logarithm of the number of the initial tumors plus

1. Let τ be the longest observation time being 53 months. The application of the proposed

method in Section 3 with W (t) = Q(t) = 1 yielded β̂1 = −1.5594 and β̂2 = 1.2991 with the

estimated standard errors of 0.3817 and 0.3456, respectively. These results imply that both

the thiotepa treatment and initial number of tumors have significant effects on the tumor

occurrence process. Specifically, the thiotepa treatment significantly reduced the bladder

tumor occurrence rate, and the patients with higher number of initial tumors tend to have

a higher tumor occurrence rate. These results are consistent with Sun and Wei (2000).

To assess the adequacy of the proposed model for the bladder cancer data, we applied

the model checking techniques presented in Section 4. We calculated the statistic F(t, x),

and obtained supx,t |F(x, t)| = 19.3408 with p-value of 0.842 based on 1000 realizations of

the corresponding statistic supx,t |F̂(x, t)|, which indicates that the proposed model fits the

bladder cancer data well.

7 Concluding Remarks

This paper discussed the analysis of panel count data in the presence of both informa-

tive observation times and a terminal event. A joint model was proposed to describe the

recurrent event process, the observation times and the terminal event together via two

latent variables. An estimating equation-based inference procedure was proposed for the

estimation of parameters. Also a goodness-of-fit procedure was presented for assessing the

appropriateness of the proposed models and a simulation study was conducted and indi-

cated that the estimation procedure works well in practical situations. In addition, an

illustrative example was given.

There remain several topics to study in the future. First note that we only considered

the time-independent covariates. In practice, they may be varying with time and thus it is

14



desirable to extend the proposed procedure to the situation with time-dependent covariates.

However, this is clearly not straightforward. For any regression problem, variable selection

is always an important issue and it is apparent that this is true too for the problem discussed

above. In other words, it would be useful to develop some procedures in this aspect for the

proposed joint model. For this, one possible way is to use non-concave penalized estimating

function approach (Tong, et al., 2009) based on (7) and it is apparent that a lot of research

efforts are needed for it.

Acknowledgments

This research was partly supported by the National Natural Science Foundation of

China Grants (Nos. 11301355, 11231010, 11171330 and 11301212), China Postdoctor-

al Science Foundation (No. 2014M550861), and Key Laboratory of RCSDS, CAS (No.

2008DP173182).

Appendix: Derivation of (4),(5) and proofs of Theorems 1, 2 and 3

To obtain the asymptotic distribution of β̂ and γ̂, we need the following regularity

conditions:

C.1. {Ni(·), Hi(·), Ti, δi, Xi}, i = 1, · · · , n are independent and identically distributed.

C.2. H(τ) and X are bounded almost surely, N(t) is of bounded variation and P (T ≥

τ) > 0.

C.3. A is nonsingular, where

A =

A11 A12

0 A22

 ,

A11 = E

[∫ τ

0

W (t){Xi − x̄(t,Xi)}⊗2∆i(t) exp{X ′
i(β0 + γ0)}dR(t, log Λ0(t) +X ′

iη0)

]
,

A22 = E

[∫ τ

0

Q(t){Xi − x̄∗
i (t,Xi)}⊗2∆i(t) exp(X

′
iγ0)dH̄i(t; γ)

]
,

A12 = A11,
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where x̄(t,Xi) and x̄∗(t,Xi) are the limits of X̄i(t; β0, γ0) and X̄∗
i (t; γ0) conditional on Xi,

respectively.

Derivation of (4) and (5): Given (u, v,X) andD ≥ t, we suppose that the mean function

of the recurrent process and the rate of the observation process are independent of D. Since

A0(t;u, v) =
∫ t

0
µN(z;u)dµH(z; v). Then from the independent censoring assumption and

models (1) and (2), we obtain that

E{N(t)dH(t)|X,T ≥ t} = E{N(t)dH(t)|X,D ≥ t}

= E[E{N(t)dH(t)|X,D ≥ t, u, v}|X,D ≥ t]

= exp{X ′(β0 + γ0)}E{dA0(t;u, v)|X,D ≥ t}

= exp{X ′(β0 + γ0)}E{dA0(t;u, v)|X, ϵ ≥ log Λ0(t) +X ′η0},

where the last equality is from (3). Define dR(t, s) = E{dA0(t;u, v)|ϵ ≥ s}, then

E{N(t)dH(t)|X,T ≥ t} = exp{X ′(β0 + γ0)}dR(t, log Λ0(t) +X ′η0). (10)

For any integrable function g(X, t, s), by the assumption that (u, v, ϵ) is independent of

(X,C), we obtain that

dR(t, s) = E{dA0(t;u, v)|ϵ ≥ s}

=
E{dA0(t;u, v)I(ϵ ≥ s)}

E{I(ϵ ≥ s)}

=
E[dA0(t;u, v)I(ϵ ≥ s)I{log Λ0(C) +X ′η0 ≥ s}g(X, t, s)]

E[I(ϵ ≥ s)I{log Λ0(C) +X ′η0 ≥ s}g(X, t, s)]

=
E[dA0(t;u, v)I{log Λ0(T ) +X ′η0 ≥ s}g(X, t, s)]

E[I{log Λ0(T ) +X ′η0 ≥ s}g(X, t, s)]
. (11)

In particular, we choose g(X, t, s) = exp{X ′(β0 + γ0)}I{log Λ0(t) + X ′η0 ≤ s}, then

the denominator of (11) becomes E[exp{X ′(β0 + γ0)}Φ(T,X, t, s)], where Φ(T,X, t, s) =

I{log Λ0(T ) + X ′η0 ≥ s ≥ log Λ0(t) + X ′η0}. Note that Φ(T,X, t, s) = 1 implies T ≥ t.
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Using a similar method as (10), we get

E{N(t)dH(t)Φ(T,X, t, s)} = E[E{N(t)dH(t)Φ(T,X, t, s)|X,Φ(T,X, t, s), u, v}]

= E(E[exp{X ′(β0 + γ0)}dA0(t;u, v)Φ(T,X, t, s)|X,Φ(T,X, t, s), u, v])

= E[exp{X ′(β0 + γ0)}dA0(t;u, v)Φ(T,X, t, s)],

which is the numerator of (11). Thus

dR(t, s) =
E[N(t)dH(t)I{log Λ0(T ) +X ′η0 ≥ s ≥ log Λ0(t) +X ′η0}]

E[exp{X ′(β0 + γ0)}I{log Λ0(T ) +X ′η0 ≥ s ≥ log Λ0(t) +X ′η0}]
.

This completes the derivation. �

Proof of Theorem 1. Define

Φi(t,X; η,Λ) = I{log Λ(Ti) +X ′
iη ≥ log Λ(t) +X ′η ≥ log Λ(t) +X ′

iη},

dMi(t) = Ni(t)dHi(t),

dM̄(t,X; η,Λ) =

n∑
j=1

Φj(t,X; η,Λ)dMj(t)

n∑
j=1

exp{X ′
j(β0 + γ0)}Φj(t,X; η,Λ)

,

dM̄0(t,X; η,Λ) =
E{Φj(t,X; η,Λ)dMj(t)|X}

E[exp{X ′
j(β0 + γ0)}Φj(t,X; η,Λ)|X]

and

x̄(t,X; η,Λ) =
E[Xj exp{X ′

j(β0 + γ0)}Φj(t,X; η,Λ)|X]

E[exp{X ′
j(β0 + γ0)}Φj(t,X; η,Λ)|X]

.

17



Denote x̄(t,X) = x̄(t,X; η0,Λ0) and Φi(t,X) = Φi(t,X; η0,Λ0). Then we have

n−1/2

n∑
i=1

∫ τ

0

W (t){Xi − x̄(t,Xi)}∆i(t) exp{X ′
i(β0 + γ0)}{dM̄(t,Xi; η̂, Λ̂0)− dM̄0(t,Xi; η̂, Λ̂0)}

= n−1/2

n∑
i=1

∫ τ

0

W (t)

[∫
{x− x̄(t, x)}I(c ≥ t)

exp{x′(β0 + γ0)}Φi(t, x)

E[exp{X ′
i(β0 + γ0)}Φi(t, x)]

dF (x, c)

]
dMi(t)

−n−1/2

n∑
i=1

∫ [ ∫ τ

0

W (t){x− x̄(t, x)}I(c ≥ t) exp{x′(β0 + γ0)}Φi(t, x)

× E{Φi(t, x)dMi(t)}
(E[exp{X ′

i(β0 + γ0)}Φi(t, x)])2

]
exp{X ′

i(β0 + γ0)}dF (x, c) + op(1), (12)

where F (x, c) is the joint probability measure of (Xi, Ti).

Furthermore, according to Fleming and Harrington (1991, Page 299), we obtain that

η̂ − η0 = Ω−1n−1

n∑
i=1

∫ τ

0

{Xi − x̄D(t)}dMD
i (t) + op(n

−1/2),

Λ̂0(t)− Λ0(t) = n−1

n∑
i=1

∫ t

0

dMD
i (z)

s(0)(z; η0)
−

∫ t

0

x̄D(z)′dΛ0(z)(η̂ − η0) + op(n
−1/2),

where MD
i (t) = HD

i (t) −
∫ t

0
∆i(z) exp(X

′
iη0)dΛ0(z), and Ω, s(0)(t; η0) and x̄D(t) are the

limits of Ω̂, S(0)(t; η0) and X̄D(t; η0), respectively. Denote dRη(t,X) and dRΛ(t,X) as

the derivative and the Hadamard derivative of dM̄0(t,X; η0,Λ0) with respect to η and Λ,

respectively. Then by the functional delta method, we get

n−1/2

n∑
i=1

∫ τ

0

W (t){Xi − x̄(t,Xi)}∆i(t) exp{X ′
i(β0 + γ0)}{dM̄0(t,Xi; η̂, Λ̂0)− dM̄0(t,Xi; η0,Λ0)}

= n−1/2

n∑
i=1

∫ τ

0

[
P1Ω

−1{Xi − x̄D(t)}+ B1(t)

s(0)(t; η0)

]
dMD

i (t) + op(1), (13)

where

P1 = E
[ ∫ τ

0

W (t){Xi − x̄(t,Xi)}∆i(t) exp{X ′
i(β0 + γ0)}

{
dRη(t,Xi)

−
(∫ t

0

x̄D(z)′dΛ0(z)

)
dRΛ(t,Xi)

}]
,
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B1(t) = E

[∫ τ

t

W (z){Xi − x̄(z,Xi)}∆i(z) exp{X ′
i(β0 + γ0)}dRΛ(z,Xi)

]
.

Then it follows from (12) and (13) that

n−1/2U(β0; γ0) = n−1/2

n∑
i=1

∫ τ

0

W (t){Xi − X̄i(t; β0, γ0)}∆i(t)
[
dMi(t)− exp{X ′

i(β0 + γ0)}

×dM̄0(t,Xi; η0,Λ0)− exp{X ′
i(β0 + γ0)}{dM̄(t,Xi; η̂, Λ̂0)− dM̄0(t,Xi; η̂, Λ̂0)}

− exp{X ′
i(β0 + γ0)}{dM̄0(t,Xi; η̂, Λ̂0)− dM̄0(t,Xi; η0,Λ0)}

]
= n−1/2

n∑
i=1

ξi + op(1), (14)

where

ξi =

∫ τ

0

W (t){Xi − x̄(t,Xi)}∆i(t)[dMi(t)− exp{X ′
i(β0 + γ0)}dM̄0(t,Xi; η0,Λ0)]

−
∫ τ

0

W (t)

[∫
{x− x̄(t, x)}I(c ≥ t)

exp{x′(β0 + γ0)}Φi(t, x)

E[exp{X ′
i(β0 + γ0)}Φi(t, x)]

dF (x, c)

]
dMi(t)

+

∫ [ ∫ τ

0

W (t){x− x̄(t, x)}I(c ≥ t) exp{x′(β0 + γ0)}Φi(t, x)

× E{Φi(t, x)dMi(t)}
(E[exp{X ′

i(β0 + γ0)}Φi(t, x)])2

]
exp{X ′

i(β0 + γ0)}dF (x, c)

−
∫ τ

0

[
P1Ω

−1{Xi − x̄D(t)}+ B1(t)

s(0)(t; η0)

]
dMD

i (t).

Moreover, we define the following notations:

dH̄(t,X; η,Λ) =

n∑
j=1

dHj(t)Φj(t,X; η,Λ)

n∑
j=1

exp(X ′
jγ0)Φj(t,X; η,Λ)

,

dH̄0(t,X; η,Λ) =
E[dHj(t)Φj(t,X; η,Λ)|X]

E[exp(X ′
jγ0)Φj(t,X; η,Λ)|X]

,

x̄∗(t,X; η,Λ) =
E[Xj exp(X

′
jγ0)Φj(t,X; η,Λ)|X]

E[exp(X ′
jγ0)Φj(t,X; η,Λ)|X]

.
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Denote x̄∗(t,X) = x̄∗(t,X; η0,Λ0). In a similar manner, we can get

n−1/2

n∑
i=1

∫ τ

0

Q(t){Xi − x̄∗(t,Xi)}∆i(t) exp(X
′
iγ0){dH̄(t,X; η̂, Λ̂0)− dH̄0(t,X; η̂, Λ̂0)}

= n−1/2

n∑
i=1

∫ τ

0

Q(t)

[∫
{x− x̄∗(t, x)}I(c ≥ t)

exp(x′γ0)Φi(t, x)

E[exp(X ′
iγ0)Φi(t, x)]

dF (x, c)

]
dHi(t)

−n−1/2

n∑
i=1

∫ [ ∫ τ

0

Q(t){x− x̄∗(t, x)}I(c ≥ t) exp(x′γ0)Φi(t, x)

× E{Φi(t, x)dHi(t)}
(E[exp(X ′

iγ0)Φi(t, x)])2

]
exp(X ′

iγ0)dF (x, c) + op(1), (15)

and

n−1/2

n∑
i=1

∫ τ

0

Q(t){Xi − x̄∗(t,Xi)}∆i(t) exp(X
′
iγ0){dH̄0(t,Xi; η̂, Λ̂0)− dH̄0(t,Xi; η0,Λ0)}

= n−1/2

n∑
i=1

∫ τ

0

[
P2Ω

−1{Xi − x̄D(t)}+ B2(t)

s(0)(t; η0)

]
dMD

i (t) + op(1), (16)

where

P2 = E
[ ∫ τ

0

Q(t){Xi − x̄∗(t,Xi)}∆i(t) exp(X
′
iγ0)

{
dR∗

η(t,Xi)

−
(∫ t

0

x̄D(z)′dΛ0(z)

)
dR∗

Λ(t,Xi)
}]

,

B2(t) = E

[∫ τ

t

Q(z){Xi − x̄∗(z,Xi)}∆i(z) exp(X
′
iγ0)dR

∗
Λ(z,Xi)

]
,

and dR∗
η(t,X) and dR∗

Λ(t,X) as the derivative and the Hadamard derivative of dH̄0(t,X; η0,Λ0)

with respectively to η and Λ, respectively.

Then it follows from (15) and (16), we obtain that

n−1/2Ũ(γ0) = n−1/2

n∑
i=1

ζi + op(1), (17)
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where

ζi =

∫ τ

0

Q(t){Xi − x̄∗(t,Xi)}∆i(t) exp(X
′
iγ0)[dHi(t)− exp(X ′

iγ0)dH̄0(t,Xi; η0,Λ0)]

−
∫ τ

0

Q(t)

[∫
{x− x̄∗(t, x)}I(c ≥ t)

exp(x′γ0)Φi(t, x)

E[exp(X ′
iγ0)Φi(t, x)]

dF (x, c)

]
dHi(t)

+

∫ [ ∫ τ

0

Q(t){x− x̄∗(t, x)}I(c ≥ t) exp(x′γ0)Φi(t, x)

× E{Φi(t, x)dHi(t)}
(E[exp(X ′

iγ0)Φi(t, x)])2

]
exp(X ′

iγ0)dF (x, c)

−
∫ τ

0

[
P2Ω

−1{Xi − x̄D(t)}+ B2(t)

s(0)(t; η0)

]
dMD

i (t).

Furthermore, we notice that−n−1∂U(β0; γ0)/∂β, −n−1∂U(β0; γ0)/∂γ and−n−1∂Ũ(γ0)/∂γ

convergence in probability to A11, A12 and A22, respectively. Then since (14) and (17), to-

gether with the Taylor expansion and Slutsky theorem that

n1/2

β̂ − β0

γ̂ − γ0

 = A−1n−1/2

U(β0; γ0)

Ũ(γ0)

+ op(1)

= A−1n−1/2

n∑
i=1

ξi

ζi

+ op(1),

thus

n1/2

β̂ − β0

γ̂ − γ0

 L−→ N(0, A−1Σ(A−1)′),

where
L−→ denotes convergence in distribution, Σ = E{(ξ′i, ζ ′i)′⊗2}. This completes the

proof. �

Proof of Theorem 2. Since β̂, γ̂, η̂ and Λ̂0(t) are consistent, we can obtain that condi-

tional on the observed data,

n−1/2Ω∗
1 =

n∑
i=1

Zi

∫ τ

0

W (t){Xi − x̄(t,Xi)}∆i(t)[dMi(t)

− exp{X ′
i(β0 + γ0)}dM̄0(t,Xi; η0,Λ0)] + op(1). (18)
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Similarly,

n−1/2Ω∗
2 = −n−1/2

n∑
i=1

Zi

∫ τ

0

W (t)

[∫
{x− x̄(t, x)}I(c ≥ t)

exp{x′(β0 + γ0)}Φi(t, x)

E[exp{X ′
i(β0 + γ0)}Φi(t, x)]

dF (x, c)

]
×dMi(t) + n−1/2

n∑
i=1

Zi

∫ [ ∫ τ

0

W (t){x− x̄(t, x)}I(c ≥ t) exp{x′(β0 + γ0)}Φi(t, x)

× E{Φi(t, x)dMi(t)}
(E[exp{X ′

i(β0 + γ0)}Φi(t, x)])2

]
exp{X ′

i(β0 + γ0)}dF (x, c) + op(1). (19)

Define

dM̂(t,X; η,Λ) =

n∑
j=1

Φj(t,X; η,Λ)dMj(t)

n∑
j=1

exp{X ′
j(β̂ + γ̂)}Φj(t,X; η,Λ)

.

Thus,

Ω∗
3 =

n∑
i=1

∫ τ

0
W (t){Xi − X̄i(t; β̂, γ̂)}∆i(t) exp{X ′

i(β̂ + γ̂)}{dM̂(t,X; η̂, Λ̂0)− dM̂(t,X; η̂∗, Λ̂∗
0)}.

Moreover, we notice that

dM̂(t,X; η̂, Λ̂0)− dM̂(t,X; η̂∗, Λ̂∗
0) = {dM̂(t,X; η̂, Λ̂0)− dM̄0(t,X; η̂, Λ̂0)}

−{dM̂(t,X; η̂∗, Λ̂∗
0)− dM̄0(t,X; η̂∗, Λ̂∗

0)}+ {dM̄0(t,X; η̂, Λ̂0)− dM̄0(t,X; η̂∗, Λ̂∗
0)}.

Using a similar method to the proof of (12), we get

n−1/2

n∑
i=1

∫ τ

0

W (t){Xi − X̄i(t; β̂, γ̂)}∆i(t) exp{X ′
i(β̂ + γ̂)}

[
{dM̂(t,X; η̂, Λ̂0)

−dM̄0(t,X; η̂, Λ̂0)} − {dM̂(t,X; η̂∗, Λ̂∗
0)− dM̄0(t,X; η̂∗, Λ̂∗

0)}
]
= op(1)

Similar to (13), we obtain that conditional on the observed data,

n−1/2

n∑
i=1

∫ τ

0

W (t){Xi − X̄i(t; β̂, γ̂)}∆i(t) exp{X ′
i(β̂ + γ̂)}{dM̄0(t,X; η̂∗, Λ̂∗

0)− dM̄0(t,X; η̂, Λ̂0)}

= n−1/2

n∑
i=1

Zi

∫ τ

0

[
P1Ω

−1{Xi − x̄D(t)}+ B1(t)

s(0)(t; η0)

]
dMD

i (t) + op(1). (20)

22



From (18), (19) and (20), we have that

Υ̂1 = n−1/2(Ω∗
1 + Ω∗

2 + Ω∗
3) = n−1/2

n∑
i=1

Ziξi + op(1).

In a similar way, we obtain that

Υ̂2 = n−1/2(Ω∗
4 + Ω∗

5 + Ω∗
6) = n−1/2

n∑
i=1

Ziζi + op(1).

Thus, by the Theorem 3.6.13 of van der Vaart and Wellner (1996), EZ(Υ̂
⊗2)

P−→ Σ. This

completes the proof of this theorem. �

Proof of Theorem 3. We notice that

F(t, x) = n−1/2

n∑
i=1

∫ t

0

I(Xi ≤ x)∆i(z)
[
Ni(z)dHi(z)− exp{X ′

i(β0 + γ̂)}

×

n∑
j=1

Nj(z)dHj(z)Φ̂j(z,Xi)

n∑
j=1

exp{X ′
j(β0 + γ̂)}Φ̂j(z,Xi)

]
− n1/2Γ̂1(t, x)

′(β̂ − β0). (21)

Using a similar method as the proof of Theorem 1, we can have that the first term on the

right-hand side of (21) is

n−1/2

n∑
i=1

Ψi(t, x)− n1/2Γ1(t, x)
′(γ̂ − γ0) + op(1), (22)

where

Ψi(t, x) =

∫ t

0

I(Xi ≤ x)∆i(z)[dMi(z)− exp{X ′
i(β0 + γ0)}dM̄0(t,Xi; η0,Λ0)]

−
∫ t

0

[∫
I(s ≤ x)I(c ≥ z)

exp{s′(β0 + γ0)}Φi(z, s)

E[exp{X ′
i(β0 + γ0)}Φi(z, s)]

dF (s, c)

]
dMi(z)

+

∫ [ ∫ t

0

I(s ≤ x)I(c ≥ z) exp{s′(β0 + γ0)}Φi(z, s)

× E{Φi(z, s)dMi(z)}
(E[exp{X ′

i(β0 + γ0)}Φi(z, s)])2

]
exp{X ′

i(β0 + γ0)}dF (s, c)

−P ∗
1 (t, x)Ω

−1

∫ τ

0

[
{Xi − x̄D(z)}+ B∗

1(t, z, x)

s(0)(z; η0)

]
dMD

i (z),
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and

P ∗
1 (t, x) = E

[ ∫ t

0

I(Xi ≤ x)∆i(s) exp{X ′
i(β0 + γ0)}

{
dRη(s,Xi)

−
(∫ s

0

x̄D(z)′dΛ0(z)

)
dRΛ(s,Xi)

}]
,

B∗
1(t, z, x) = E

[∫ t

z

I(Xi ≤ x)∆i(s) exp{X ′
i(β0 + γ0)}dRΛ(s,Xi)

]
,

where Γ1(t, x) is the limit of Γ̂1(t, x). Furthermore, we know that the second term on the

right-hand side of (21) is equivalent to

−n1/2Γ1(t, x)(β̂ − β0) + op(1). (23)

Then, from (21),(22), (23) and Theorem 1, we obtain that

F(t, x) = n−1/2

n∑
i=1

{
Ψi(t, x)− Γ(t, x)′A−1(ξ′i, ζ

′
i)

′
}
+ op(1), (24)

where Γ(t, x) = (Γ1(t, x)
′,Γ1(t, x)

′)′. By the multivariate central limit theorem, we have

that F(t, x) converges in distribution for finite dimensions. It is easy to see that F(t, x)

is tight, then using a similar method as the proof of Theorem 2, we obtain that F(t, x)

converges weakly to a zero-mean Gaussian process and the asymptotic distribution can be

approximated by (9). This completes the proof. �
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Table 1. Simulation results for estimation of β0 and γ0 when β0 = −0.5

β0 γ0

n (ϕ1, ϕ2) BIAS SSE ESE CP BIAS SSE ESE CP

100 (-1, -1) -0.0102 0.3433 0.3265 0.928 0.0480 0.1708 0.1714 0.943

(-1, 0) -0.0145 0.3419 0.3235 0.929 0.0537 0.1668 0.1718 0.944

(-1, 1) -0.0182 0.3202 0.3250 0.947 0.0478 0.1723 0.1755 0.950

( 0, -1) -0.0080 0.3544 0.3305 0.921 0.0475 0.1741 0.1729 0.947

( 0, 0) 0.0122 0.3437 0.3263 0.937 0.0383 0.1724 0.1702 0.947

( 0, 1) 0.0146 0.3426 0.3227 0.942 0.0380 0.1727 0.1741 0.947

( 1, -1) 0.0085 0.3589 0.3314 0.928 0.0554 0.1697 0.1714 0.945

( 1, 0) 0.0103 0.3448 0.3293 0.938 0.0430 0.1662 0.1694 0.952

( 1, 1) 0.0112 0.3470 0.3297 0.928 0.0320 0.1694 0.1732 0.955

200 (-1, -1) -0.0099 0.2311 0.2310 0.946 0.0290 0.1146 0.1166 0.950

(-1, 0) 0.0136 0.2378 0.2299 0.950 0.0212 0.1147 0.1134 0.938

(-1, 1) -0.0083 0.2346 0.2295 0.936 0.0185 0.1175 0.1181 0.946

( 0, -1) -0.0126 0.2414 0.2317 0.936 0.0234 0.1177 0.1161 0.948

( 0, 0) 0.0120 0.2389 0.2307 0.941 0.0193 0.1046 0.1142 0.964

( 0, 1) -0.0025 0.2402 0.2294 0.937 0.0206 0.1199 0.1177 0.946

( 1, -1) 0.0271 0.2466 0.2357 0.936 0.0320 0.1139 0.1163 0.939

( 1, 0) 0.0079 0.2411 0.2348 0.938 0.0259 0.1095 0.1142 0.959

( 1, 1) 0.0198 0.2457 0.2349 0.938 0.0265 0.1202 0.1181 0.948
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Table 2. Simulation results for estimation of β0 and γ0 when β0 = 0.5

β0 γ0

n (ϕ1, ϕ2) BIAS SSE ESE CP BIAS SSE ESE CP

100 (-1, -1) 0.0720 0.3372 0.3381 0.947 0.0419 0.1682 0.1690 0.944

(-1, 0) 0.0755 0.3484 0.3366 0.954 0.0336 0.1602 0.1684 0.951

(-1, 1) 0.0803 0.3346 0.3398 0.955 0.0435 0.1736 0.1736 0.940

( 0, -1) 0.0729 0.3426 0.3335 0.944 0.0497 0.1640 0.1699 0.949

( 0, 0) 0.0825 0.3481 0.3357 0.945 0.0447 0.1581 0.1687 0.947

( 0, 1) 0.0714 0.3423 0.3400 0.962 0.0504 0.1737 0.1756 0.945

( 1, -1) 0.0871 0.3557 0.3502 0.952 0.0480 0.1721 0.1700 0.937

( 1, 0) 0.1074 0.3465 0.3473 0.947 0.0469 0.1637 0.1685 0.948

( 1, 1) 0.0803 0.3530 0.3406 0.942 0.0446 0.1708 0.1735 0.952

200 (-1, -1) 0.0487 0.2248 0.2263 0.943 0.0227 0.1176 0.1158 0.937

(-1, 0) 0.0426 0.2164 0.2230 0.953 0.0206 0.1151 0.1141 0.945

(-1, 1) 0.0373 0.2178 0.2232 0.951 0.0213 0.1163 0.1177 0.950

( 0, -1) 0.0342 0.2220 0.2243 0.947 0.0312 0.1141 0.1154 0.943

( 0, 0) 0.0289 0.2296 0.2250 0.928 0.0188 0.1097 0.1133 0.958

( 0, 1) 0.0311 0.2311 0.2217 0.937 0.0118 0.1138 0.1183 0.965

( 1, -1) 0.0390 0.2376 0.2325 0.936 0.0232 0.1121 0.1151 0.947

( 1, 0) 0.0427 0.2354 0.2283 0.944 0.0114 0.1090 0.1131 0.959

( 1, 1) 0.0424 0.2266 0.2285 0.951 0.0193 0.1189 0.1172 0.935
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Table 3. Comparison results for estimation of β0 = 0.5 when n = 200

Ours SW

η0 (ϕ1, ϕ2) BIAS SSE BIAS SSE

0 (-1 , -1) 0.0352 0.1998 0.0121 0.2795

(-1 , 0) 0.0301 0.2126 0.0076 0.2928

(-1 , 1) 0.0293 0.2027 0.0019 0.2705

( 0 , -1) 0.0310 0.2116 0.0051 0.2876

( 0 , 0) 0.0172 0.2132 -0.0031 0.2940

( 0 , 1) 0.0341 0.1982 0.0167 0.2818

( 1 , -1) 0.0311 0.2146 -0.0068 0.2985

( 1 , 0) 0.0307 0.2096 0.0275 0.2984

( 1 , 1) 0.0277 0.2042 0.0074 0.2922

0.5 (-1 , -1) 0.0436 0.2333 -0.5175 0.3028

(-1 , 0) 0.0320 0.2293 -0.5313 0.2987

(-1 , 1) 0.0407 0.2269 -0.5207 0.2912

( 0 , -1) 0.0598 0.2318 -0.4706 0.3199

( 0 , 0) 0.0358 0.2232 -0.5058 0.3103

( 0 , 1) 0.0412 0.2278 -0.4917 0.3054

( 1 , -1) 0.0449 0.2352 -0.4614 0.3249

( 1 , 0) 0.0381 0.2277 -0.4573 0.3265

( 1 , 1) 0.0411 0.2287 -0.4406 0.3230
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