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Abstract. The thickness of a graph is the minimum number of planar s-
panning subgraphs into which the graph can be decomposed. It is known for
relatively few classes of graphs, compared to other topological invariants, e.g.,
genus and crossing number. For the complete bipartite graphs, Beineke, Harary
and Moon (On the thickness of the complete bipartite graph, Proc. Cambridge
Philos. Soc., 60 (1964), 1–5.) gave the answer for most graphs in this family in
1964. In this paper, we derive formulas and bounds for the thickness of some
complete k-partite graphs. And some properties for the thickness for the join
of two graphs are also obtained.

1. Introduction

A graph G is often denoted by G = (V (G), E(G)), where V (G) is the vertex set
and E(G) is the edge set. The complement G of G is the graph whose vertex set
is V (G) and whose edges are the pairs of nonadjacent vertices of G. A complete
graph is a graph in which any two vertices are adjacent. A complete graph on n
vertices is denoted by Kn. The union G ∪H of two graph G and H is the graph
(V (G) ∪ V (H), E(G) ∪ E(H)). The join G + H of two vertex disjoint graphs G
and H is obtained from G ∪ H by joining every vertex of G to every vertex of
H. A complete k-partite graph is a graph whose vertex set can be partitioned
into k parts, such that every edge has its ends in different parts and every two
vertices in different parts are adjacent. Kp1,p2,...,pk denotes a complete k-partite
graph in which the ith part contains pi (1 ≤ i ≤ k) vertices. And it is easy to see
Kp1,p2,...,pk = Kp1 + Kp2 + . . . + Kpk .

The thickness t(G) of a graph G is the minimum number of planar spanning
subgraphs into which G can be decomposed. It was firstly defined by Tutte [7] in
1963. Since determining the thickness of a graph is NP-hard [4], it is very difficult
to get the exact thickness number for arbitrary graphs. Beineke and Harary [2]
determined the thickness of the complete graph Kn for n ≡ 4(mod 6) in 1965,
while the remaining cases were solved in 1976, independently by Alekseev and
Gončhakov [1] and by Vasak [8].

Theorem 1.1. [1, 2, 8] The thickness of the complete graph Kn is t(Kn) = bn+7
6
c,

except that t(K9) = t(K10) = 3.
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For the complete bipartite graphs, the problem has not been entirely solved yet.
Beineke, Harary and Moon [3] gave the answer for most graphs in this family in
1964.

Theorem 1.2. [3] For m ≤ n, the thickness of the complete bipartite graph Km,n

is t(Km,n) = d mn
2(m+n−2)

e, except possibly when m and n are both odd and there

exists an integer k satisfying m = b2k(m−2)
(m−2k)

c.

For the complete tripartite graph, Poranen proved t(Kn,n,n) ≤
⌈
n
2

⌉
in [6] and Yang

[9] gave the exact thickness number of Kl,m,n(l ≤ m ≤ n) when l + m ≤ 5 and
showed that t(Kl,m,n) = d l+m

2
e when l+m is even and n > 1

2
(l+m− 2)2; or l+m

is odd and n > (l + m − 2)(l + m − 1). The reader is referred to [5] for more
background and results about the thickness problems.

In this paper, our concerning is the thickness of the complete multipartite
graphs. Some results on the thickness for the join of two graphs are also given.

2. Thickness of some complete k-partite graphs

The arboricity a(G) of a graph G is the minimum number of spanning forests into
which the graph can be decomposed. It is known that the thickness of any graph
is not less than a third of its arboricity and not more than its arboricity, and the
arboricity of the complete graph Kn is

⌈
n
2

⌉
.

Lemma 2.1. Let Ks + Kn be the join of Ks and Kn (s, n ≥ 1), then

t(Ks + Kn) ≤
⌈s

2

⌉
.

Proof. Denote the s vertices in Ks by v1, . . . , vs, and the n vertices in Kn by
u1, . . . , un. In the following, we will construct a planar subgraphs decomposition
of Ks + Kn with

⌈
s
2

⌉
planar subgraphs, which shows t(Ks + Kn) ≤

⌈
s
2

⌉
.

(1) Since a(Ks) =
⌈
s
2

⌉
, we have a spanning forests decomposition of Ks with⌈

s
2

⌉
forests, and we denote these forests by F1, . . . , F⌈ s

2

⌉.
(2) Add n parallel edges between v1 and v2 in F1 and insert vertices u1, . . . , un

on these n parallel edges respectively. We will get a planar subgraph G1

of Ks + Kn.
(3) Add n parallel edges between v3 and v4 in F2 and insert vertices u1, . . . , un

on these n parallel edges respectively. We will get a planar subgraph G2

of Ks + Kn.
(4) Repeat this procedure with Fi, for 3 ≤ i ≤

⌈
s
2

⌉
. If s is odd, place the ver-

tices u1, . . . , un in F⌈ s
2

⌉ and join them to vs. We will get planar subgraphs

G3, . . . , G⌈ s
2

⌉ of Ks + Kn.

For G1∪G2∪· · ·∪G⌈ s
2

⌉ = Ks+Kn, a planar subgraphs decomposition of Ks+Kn

with
⌈
s
2

⌉
planar subgraphs is obtained, and the lemma follows. �
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Lemma 2.2. For the complete k-partite graph Kp1,p2,...,pk (k ≥ 3), let s be the
number of odd numbers in the set {p1, p2, . . . , pk−1}, then

t(Kp1,p2,...,pk) ≤
k−1∑
i=1

⌊pi
2

⌋
+
⌈s

2

⌉
.

Proof. Suppose the k partite sets of Kp1,p2,...,pk are V1 = {v11, v12, . . . , v1p1}, V2 =

{v21, v22, . . . , v2p2}, . . ., Vk = {vk1 , vk2 , . . . , vkpk} respectively. We will construct one of
its planar subgraphs decomposition as follows.

(1) For vertices in V1, join both v11 and v12 to all the vertices in Vi, 1 ≤ i ≤ k
and i 6= 1, we can get a planar graph G1

1. Join both v13 and v14 to all
the vertices in Vi, 1 ≤ i ≤ k and i 6= 1, we can get a planar graph G1

2.
Repeat this procedure with different vertices from V1, until the

⌊
p1
2

⌋
th

planar graph G1

b p12 c
has been obtained. If p1 is even, then all the vertices

from V1 will be used. If p1 is odd, then the vertex v1p1 will not be used.

(2) For vertices in V2, join both v21 and v22 to all the vertices in Vi, 1 ≤ i ≤ k
and i 6= 2, we can get a planar graph G2

1. Join both v23 and v24 to all
the vertices in Vi, 1 ≤ i ≤ k and i 6= 2, we can get a planar graph G2

2.
Repeat this procedure with different vertices from V2, until the

⌊
p2
2

⌋
th

planar graph G2

b p22 c
has been obtained.

(3) Repeat this procedure with V3, . . . , Vk−1 respectively, we will get
⌊
p3
2

⌋
+

· · ·+
⌊pk−1

2

⌋
planar subgraphs of Kp1,p2,...,pk , denote them by G3

1, . . . , G
3

b p32 c
,

. . . , G
pk−1

1 , . . . , G
pk−1

b pk−1
2 c

respectively.

(4) Let

G = G1
1 ∪ · · · ∪G1

b p12 c ∪ · · · ∪G
pk−1

1 ∪ · · · ∪G
pk−1

b pk−1
2 c

,

then Kp1,p2,...,pk−G = Ks+Kpk , in which s is the number of odd numbers in
the set {p1, p2, . . . , pk−1}. By Lemma 2.1, there exists a planar subgraphs
decomposition of Ks + Kpk with

⌈
s
2

⌉
subgraphs.

Above all, a planar decomposition of Kp1,p2,...,pk with
k−1∑
i=1

⌊pi
2

⌋
+
⌈s

2

⌉
planar

subgraphs is obtained, and the lemma follows. �

Theorem 2.3. The thickness of the complete k-partite graph Kp1,p2,...,pk (k ≥ 3)

equals

⌈
k−1∑
i=1

pi
2

⌉
when

k−1∑
i=1

pi is even and pk >
1

2

(
k−1∑
i=1

pi − 2

)2

, or
k−1∑
i=1

pi is odd

and pk >

(
k−1∑
i=1

pi − 1

)(
k−1∑
i=1

pi − 2

)
.
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Proof. When
k−1∑
i=1

pi is even and pk >
1

2

(
k−1∑
i=1

pi − 2

)2

, or
k−1∑
i=1

pi is odd and pk >(
k−1∑
i=1

pi − 1

)(
k−1∑
i=1

pi − 2

)
, from [3], the thickness of the complete bipartite graph

Kp1+p2+...+pk−1,pk is

⌈
k−1∑
i=1

pi
2

⌉
. Since Kp1+p2+...+pk−1,pk is a subgraph of Kp1,p2,...,pk ,

by Lemma 2.2, we have
k−1∑
i=1

⌊pi
2

⌋
+
⌈s

2

⌉
≥ t(Kp1,p2,...,pk) ≥ t(Kp1+p2+···+pk−1,pk) =

⌈
k−1∑
i=1

pi
2

⌉
,

in which s is the number of odd numbers in the set {p1, p2, . . . , pk−1}. Since

k−1∑
i=1

⌊pi
2

⌋
+
⌈s

2

⌉
=

⌈
k−1∑
i=1

pi
2

⌉
where 0 ≤ s ≤ k − 1, the theorem is obtained. �

3. The thickness of G + Kn

Let p1 = p2 = · · · = ps = 1 and ps+1 = n, from Theorem 2.3, we have the following
theorem.

Theorem 3.1. The thickness of the join of Ks and Kn (s, n ≥ 1) equals
⌈
s
2

⌉
, if

s is even and n > 1
2
(s− 2)2, or s is odd and n > (s− 1)(s− 2).

Theorem 3.2. If G is a simple graph on p vertices, then the thickness of G+Kn

is dp
2
e when p is even and n > 1

2
(p− 2)2, or p is odd and n > (p− 1)(p− 2).

Proof. Since Kp,n ⊆ G + Kn ⊆ Kp + Kn, we have t(Kp,n) ≤ t(G + Kn) ≤
t(Kp + Kn). From Theorem 3.1 and the Theorem 1 in [3], the theorem can be
obtained. �

Theorem 3.3. The thickness of the join of Ks and Kn (s ≤ 4, n ≥ 1) equals

t(Ks + Kn) =

{
1, if s = 1, 2 or s = 3 and n ≤ 2;

2, if s = 3 and n ≥ 3, or s = 4 and n ≥ 1.

Proof. It is easy to see that the graphs K1 +Kn, K2 +Kn, K3 +K1 and K3 +K2

are all planar graphs, so their thicknesses are all one.

When n ≥ 3, the graph K3 + Kn contains a K3,3 as its subgraph, so we have
t(K3 + Kn) ≥ 2. On the other hand, it is trivial to construct a planar subgraphs
decomposition of K3 + Kn with two planar subgraphs, using the construction of
Lemma 2.1, which shows t(K3 + Kn) ≤ 2. Hence, t(K3 + Kn) = 2 when n ≥ 3.

When n ≥ 1, the graph K4 + Kn contains a K5 as its subgraph, so we have
t(K4+Kn) ≥ 2. And it is not hard to construct a planar subgraphs decomposition
of K4 + Kn with two planar subgraphs, which shows t(K4 + Kn) ≤ 2. Hence,
t(K4 + Kn) = 2 when n ≥ 1.
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Summarizing the above, the theorem follows. �

The following result shows that the upper bound in Theorem 3.1 is best possible
for s = 5.

Corollary 3.4. When 1 ≤ n ≤ 12, the thickness of K5 + Kn is 2; when n ≥ 13,
the thickness of K5 + Kn is 3.

Proof. From Theorem 3.1, the thickness of K5 + Kn is 3, when n ≥ 13. Because
the graph K5 +Kn contains a K5 as its subgraph, we have t(K5 +Kn) ≥ 2. Figure
1 constructs a planar subgraphs decomposition of K5 + K12 with two planar
subgraphs, which shows t(K5 + Kn) ≤ 2, when 1 ≤ n ≤ 12. Summarizing the
above, the corollary follows. �
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Figure 1. A planar decomposition of K5 + K12

Though we do not find a formula of t(Ks + Kn), for all s and n, we have the
following upper and lower bounds.

Corollary 3.5. For s, n ≥ 1 and s /∈ {8, 9}, the possible thicknesses of Ks + Kn

are consecutive integers in [b s+8
6
c,
⌈
s
2

⌉
].

Proof. Because t(Ks +Kn) ≥ t(Ks +K1) and Ks +K1 = Ks+1, combining it with
Theorem 1.1, we have t(Ks +Kn) ≥ b s+8

6
c, except for s = 8 and 9. From Theorem

3.1, the maximum value of t(Ks + Kn) equals
⌈
s
2

⌉
. Since the graph Ks + Kn+1

is obtained from Ks + Kn by adding a new vertex and joining the new vertex
to all vertices in Ks, we have t(Ks + Kn+1) = t(Ks + Kn) or t(Ks + Kn+1) =
t(Ks + Kn) + 1. Summarizing the above, the corollary is obtained. �

In a similar way, the following two corollaries can be obtained.

Corollary 3.6. For n ≥ 1, the thickness of K8 + Kn is 3 or 4.

Corollary 3.7. For n ≥ 1, the thickness of K9 + Kn is 3, 4 or 5.
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4. The thickness of G + Pn

The graph Pn is the path with n vertices. In this section we study the thickness
of the join of a graph G and a path Pn.

Theorem 4.1. The thickness of the join of Ks and Pn (s, n ≥ 1) equals
⌈
s
2

⌉
, if s

is even and n > 1
2
(s− 2)2, or s is odd and n > (s− 1)(s− 2).

Proof. In the proof of Lemma 2.1, we have constructed a planar subgraphs de-
composition of Ks + Kn with d s

2
e planar subgraphs by the procedure (1)-(4). By

joining the vertices u1, u2, . . . , un with a path in the process (2), we can get a
planar subgraphs decomposition of Ks + Pn with d s

2
e planar subgraphs, which

shows t(Ks + Pn) ≤
⌈
s
2

⌉
. On the other hand, Ks + Kn is a subgraph of Ks + Pn,

so we have t(Ks + Kn) ≤ t(Ks + Pn). Combining them with Theorem 3.1, the
theorem follows. �

Theorem 4.2. If G is a simple graph on s vertices, then the thickness of G+Pn

is d s
2
e when s is even and n > 1

2
(s− 2)2, or s is odd and n > (s− 1)(s− 2).

Proof. With a similar proof to that of Theorem 3.2, the theorem can be obtained.
�

Theorem 4.3. The thickness of the join of Ks and Pn (s ≤ 5, n ≥ 1) equals

t(Ks + Pn) =


1, if s = 1, 2 or s = 3 and n = 1;

2, if s = 3 and n ≥ 2, or s = 4, or s = 5 and 1 ≤ n ≤ 12;

3, if s = 5 and n ≥ 13.

Proof. It is easy to see that the graphs K1 + Pn, K2 + Pn and K3 + P1 are all
planar graphs, so their thicknesses are all one.

When n ≥ 2, the graph K3 + Pn contains a K5 as its subgraph, so we have
t(K3 + Pn) ≥ 2. However, Figure 2 illustrates a planar subgraphs decomposition
of K3 + Pn with two planar subgraphs, which shows t(K3 + Pn) ≤ 2. So we have
t(K3 + Pn) = 2 when n ≥ 2.

u1

u2

u3

un

v3

v1 v2

u1

u2

u3

un

v3

Figure 2. A planar decomposition of K3 + Pn
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When n ≥ 1, the graph K4 + Pn contains a K5 as its subgraph, so we have
t(K4 + Pn) ≥ 2. And Figure 3 presents a planar subgraphs decomposition of
K4 + Pn with two planar subgraphs, which shows t(K4 + Pn) ≤ 2. So we have
t(K4 + Pn) = 2 when n ≥ 1.

u1

u2

u3

un

v3

v1 v2

v4

u1

u2

u3

un

v3 v4

Figure 3. A planar decomposition of K4 + Pn

From Theorem 4.1, the thickness of K5 + Pn is three, when n ≥ 13. Because
the graph K5 + Pn contains a K5 as its subgraph, we have t(K5 + Pn) ≥ 2.
Figure 4 constructs a planar subgraphs decomposition of K5+P12 with two planar
subgraphs, which shows t(K5 + Pn) ≤ 2, when 1 ≤ n ≤ 12. Hence the thickness
of K5 + Pn is two, when 1 ≤ n ≤ 12.

Summarizing the above, the theorem follows. �

Proceeding as the proof of Corollary 3.5, we have the following corollaries.

Corollary 4.4. For s, n ≥ 1 and s /∈ {8, 9}, the possible thicknesses of Ks + Pn

are consecutive integers in [b s+8
6
c,
⌈
s
2

⌉
].

Corollary 4.5. For n ≥ 1, the thickness of K8 + Pn is 3 or 4.

Corollary 4.6. For n ≥ 1, the thickness of K9 + Pn is 3, 4 or 5.

5. The thickness for the join of two graphs G and H

For arbitrary graphs G and H, we prove the following two properties for the
thickness of the join of G and H.

Property 5.1. Let G and H be two simple graphs with order p and q respectively,
then

t(G + H) ≤Max{t(G), t(H)}+ t(Kp,q).

Proof. Because G + H is a subgraph of G ∪ H ∪ Kp,q, in which the two partite
sets of Kp,q are V (G) and V (H) respectively,

t(G + H) ≤ t(G ∪H ∪Kp,q) ≤ t(G ∪H) + t(Kp,q).

Since G and H are disjoint, t(G ∪ H) = Max{t(G), t(H)}, and the property
follows. �
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Figure 4. A planar decomposition of K5 + P12

Property 5.2. Let G and H be two simple graphs with order p and q respectively,
then

t(G + H) ≤Min{t(H) + t(G + Kq), t(G) + t(H + Kp)}.

Proof. The graph G+H is a subgraph of H ∪ (G+Kq) and it is also a subgraph
of G ∪ (H + Kp), in which V (Kq) = V (H) and V (Kp) = V (G). Hence both
t(G+H) ≤ t(H)+ t(G+Kq) and t(G+H) ≤ t(G)+ t(H+Kp) hold, the property
follows. �
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