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Abstract. Suppose that OL is the ring of integers of a number field L, and
suppose that

f(z) =

∞∑

n=1

af (n)q
n ∈ Sk ∩OL[[q]]

(note: q := e2πiz) is a normalized Hecke eigenform for SL2(Z). We say that f
is non-ordinary at a prime p if there is a prime ideal p ⊂ OL above p for which

af (p) ≡ 0 (mod p).

For any finite set of primes S, we prove that there are normalized Hecke eigen-
forms which are non-ordinary for each p ∈ S. The proof is elementary and
follows from a generalization of work of Choie, Kohnen and the third author.

1. Introduction and statement of results

If k ≥ 4 is even, then let Mk (resp. Sk) denote the finite dimensional C-vector
space of weight k holomorphic modular forms (resp. cusp forms) on SL2(Z). Fur-
thermore, let M !

k denote the infinite dimensional space of weakly holomorphic mod-
ular forms of weight k with respect to SL2(Z). Recall that a meromorphic modular
form is weakly holomorphic if its poles (if any) are supported at cusps. We shall
identify a modular form on SL2(Z) by its Fourier expansion at infinity

f(z) =
∑

n�−∞
af (n)q

n,

where q := e2πiz.
Suppose that OL is the ring of integers of a number field L, and suppose that

f(z) =
∞∑

n=1

af (n)q
n ∈ Sk ∩OL[[q]]

is a normalized Hecke eigenform for SL2(Z). We say that f is non-ordinary at a
prime p if there is a prime ideal p ⊂ OL above p for which

af (p) ≡ 0 (mod p).

Very little is known about the distribution of non-ordinary primes. We recall the
following well-known open problem (see Gouvêa’s expository article [2]).

Problem. Are there infinitely many non-ordinary primes for a generic normalized
Hecke eigenform f(z)?
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We do not solve this problem here. It remains open. However, we establish the
following related result.

Theorem 1.1. If S is a finite set of primes, then there are infinitely many nor-
malized Hecke eigenforms for SL2(Z) which are non-ordinary for each p ∈ S.

Remark. The proof of Theorem 1.1 relies on a general theorem about the Fourier
coefficients of weakly holomorphic modular forms modulo p (see Theorem 2.5). For
normalized Hecke eigenforms, this general result incorporates classical results of
Hatada [3] (in the case where p = 2 and 3) and Hida [4–6] (for primes p ≥ 5) on
non-ordinary primes.

Remark. The proof of Theorem 1.1 is constructive. Suppose that S={p1, p2, . . . , pm}
is a finite set of primes. Suppose that k ≥ 12 is an even integer. If for each p ∈ S
there is a choice of t ∈ A = {4, 6, 8, 10, 14} for which (p − 1)|(k − t), then every
prime in S is non-ordinary for every normalized Hecke eigenform f ∈ Sk. The
earlier work of Choie, Kohnen and the third author [1] is eclipsed by this result
thanks to the flexibility in the choice of t above.

In Section 2 we recall certain facts about modular forms and we prove Theo-
rem 2.5. The proof is elementary. In Section 3 we obtain Theorem 1.1 as a simple
consequence when p ≥ 5, combining with the known result on p = 2, 3, and in
Section 4 we offer some numerical examples.

2. Preliminaries

2.1. Nuts and bolts. As usual, let Δ(z) ∈ S12 be the cusp form

(2.1) Δ(z) := q
∞∏

n=1

(1− qn)24 = q − 24q2 + . . . ,

and, for even k ≥ 4, let Ek(z) ∈ Mk be the normalized Eisenstein series

(2.2) Ek(z) := 1− 2k

Bk

∞∑
n=1

⎛
⎝ ∑

1≤d|n
dk−1

⎞
⎠ qn,

where the rational numbers Bk are the usual Bernoulli numbers given by the gen-
erating function

∞∑
k=0

Bk · t
k

k!
=

t

et − 1
= 1− 1

2
t+

1

12
t2 − . . . .

For convenience, we let E0(z) := 1. Finally, we let j(z) be the usual modular
function

(2.3) j(z) :=
E4(z)

3

Δ(z)
= q−1 + 744 + 196884q + . . . .

Finally, for convenience, if k ∈ 2Z, then throughout we define δ(k)∈{0, 4, 6, 8, 10, 14}
so that

(2.4) δ(k) ≡ k (mod 12).

In the proof, we need the following propositions.

Proposition 2.1. A normalized Hecke eigenform is non-ordinary at p if there is
an m ≥ 1 such that af (p

m) ≡ 0 (mod p).
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Proof. This follows from the fact that Tpf(z) = af (p)f(z) for every prime p when
f(z) is a normalized Hecke eigenform of weight k. Here Tp is the p-th Hecke
operator. In particular, on prime power exponents, we have

af (p)af(p
m) = af (p

m+1) + pk−1af (p
m−1) ≡ af (p

m+1) (mod p)

for every non-negative integer n. By induction, we find that

af (p
m) ≡ af (p)

m (mod p).

This proves the proposition. �

The following well-known propositions play a central role in the proof of Theo-
rem 2.5.

Proposition 2.2. If p ≥ 5 is prime, then as a q-series, Ep−1(z) ≡ 1 (mod p).

Proof. This can be found on page 38 of [7]. �

Proposition 2.3. If f(z) =
∑

n�−∞ af (n)q
n ∈ M !

2, then af (0) = 0.

Proof. By a simple generalization of Lemma 2.34 of [7], it is known that ev-
ery weakly holomorphic modular form h(z) of weight 2 may be represented as

P (j(z))E14(z)Δ(z)
−1

, where P (x) is a polynomial of x. Dropping the dependence
on z for convenience, we have the following well-known identities:

− 1

2πi

d

dz
j =

E14

Δ
,

jw
d

dz
j =

1

w + 1

d

dz
jw+1,

where w ∈ Z≥0. Therefore, it follows that h is the derivative of a polynomial in j,
and so its constant term in the Fourier expansion is zero. �

Remark. For more standard facts about modular forms the reader may see [7].

2.2. Our main technical result. In 2005 Choie, Kohnen and the third author
proved the following (see Corollary 1.3 of [1]). This result recovered earlier afore-
mentioned results of Hatada and Hida.

Theorem 2.4. Let p be a prime, and suppose that f(z) =
∑∞

n=1 af (n)q
n ∈ Sk is a

normalized Hecke eigenform. Let Lf be the number field generated by the coefficients
of f(z), and let p ∈ OLf

be any prime ideal above p.

(1) If p = 2, 3, then

af (p) ≡ 0 (mod p).

(2) If p ≥ 5, δ(k) ∈ {4, 6, 8, 10, 14} and k ≡ δ(k) (mod p− 1), then

af (p) ≡ 0 (mod p).

Here we strengthen this result for primes p ≥ 5 by extending it to all k without
any condition on δ(k).

Theorem 2.5. Let p ≥ 5 be prime, and suppose that f(z) =
∑∞

n�−∞ af (n)q
n ∈

M !
k ∩ OL[[q]], where k ∈ 2Z and OL is the ring of algebraic integers of a number

field L.
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(1) Suppose that a ≥ 0 and m ∈ A = {4, 6, 8, 10, 14} are integers for which

k − 2 ≤ (m− 2)pa.

If ord∞(f) > −pa and (p− 1)|(k−m), then for any integer b ≥ a, we have

af (p
b) ≡ − 2m

Bm
af (0) (mod p).

(2) Suppose that k ≤ 2, r, s ∈ Z≥0 and t, u ∈ Z>0 are integers for which

2− k = r(p− 1) + spt,

where s �= 2. If ord∞(f) > −pu, u ≤ t, then for any integer v such that
u ≤ v ≤ t, we have

af (p
v) ≡ af (0) ≡ 0 (mod p).

Proof. The proofs in both cases begin with the construction of suitable weakly
holomorphic modular forms of weight 2−k. The product of such forms with f have
weight 2, and so Proposition 2.3 implies that their constant terms vanish.

For case (1), first note that (k − 2) − (m − 2)pb ≡ k − m (mod p− 1). As we
have (p− 1)|(k −m) and k − 2 ≤ (m− 2)pb, we may find a non-negative integer c
such that

2− k = c(p− 1)− (m− 2)pb.

Let gm be the function

gm := j
E

(1+im)/2
6

E
(m+1+3im)/4
4

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

j E6

E2
4

for m = 4

j 1
E4

for m = 6

j E6

E3
4

for m = 8

j 1
E2

4
for m = 10

j 1
E3

4
for m = 14

∈ M !
2−m.

Then we have

gp
b

mEc
p−1 ∈ M !

2−k.

That is to say, the constant term of gp
b

mEc
p−1f is zero. From Proposition 2.2 we

know that

Ep−1 ≡ 1 (mod p).

Then we have that the constant term of gp
b

m f is zero modulo p. By using Fermat’s
little theorem to compute the multinomials, we get

gp
b

m f = (q−1 + 744 +O(q))p
b

(1− 504q +O(q2))
pb(1+im)

2

(1 + (−240)q +O(q2))
pb(m+1+3im)

4 f

≡ (q−pb

+ 744 +O(qp
b

))(1− 252(1 + im)qp
b

+O(q2p
b

))

(1− 60(m+ 1 + 3im)qp
b

+O(q2p
b

))
∑∞

n�−∞ af (n)q
n

≡ (q−pb

+ 432− 60m− 432im +O(qp
b

))
∑∞

n�−∞ af (n)q
n (mod p).

We already know that ord∞(f) > −pa ≥ −pb, so we know that the constant term

cm,p of gp
b

m f must satisfy the congruence

cm,p ≡ af (p
b) + (432− 60m− 432im)af (0) (mod p).
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As cm,p is known to be zero modulo p and for m ∈ A,

2m

Bm
= 432− 60m− 432im,

we get the conclusion.
For case (2), as we have 2 − k = r(p − 1) + spt and spt−u �= 2, we can find

c1, c2 ∈ Z≥0 such that 4c1 + 6c2 = spt−u. Then we have

(Ec1
4 Ec2

6 )p
u

Er
p−1f ∈ M !

2.

Hence we have that the constant term of (Ec1
4 Ec2

6 )p
u

Er
p−1f is zero. As

(Ec1
4 Ec2

6 )p
u

Er
p−1f ≡ (1 +O(qp

u

))f (mod p)

and ord∞(f) > −pu, we know af (0) ≡ 0 (mod p). To prove the case of af (p
v) for

u ≤ v ≤ t, we may find c′1, c
′
2 ∈ Z≥0 such that 4c′1 + 6c′2 = spt−v. Then we have

jp
v

(E
c′1
4 E

c′2
6 )p

v

Er
p−1f ∈ M !

2.

Hence the constant term of jp
v

(E
c′1
4 E

c′2
6 )p

v

Er
p−1f is zero. As

(jE
c′1
4 E

c′2
6 )p

v

Er
p−1f ≡ (q−pv

+ 744 + 240c′1 − 504c′2 +O(qp
v

))f (mod p)

and ord∞(f) > −pu ≥ −pv, we get

af (p
v) + (744 + 240c′1 − 504c′2)af (0) ≡ 0 (mod p).

Knowing that af (0) ≡ 0 (mod p), we get the conclusion. �

3. Proof of Theorem 1.1

By Theorem 2.4, p = 2 and 3 are non-ordinary for every normalized Hecke
eigenform on SL2(Z). Therefore, we may assume that S consists only of primes
p ≥ 5.

For the given finite set of primes S, let kS(j,m) := j
∏

p∈S(p− 1) +m, where j

is an arbitrary non-negative integer, m ∈ A. For each j and m let bS(j,m) be any
integer for which

kS(j,m)− 2 < (m− 2)pbS(j,m)

for all p ∈ S. Let f =
∑∞

n=1 af (n)q
n be any Hecke eigenform of weight kS(j,m).

By Theorem 2.5 (1), since af (0) = 0, we have

af (p
bS(j,m)) ≡ 0 (mod p)

for all p ∈ S. Applying Proposition 2.1, we know that f is non-ordinary for each
p ∈ S. As j can be chosen freely, we get the conclusion.

4. Examples

Example. Let S = {2, 3, 5, 7, 11, 13, 17, 19}. In the following table we list some of
the weights k for which Hecke eigenforms are non-ordinary at each prime p.
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p 12 ≤ k ≤ 42 such that all Hecke eigenforms Sk are non-ordinary at p
2 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
3 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
5 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
7 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
11 14 16 18 20 24 26 28 30 34 36 38 40
13 14 16 18 20 22 26 28 30 32 34 38 40 42
17 14 20 22 24 26 30 36 38 40 42
19 14 22 24 26 28 32 40 42

In particular, we consider the case k = 26 and check its non-ordinariness. We
have the following q-expansion of the normalized weight 26 Hecke eigenform f26 =
ΔE6E

2
4 :

f26(z) = q − 48q2 − 195804q3 − 33552128q4 − 741989850q5

+ 9398592q6 + 39080597192q7

+ 3221114880q8 − 808949403027q9 + 35615512800q10 + 8419515299052q11

+ 6569640870912q12 − 81651045335314q13 − 1875868665216q14

+ 145284580589400q15 + 1125667983917056q16 − 2519900028948078q17

+ 38829571345296q18 − 6082056370308940q19 +O(q20).

We can easily check that af26(p) ≡ 0 (mod p) for each p ∈ S. Of course we can
also choose weights k of the form k = 26 + 720j, for every j ∈ N. Note that
720 = [5− 1, 7− 1, 11− 1, 13− 1, 17− 1, 19− 1].
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