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Mechanical mechanisms of the directional movement and inverse of an eccentric compound droplet
in a modest extensional flow are investigated in this paper by spectral boundary element methods. In
this work, a phenomenon is revealed that the shift of a compound droplet is driven by the asymmetric
interfacial curvature, not just the outer drag. The asymmetric layout of the daughter droplet leads to the
asymmetric drags from the continuous phase and the asymmetric deformation of the compound droplet
with different interface curvatures. As the inner droplet has both enhancing and suppressing effects on
the globule deformation (during different stages), the interface curvatures will vary when the relative
size and location of the inner droplet are changed. The curvature difference results in the asymmetric
pressure distribution and circulation inside the compound droplet. Eventually, the interaction of the
inner driving force (curvature difference) and the outer drags results in the directional shift and
inverse of the compound droplet. The shift direction is affected by the structural asymmetry parameter
ε (eccentricity) and some flow features such as the capillary number. The conclusion could enlighten
potential applications for the movement of soft globules driven by the curvature difference. Published
by AIP Publishing. https://doi.org/10.1063/1.5024252

NOMENCLATURE

rMR initial radius of the globule
rR initial radius of the daughter droplet
dR initial distance between the two centroids
NB basis points
D deformation parameter
Ca capillary number
S11 the interface of the globule
S21 the interface of the daughter droplet
U average velocity of the domain flows
Fx outer drags of the globule in the x-axis
G shear rate
G0 the shear rate at the wall of the outlet when the volume

flow rate Q = 2R0
2/3

Q volume flow rate
R0 width of the outlet channel
u velocity
f surface stress
n normal vector

Superscripts
mom globule
CP continuous phase

Greek symbols
ε asymmetry parameter(eccentricity)
µ viscosity

a)wjingtao928@tju.edu.cn
b)guanjing@tju.edu.cn

γ interfacial tension
λ viscosity ratio

I. INTRODUCTION

As complex soft particles, multiple-emulsion compound
droplets are typical of skillfully designed internal structures.1

Since they might have multiple engulfed independent droplets
and thus sequentially broad potentials, they have drawn much
attention recently in many fields such as the drug delivery,
food, and cosmetics industry.2 At most times, these com-
plex compound droplets stored and delivered in the liquid
phase always deform under the force of the flow shear. Thus,
it is essential to study their rheological behaviors in more
detail.

Up to now, many studies about the rheology of multiple-
emulsion compound droplets especially for concentric dou-
ble emulsions (CDEs) in different flow systems by using
experiments3–6 and numerical simulations5,7–10 have been
reported. The controlled release3,4 and split6 of double-
emulsion compound droplets under the flow shear, located
in three-dimensional microchannel assembled by capillary
tubes, had been studied by a lot of experiments. Besides these
experiments, the rheological behaviors of multiple-emulsion
compound droplets have been studied with numerical meth-
ods by many researchers. As early as in 1990, Stone and Leal7

studied the deformation and breakup of the CDE compound
droplet in infinite extensional flows and therefore proposed
two different breakup mechanisms. Chen et al.5 investigated
the effects of the inner droplet of CDEs on its deformation in
shear flows. They demonstrated that there are two coexisting
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enhancing and suppressing effects of the inner droplet on the
deformation of the compound droplet when the deformation
process reached an equilibrium.

Furthermore, the rheological behaviors of the multiple-
emulsion compound droplet in straight and constriction
tubes have been investigated by numerical simulations.11–13

Through a spectral boundary element method (BEM), Wang
et al.13 simulated the translation process of double-emulsion
compound droplets containing two unequal daughter droplets
(DDs) in a constriction tube. It is very interesting that the
required maximum pressure drop is relatively lower when the
initial location of the bigger daughter droplet is in the front,
which demonstrates that the compound droplet is easier to pass
the constriction in this way.

Later, due to their potential applications in the controlled
release of the compound droplet insertion, the rheological
behaviors of multiple-emulsion compound droplets with com-
plex asymmetric internal structures and the directional move-
ment of their inner droplets have drawn much attention of some
researchers. Wang and his co-workers14–16 designed asymmet-
ric multiple-emulsion compound droplets with three layers. In
the second layer, there is one big DD which presented asym-
metric internal structures. Because of the structural asymmetry
in the third layer, the daughter droplet will shift in a certain
direction, which will cause the directional contact of the out-
most interface of the compound droplet and DD. Therefore,
the compound droplet is able to be broken up and have direc-
tional release. Moreover, Wang et al.16 indicated that the shift
caused by the internal asymmetry is controlled not only by
the asymmetric structures but also by the flow features such
as the viscosity ratio and capillary number. The shift direction
will be inversed by changing these factors. As for the eccentric
compound droplet, Qu and Wang17 have investigated its rhe-
ological behaviors in a planar extensional flow. They reported
that the eccentric compound droplet will shift away in the
same direction as the moving direction of the inner droplet.
The speed of the compound droplet is proportional to the dis-
tance between two centers of the compound droplet and the
inner droplet, i.e., proportional to the eccentricity. However,
the phenomena and mechanism of the directional shift of the
compound droplet have not been explored deeply in this work
and would not present the physical explanations of the shift
reverse.

In addition, Wang and co-workers studied the rheologi-
cal behavior of a simple droplet in an asymmetric extensional
flow.18,19 In their studies, the droplet is symmetric, but the
outer flow surrounding the drop is asymmetric. When the cap-
illary number is small, the droplet could not break up and
always shifts in the same direction in which the droplet suffers
bigger outer drags from the continuous phase. However, for a
multiple-emulsion compound droplet with an internal asym-
metry in an extensional flow under modest capillary numbers,
as the asymmetry is from the interior of the compound droplet,
its shift might be more complex and will not be caused by only
the outer drag.

The impact of compound droplets’ internal asymmetry
on the inner pressure distribution, interface curvature dif-
ference, and drags on the outer boundary of the compound
droplet are investigated in this paper by boundary element

methods. Compared to other numerical methods such as finite
element methods (FEM),20 finite volume methods (FVM),21

and control-volume finite element methods (CVFEM),22,23 the
boundary element method (BEM) handles only the points on
the boundary. Thus, it will reduce the problem dimensional-
ity by one and is easy to treat the problem involving multiple
interfaces like the problem treated in this paper.

II. MATHEMATICAL FORMULATION
AND NUMERICAL METHOD

The rheological behaviors of a compound droplet
[Figs. 1(b) and 1(d)] containing one eccentric daughter droplet
in a modest extensional flow [Figs. 1(a) and 1(c)] are studied
through a spectral boundary element method. The calculation
is done in a two-dimensional case [Figs. 1(a) and 1(b)], but it
is equivalent to an axisymmetric case [Figs. 1(c) and 1(d)].

As illustrated in Fig. 1(b), the daughter droplet (DD) is
located on the x-axis. The initial radii of the compound droplet
and daughter droplet are rMR and rR, respectively, and dR is
the distance between the two centroids at the initial time. We
define the asymmetry as ε = dR/(rMR � rR). The interface
of compound droplet is S11, and the inner interface is S21.

The DD filled with an inner phase with viscosity µ, the room
between the compound droplet and DD filled with an outer
phase with viscosity µ1, the compound droplet suspended in
a modest extensional flow with viscosity µ. The three phases
of fluid are assumed incompressible, Newtonian, and immis-
cible with each other. According to the work of Wang et al.,16

several factors affect the directional shift of the compound
droplet. One is the defined asymmetry ε and the other one is
the capillary number Ca. Ca = µU/γ, where U = 1 is the aver-
age velocity of the domain flows (continuous phase) at inlets,
µ= 1 is the viscosity of the domain flows, and γ is the interfacial
tension. γ will be changed to adjust the value of Ca. Mean-
while, we also investigate the x component of outer drags Fx

of the compound droplet and its internal pressure distribution
to reveal mechanism of the directional shift of the compound
droplet.

According to the work of Wang et al.,14,15 the corre-
sponding boundary conditions are given in the following. The
non-slip microchannel boundary condition is u0 = 0. The flow
at the inlet and outlet of the microchannel is driven by pressure,
whose parabolic velocity profile is

u0 = ±G
R0

2


1 −

(
R
R0

)2
n, (1)

where G is the shear rate, the negative sign is for the outlets and
the positive sign is for the inlets, and n is the normal vector.

All physical quantities here are dimensionless and reduced
by some scale, we employ the radius R0 = 1 of the outlet chan-
nel as the length scale. G0 is the shear rate at the wall of the
outlet when the volume flow rate Q = 2R0

2/3, G0
�1 is the time

scale, and µ0G0 is the pressure scale. The viscosity and the
interface tension are scaled by µ0 and µ0R0G0, respectively.
Initially, all droplets are spherical due to surface tensions.
The radius of the compound droplet rMR = 0.5R0 and that of
rR = 0.1R0.
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FIG. 1. [(a) and (b)] The illustration of the 2-dimensional cross-like microfluidic device and eccentric double-emulsion compound droplet. [(c) and (d)] The
illustration of the equivalent axisymmetric cross-like microfluidic device and axisymmetric multiple-emulsion compound droplet.

The size of the microchannel (10�6 m) is in the micron
scale. The Stokes equation and continuity equation as the
governing equation are employed in our system with incom-
pressible low-Reynolds number flow,

∇ · u = 0, (2)

− ∇p + µ∇2u = 0, (3)

where µ is the viscosity for each phase, p is the dynamical
pressure, and u is the velocity.

On the interfaces (S11 and S21) of the compound droplet,




u2,1 = umom
2,1

u1,1 = uCP
1,1

,




∆f1,1 = f CP
1,1 − f1,1 = γ1,1(∇ · n)n +

(
κCP

1,1 − κ1,1

)
ρ (g · x) n

∆f2,1 = f mom
2,1 − f2,1 = γ2,1(∇ · n)n +

(
κmom

2,1 − κ1,1

)
ρ (g · x) n

.

(4)

The superscripts “mom” and “CP” indicate the mother droplet
and continuous phase, respectively. f2,1 is the surface stress of

the inner side of the surface S21, and f mom
2,1 is the surface stress

of the outer side of the surface S21. Because the microchannel
is in micron size and the surface tensions play a major role,
the effects of gravities and buoyancies are negligible.

LHS is defined as

LHS =




2πµu(x0), x0 ∈ S0,

2πµ(1 + λ1,1)u(x0), x0 ∈ S1,1,

2πµ(λ1,1 + λ2,1)u(x0), x0 ∈ S2,1.

(5)

The velocity at a point x0 on the interface including boundary
S0 and the surface of the droplet S11 and S21 could be expressed
as the following integral of the velocity and surface stress f:

LHS = −
∫

S0

[S · f − µT · u · n]dS

−

∫
S1,1

[S · ∆f1,1 − (1 − λ1,1)µT · u · n]dS

−

∫
S2,1

[S · ∆f2,1 − (λ1,1 − λ2,1)µT · u · n]dS. (6)
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The fundamental solutions for the two-dimensional Stokes
flow are24,25

Sij(x̂) = −δij ln r +
x̂ix̂j

r2
, (7)

T ijk(x̂) = −4
x̂ix̂j x̂k

r4
. (8)

The vector x̂ is defined as x̂ = x � x0, and r = |x̂|. These
fundamental solutions describe the flow induced by stress at
point x0.

The following two integral equations could be used to
calculate the velocities at any interior points,

2πµu(x0) = −
∫

B
[S · f − µT · u · n]dS, (9)

−

∫
B

[S · f − µT · u · n]dS =



4πµλu (x0) , x0 ∈ DP

4πµu (x0) , x0 ∈ CP
. (10)

4πµλu(x0) is for x0 in the interior of the compound droplet
(dispersed phase) and 4πµu(x0) is for x0 in the interior of the
domain (continuous phase).

The following pressure distribution equation was
employed to determine the pressure at any point x0:

4πp(x0)=−
∫

S0

[P · f − µΠ · u · n]dS

−

m1∑
j = 1

∫
S1,1

[P · ∆f1,1 − (1 − λ1,1)µΠ · u · n]dS

−

n∑
i = 2

mi∑
j = 1

∫
Si,2

[P · ∆f1,2 − (λ1,1− λ2,1)µΠ · u · n]dS.

(11)

The fundamental solution for two-dimensional pressure field
is expressed as

Pi = 2
x̂i

r2
, (12)

Πik (x0, x) = 2

(
−
δik

r2
+ 2

x̂ix̂k

r4

)
, (13)

where x̂ = x � x0, r = |x̂|, x0 is the reference point, and x is an
arbitrary point in the local region.

The validation of this numerical method has been well
done in our previous papers.15 For problems with smooth
boundary, the boundary of the compound droplet is discretized
into NE section according to the spectral boundary element
methods. The geometric variables on each element can be
obtained by the higher order expansion of orthogonal polyno-
mials using the local variables on interval [�1, 1]. The number
of NB spectral points on each element is corresponding to
the roots of Jacobi polynomials of order NB. Meanwhile, the
parameter of boundary integral equation could be discretized,
and a linear system of algebraic equation is formed

u = Af + Bu. (14)

The matrices A and B are obtained by the integration of the
kernels S and T. Gauss quadrature with Legendre and Lobatto
points are employed for the integrations. Gauss elimination

FIG. 2. The relation between the total points number N and the relative error
of deformation D.

is then used to solve the linear system for the velocity and
stress.

A simple droplet in a flow system with appropriate param-
eter is employed to verify the convergence of our numerical
method. For this system, the deformation parameter D when
the droplet reaches an equilibrium is chosen to evaluate the
most appropriate basis points NB. The total number NE of ele-
ments is 44, and basis points NB = 6, 8, 10, 12, 14, and 16
are changing for each element. Results for NB = 16 are used
as the exact D in the calculation of the relative error. In this
investigation, when N = 44 ∗ NB = 440, the relative error is
lower than 10�4, and when N is larger than 440 the relative
error changes a little. Thus, we employ NB = 10 to ensure the
calculation accuracy and to reduce computing time. It could
be seen in Fig. 2 which is about the variation of relative error
under different N.

III. RESULTS AND DISCUSSIONS

In the investigated flow system, when taking the com-
pound droplet interface as the boundary, the continuous phase
surrounding the compound droplet is the outer flow; the dis-
persed phase between the interfaces of the compound droplet
and the daughter droplet is the inner flow. Thus, the entire flow
field is divided into two regions: the outer flow which could
generate drags to the compound droplet and the inner circu-
lation which could result in the movement of the mass center
of the compound droplet. Apparently, the asymmetric layout
of the daughter droplet would cause an asymmetric pressure
distribution and a directional circulation inside the compound
droplet (see Fig. 3). Thus, the compound droplet might shift
in some specific direction (to the left or right), and the direc-
tion is determined by both the internal asymmetry and some
flow characteristic parameters such as Ca. As shown in Fig. 3,
under the same Ca = 0.2, double-emulsion compound droplets
with different initial eccentricities have opposite pressure dis-
tributions and inner circulation and further have the opposite
shift direction.

It is well known that the inner circulation has four sym-
metric eddies when a concentric compound droplet or a simple
droplet reaches the equilibrium. However, for the eccentric
compound droplet, it will not have an equilibrium state since it
will move away from its initial location. Nevertheless, accord-
ing to the pattern of the inner circulation of the eccentric
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FIG. 3. [(a) and (b)] When the initial
ε = 0.375 and Ca = 0.2, the eccentric
compound droplet will shift to the left
due to the asymmetric internal circula-
tion and pressure distribution. [(c) and
(d)] When the initial ε = 0.750 and
Ca = 0.2, the same compound droplet
will shift to the right due to the asym-
metric internal circulation and pressure
distribution.

compound droplet (see Fig. 4), the process could also be
divided into two stages: before the formation of the circu-
lation with four eddies (BF, t = 0 to about t = 1) and after
that (AF). At time t = 1.0, four steady eddies in the circula-
tion have almost been generated as shown in Fig. 4(b). In the
AF stage, according to displacement of the compound droplet
mass center, the deformation could also be separated into two
stages: unclear displacement (AFUD, about t = 1 to about
t = 4) and clear displacement (AFCD, about t > 4). In the

AFUD stage, the compound droplet has clear displacement
and its inner circulation has four steady eddies [see Fig. 4(c)];
in the AFCD stage, the mass center of the compound droplet
moves away from its initial location significantly and it could
be seen that the liquid inside the droplet moves from the
right to the left through the inner circulation [see Fig. 4(d)].
The patterns of the inner circulation for eccentric compound
droplets with different initial eccentricities ε are almost the
same.

FIG. 4. The inner circulations of eccen-
tric compound droplet with ε = 0.375
and rR = 0.1R0 at different stages.



042005-6 Wang et al. Phys. Fluids 30, 042005 (2018)

FIG. 5. Regimes of the shift direction in terms of ε and Ca [(a) and (c)], and the critical capillary number as a function of ε [(b) and (d)]. For (a) and (b),
rR = 0.1R0 is fixed and the initial ε changes through the variation of the eccentric distances dR. For (c) and (d), dR = 0.1R0 is fixed and the initial ε changes
through the variation of the inner droplet radius rR.

As shown in Fig. 5, the regimes of the shift direction in
terms of ε and Ca for two cases have been investigated. In the
first case [Figs. 5(a) and 5(b)], rR = 0.1R0 is fixed and the initial
ε changes through the variation of the eccentric distances dR;
in the second case [Figs. 5(c) and 5(d)], dR = 0.1R0 is fixed and
the initial ε changes through the variation of the inner droplet
radius rR. For both the cases [Figs. 5(a) and 5(c)], when ε and
Ca are relatively small, the compound droplet generally shifts
to the left; when ε and Ca are relatively large, it will shift to
the right. The critical capillary numbers as functions of ε are
shown in Figs. 5(b) and 5(d), respectively. It could see that the
larger the initial ε is, the smaller the critical capillary number
is. Below the curve of critical capillary numbers, the droplet
will move to the left; above the curve, the droplet will move
to the right.

In order to see more details of the shift and inverse, the
displacement d of the mass center of the eccentric compound
droplets along with time at various capillary numbers and ini-
tial eccentricities is explored and shown in Fig. 6. Figures 6(a)
and 6(b) come from Fig. 5(a) when Ca = 0.16 and 0.20,
respectively; Figs. 6(c) and 6(d) come from Fig. 5(c) when
Ca = 0.16 and 0.20, respectively. When the initial ε is changed
from 0.125 to 0.750 through the variation of the eccentric dis-
tances dR, the capillary number is 0.16 for Fig. 6(a) and is 0.20
for Fig. 6(b). Comparing Figs. 6(a) and 6(b), it is obvious that
the shift behaviors of the same eccentric compound droplet
under two capillary numbers are different. As for Fig. 6(a),
the eccentric compound droplet intends to shift to the left
when the initial eccentricities vary from 0.125 to 0.750. How-
ever, although the compound droplet always shifts to the left
in this case, the shift speed is not monotonically increasing
[see Fig. 7(a)]. From ε = 0.125 to 0.375, the speed of shift

to the left increases; however, from ε = 0.375 to 0.750, the
speed decreases continuously. As for Fig. 6(b), the eccentric
compound droplet might shift either to the left or to the right
when the initial ε is in the range from 0.125 to 0.750. From
ε = 0.125 to 0.375, the compound droplet shifts to the left and
its speed increases; from ε = 0.375 to 0.500 the compound
droplet shifts to the left but its speed decreases [see Fig. 7(b)].
When the initial eccentricities are 0.625 and 0.750, the shift
direction of the compound droplet changes to the right and the
speeds increase [see Fig. 7(b)]. When the initial ε is changed
from 0.225 to 0.700 through the variation of the inner droplet
radius rR, the capillary number is 0.16 for Fig. 6(c) and is 0.20
for Fig. 6(d). Comparing Figs. 6(c) and 6(d), it could also be
seen that the shift behaviors are different for the same eccen-
tric compound droplet under various capillary numbers. As
for Fig. 6(c), the eccentric compound droplet always tends to
move to the left when the initial eccentricity varies in the range
of 0.225–0.700. However, its shift speed is also not mono-
tonically increasing [see Fig. 7(c)]: from ε = 0.225 to 0.375,
the shift speed increases; from ε = 0.375 to 0.700, the speed
decreases. As for Fig. 6(d), the eccentric compound droplet
could shift either to the left or to the right. When the initial
ε varies from 0.200 to 0.375, the compound droplet shifts to
the left and its speed increases; from ε = 0.375 to 0.500, the
compound droplet shifts to the left but its speed decreases
continuously [see Fig. 7(d)]. When the initial ε is increased
to 0.700, the compound droplet inverses its shift direction and
moves to the right. From the above analysis, it could be asserted
that the relatively small initial eccentricity and its appropriate
increase will benefit the shift to the left; however, when beyond
a limit, the increment of the eccentricity is beneficial to the left
shift no longer and might benefit the shift to the right when
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FIG. 6. The displacement of the mass center of the compound droplets with one eccentric daughter droplet along with time at various initial eccentricities and
capillary numbers [Ca = 0.16 for (a) and (c); Ca = 0.20 for (b) and (d)]. For figure (a) and (b), rR = 0.1R0 is fixed and the initial ε changes through dR. For figure
(c) and (d), dR = 0.1R0 is fixed and the initial ε changes through rR.

the initial ε is big enough. In addition, from Fig. 6, we also
could know that the relatively large Ca is beneficial to the right
shift.

In order to explain the phenomena shown in Fig. 6(b),
Fig. 6(b) has been analyzed further, and the corresponding
explorations are shown in Figs. 8–10, respectively. At first, the

FIG. 7. The speed variation of the mass center of the compound droplets along with the change of ε at time t = 11, 12, and 13. The four figures, (a)–(d),
correspond to Figs. 6(a)–6(d), respectively.
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FIG. 8. The deformation parameter D and interfacial curvatures (absolute values |k|) at two ends of the compound droplets versus time t for the simple drop,
concentric compound droplet, and eccentric compound droplet under Ca = 0.2. (a) D and |k| versus t for the simple drop and concentric compound droplet.
|k| versus t for eccentric compound droplet with initial ε = 0.125 (b), ε = 0.375 (c), and ε = 0.750 (d).

interfacial curvatures k at the right and the left endpoints of the
deformed compound droplet are explored and shown in Fig. 8.
When the inner droplet is exactly staying at the center of the

compound droplet, we have a concentric compound droplet
whose eccentricity ε is zero. As shown in Fig. 8(a), when
the deformation reaches an equilibrium, both the deformation

FIG. 9. The inner pressure p at two ends of the eccentric compound droplets versus time t for the initial eccentricity ε = 0.125 (a), ε = 0.375 (b), and ε = 0.750
(c) under Ca = 0.20. (d) The x component of the total drag force Fx versus time t for eccentric compound droplets with different initial eccentricities.
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FIG. 10. The displacement d of the mass center of the eccentric compound
droplets versus time t for various initial eccentricities under Ca = 0.20.
(a) ε = 0.125, (b) ε = 0.375, and (c) ε = 0.750.

parameter D defined according to the reference papers24,25 and
the curvature for the concentric compound droplet are bigger
than those for the simple droplet, which means the inner droplet
will enhance the deformation at equilibrium period. As our
interest focuses on the physical cause of the directional shift,
we will concentrate on BF and AFUD stages since the AFCD
stage is the result not the origin. As shown in Figs. 8(b)–8(d),
due to the compound droplet eccentricity, the curvature at the
left endpoint (dot 1) is different from that at the right endpoint
(dot 2). In order to show the effects of the inner droplet on
the interfacial curvatures, the curvature curves for the simple
droplet and the concentric compound droplet are also shown in
Figs. 8(b)–8(d) as contrasts. In the AFUD stage, it is obvious
that the curvature at dot 2 is larger than that for the concentric
compound droplet since the inner droplet is closer to dot 2 and
thus has a stronger enhancing effect. Also, the curvature at dot
1 is less than that for the concentric compound droplet, but
still larger than that for the simple droplet. This is reasonable
since the inner droplet in eccentric compound droplets is far-
ther to dot 1 than that in the concentric compound droplet and
thus has a weaker enhancing effect. However, in the BF stage,
the situation is just opposite. Although the difference might
be very small when the eccentricity is low, it could still assert
that the inner droplet has suppressing effects for the compound

droplet deformation in the BF stage. It could be seen that in
this stage the curvature at dot 1 is larger than that at dot 2 at the
same moment, which is much clearer when the eccentricity is
high.

The enhancing and suppressing effects of the inner droplet
on the interfacial curvatures could also be seen in the pres-
sure curves [Figs. 9(a)–9(c)] of two endpoints of the eccentric
compound droplets. For the three different initial eccentricities
ε = 0.125 [Fig. 9(a)], ε = 0.375 [Fig. 9(b)] and ε = 0.750
[Fig. 9(c)], the pressures at dot 1 are always higher than those
at dot 2 in the BF stage, which could cause the right shift of the
compound droplet; and in the AFUD stage, the pressures at dot
1 are always lower than those at dot 2, which could cause the
left shift. Meanwhile, in the AFCD stage, the pressures at dot
1 are always lower for ε = 0.125 and ε = 0.375, which is consis-
tent to the obvious shift of the compound droplet to the left; as
for ε = 0.750, the situation is just opposite at most times, which
is consistent to the obvious shift of the compound droplet to
the right. In order to reveal the mechanism behind the oriented
shift, the curves of the x component Fx of the sum drag forces
for three eccentricities are shown in Fig. 9(d). Since the flow
system is symmetric in the y direction, the y component Fy

is always zero. When ε = 0.125 and ε = 0.375, values of Fx

are positive (which means that the force points to the right)
and increase along with time at the BF stage. Then, when Fx

reaches a maximum value, the curves will decline along with
time, and in the AFCD stage they might have negative values.
When ε = 0.750, values of Fx are always positive and much
higher than those for ε= 0.125 and ε= 0.375 at most of the time.
In the BF stage, the curve of Fx ascends rapidly; in the AFUD
stage, values of Fx are relatively quite large but do not change
very much; in the AFCD stage, the curve of Fx ascends along
with time again. From the above analysis, it could be seen that
the outer drag is generally stronger to the half of the eccentric
compound droplet in which the inner droplet is staying. Fur-
thermore, since the inner droplets always stay in the right half
of the compound droplet for the cases studied in this paper, it
could be asserted that the outer drags always tend to pull the
compound droplet to the right in both BF and AFUD stages
no matter how big the initial eccentricities are.

In order to see the effects of inner pressure differences
and outer drag forces on the shift of the eccentric compound
droplets further, the time-evolution curves of the mass center of
the compound droplets are shown in Fig. 10, and the curves for
both BF and AFUD stages are particularly magnified. When
ε = 0.125 and ε = 0.375 [see Figs. 9(a) and 9(b)], initially, the
compound droplets shift to the right a little bit, which is the
actively combined action of the inner pressure differences and
outer drag forces. Then, the curves of d descend continuously,
which means that the compound droplets begin to shift to the
left. At this moment, it could see from Figs. 10(a)–10(c) that
the outer drags pull the compound droplet to the right but
the inner pressure differences move the compound droplet to
the left. Thus, it could be asserted that the left shifts of the
eccentric compound droplets are caused by the inner pressure
differences, i.e., by the interfacial curvature differences. When
ε = 0.750 [see Fig. 10(c)], the d curve is always positive and
ascends continuously although the ascending rates in different
stages change a little bit. As shown in the inset of Fig. 10(c),
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FIG. 11. Interfacial curvatures (absolute values |k|) |k| versus t for the eccentric compound droplet and corresponding concentric compound droplet with different
initial eccentricities under Ca = 0.20. ε = 0.225 (a), ε = 0.375 (b), and ε = 0.700 (c).

the ascending rate in stage one is relatively high since both the
inner pressure difference and the outer drag are positive to the
right shift in this stage; in stage two, the outer drag is quite
big and positive but the inner pressure difference [which is
diminishing quickly, see Fig. 10(c)] is negative to right shift;
thus, the slope of d curve in this stage decreases a little. In
stage three, the inner pressure difference and the outer drag

are both positive to the right shift again. Thus, we could assert
that the right shift of the eccentric compound droplet is caused
by the outer drag. The investigation in Figs. 8–10 only focuses
on the cases shown in Fig. 6(b), in which the initial ε changes
through the variation of the eccentric distances dR.

The corresponding results shown in Fig. 6(d) are simi-
lar to those in Fig. 6(b). In order to explain the phenomena

FIG. 12. The inner pressure p at two endpoints of the eccentric compound droplets versus time t for the initial eccentricity ε = 0.225 (a), ε = 0.375 (b), and
ε = 0.700 (c) under Ca = 0.2.
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(variation with the rR), Fig. 6(d) has been analyzed further
and the obtained results are shown in Figs. 11–14, respec-
tively. From Fig. 6(d), the velocity of the compound droplet
shift to the left increases as the relatively small initial eccen-
tricity increase and reverses as it comes to the limit of the
eccentricity. It could be asserted that the relatively small ini-
tial eccentricity and its appropriate increase will benefit the
shift to the left; however, when beyond a limit, the increment
of the eccentricity is beneficial to the left shift no longer and
might benefit the shift to the right when the initial ε is big
enough.

At first, the interfacial curvatures k at the right and left end-
points of the deformed compound droplet are investigated and
shown in Fig. 11. Due to the inner eccentric droplet, the curva-
ture at dot 1 is different from that at dot 2. In order to observe
the effect of the volume of the daughter droplet on the inter-
facial curvatures, the curvature curves for the concentric com-
pound droplets with the same size inner droplets as the eccen-
tric compound droplets are also shown in Figs. 11(a)–11(c),
respectively. In the AFUD stage (t = 1 � 4 s), since the inner
droplet is closer to dot 2 and has a stronger enhancing effect,
the curvature at dot 2 is larger than that for the concentric com-
pound droplet; since the inner droplet in eccentric compound

FIG. 13. The x component of the total drag force Fx versus time t for eccentric
compound droplets with different initial eccentricities under initial Ca = 0.20.
(a) ε = 0.225, (b) ε = 0.375, and (c) ε = 0.700.

droplets is farther to dot 1 than that in the concentric compound
droplet and has a weaker enhancing effect, the curvature at dot
1 is less than that for the concentric compound droplet. How-
ever, in the BF stage, the situation is opposite and the inner
compound droplet has suppressing effects for the compound
droplet deformation. In this stage, the curvature at dot 1 is
larger than that at dot 2, and the difference is relatively big
when the eccentricity is high.

The enhancing and suppressing effects of the inner droplet
on the interfacial curvatures are also shown in Figs. 12(a)–
12(c) which present the pressure curves of two endpoints of
the eccentric compound droplets. For the three different initial
eccentricities ε = 0.225 for Fig. 12(a), ε = 0.375 for Fig. 12(b),
and ε = 0.700 for Fig. 12(c), the pressures at dot 1 are always
higher than those at dot 2 in the BF stage and they are always
lower in the AFUD stage. Thus, in the BF stage, the inner
asymmetric pressure distribution will cause the right shift of
the compound droplet, and in the AFUD stage it will cause
the left shift. From these three figures, it could be seen that the
pressure difference at two ends is always increasing when the
inner droplet gets bigger.

Figure 13 exhibits the curves of the x component Fx

of the total drag forces for three initial eccentricities. When
ε = 0.225 and ε = 0.375, values of Fx are positive at first and
increase along with time until reaching a maximum. Then,
the curves will decline and might be negative in the AFCD
stage. When ε = 0.700, values of Fx are much higher than
those for ε = 0.225 and ε = 0.375 at most of the time. They are
always positive and monotonously increasing. In the BF stage,
the curve of Fx ascends rapidly; after the BF stage, values of
Fx are relatively quite large and still increasing, but the slope
becomes a little smaller. As we already knew, the outer drag
is generally stronger to the half of the compound droplet in
which the inner droplet is staying. Since the inner droplets
always stay in the right half, the outer drags always tend to
pull the compound droplet to the right in both BF and AFUD
stages no matter how big the inner droplets are.

The time-evolution curves of the mass center of the com-
pound droplets with inner droplets of different sizes are shown
in Fig. 14, from which the common action of inner pressure
differences and outer drag forces on the shift of the eccen-
tric compound droplets could be seen. When ε = 0.225 and
ε = 0.375 [see Figs. 14(a) and 14(b)], initially, the compound
droplets shift to the right a little, which is caused by the posi-
tive common action of both the inner pressure differences and
outer drag forces. Then, the curves of d descend continuously,
which means that the compound droplets begin to shift to the
left. At this moment, from Figs. 13(a) and 13(b) it could see
that the outer drags pull the compound droplet to the right
but from Figs. 12(a) and 12(b) the inner pressure differences
move the compound droplet to the left. Thus, the left shifts of
the eccentric compound droplets are caused by the inner pres-
sure differences, i.e., by the interfacial curvature differences.
When ε = 0.700 [see Fig. 14(c)], the d curve is always posi-
tive and ascends continuously although the ascending rates in
different stages change a little bit. As shown in the inset of
Fig. 14(c), the ascending rate in stage one is relatively high
since both the inner pressure difference and the outer drag
are positive to the right shift in this stage; in stage two and
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FIG. 14. The displacement d of the
mass center of the eccentric compound
droplets versus time t for various ini-
tial eccentricities under Ca = 0.20. (a) ε
= 0.225, (b) ε = 0.375, and (c) ε = 0.700.

three, the outer drag is quite big and positive but the inner
pressure difference is negative to right shift; as a result, the
slope of d curve in this stage decreases a little. Thus, the right
shift of the eccentric compound droplet is caused by the outer
drag.

Comparing the results shown in Figs. 8–10 to those in
Figs. 11–14, it could be seen no matter how generating the
asymmetries either by changing the location or by the size, the
mechanisms to cause the directional movement and inverse of
eccentric compound droplets are the same. Besides Ca = 0.20,
the cases when Ca = 0.22 has also been investigated in order to
make the conclusion more convincing. As its results are very
similar to those for Ca = 0.20, they are not shown here to avoid
the lengthiness, but in the supplementary material.

IV. CONCLUSIONS

By investigating the rheological behaviors of eccentric
compound droplets, whose asymmetries are generated by
changing either the location or the size of inner droplets, in a
modest extensional flow, the mechanical mechanisms of their
directional movement and inverse have been investigated in
this paper. According to the common sense, generally, the
movement of a globule is driven by the asymmetric outer
drags. However, in this work, a shift which is driven by the
asymmetric interfacial curvature of the compound droplet is
revealed. As the inner droplet has both enhancing and sup-
pressing effects on the deformation of the compound droplet
in different stages, the asymmetric layout of the inner droplet

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-028804
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leads to the asymmetric deformation of the compound droplet.
Thus, the globule has different interface curvatures at two
endpoints. This curvature difference results in the asymmet-
ric pressure distribution and circulation inside the compound
droplet, which could drive the globule shifting in some direc-
tion by changing its mass center. In addition, the internal
asymmetry also results in the asymmetric outer drags from the
continuous phase. Certainly, the asymmetric drag could drive
the compound droplet shifting too. The higher the asymme-
try is, the larger the outer drag is. The interaction between the
outer (drags) and the inner (internal pressure differences) driv-
ing force causes the oriented shift and inverse of the compound
droplet eventually. Thus, the shift direction is affected not
only by the structural asymmetry parameter ε (eccentricity) but
also through some flow features such as the capillary number.
Changing these factors might cause the variation of the shift
direction. When the initial ε and Ca are relatively small (below
the critical curve of Ca), the compound droplet is mainly driven
by the asymmetric interfacial curvatures and shifts to the left;
when ε and Ca are relatively large (above the critical curve
of Ca), the compound droplet is mainly driven by the outer
drags and shifts to the right. When the capillary number Ca is
increased, the flow shear gets stronger and naturally the effect
of drags will becomes larger, which is consistent to our result
and could explain that the droplet shifts to the right at the large
Ca. The results obtained in this paper might have significant
potential applications for the curvature-driving movement of
soft globules.

SUPPLEMENTARY MATERIAL

See supplementary material for the case for Ca = 0.22 that
has also been investigated in order to make the conclusion more
convincing and the results that are shown from Figs. S1–S6.
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