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A B S T R A C T

The characteristic signals of the machined surface are a mixture of actual signals and noise. It is feasible to make
the features distinct through wavelet denoising. However, some of the deterministic signals may be lost with
noise removed resulting in the loss of energy which make it difficult to judge the real components of the surface.
An improved signal determination method —— wavelet denoising with compensation of the loss (WDCL) is
proposed in this paper. The compensation method uses ensemble empirical mode decomposition (EEMD) and
transfer function in which instantaneous frequency is calculated by Hilbert transform (HT). The coefficients of
the transfer function are adjusted by improving the passing rate of the deterministic signals and lowering the
passing rate of noise. The result shows that the WDCL can enhance the resolution of the real signals and reduce
noise further.

1. Introduction

Machined surface feature is composed of dissimilar components
varying in scale or frequency, these components contain useful in-
formation to trace errors of the machine. A variety of errors will be
reflected in the surface topography of the workpiece during the ma-
chining process. So all the effective components of the surface topo-
graphy are important for identifying the error source by feature ex-
traction so as to improve the machining accuracy further [1–3].
However, it is often immersed in heavy noise. The noise could be
generated by aperiodic stochastic vibration which is caused by random
factors during the cutting process and distributed throughout the entire
frequency domain. So it is necessary to carry out full frequency-domain
noise reduction first. Denoising process is usually done in the frequency
domain. Many filters could be used for denoising such like the 2RC,
Gaussian, B-spline and digital filters [4–6] etc. They are essentially
various signal analysis techniques. However, in terms of noise reduc-
tion, when the noise spectrum and signal spectrum overlap, the filters
above not only lose certain real frequency information, but also can not
achieve good noise reduction effect in the reserved frequency domain.
On the other hand, the time–frequency analysis methods have been
widely used. In the early studies, Fourier analysis was the dominant
signal analysis tool for denoising. But there are some crucial restrictions
of the Fourier transform [7]: the signals to be analysed must be periodic
or stationary, otherwise it would make little physical sense. Moreover,
it can only get frequency information of main component losing the
spatial information at the same time. In fact, the machined surface

features are usually non-stationary and non-linear, thus Fourier trans-
form cannot get the desired results to deal with surface quality char-
acteristics. In the later works, wavelet transform has become popular
which can get both frequency and spatial information of surface topo-
graphy. It can also decompose the different frequency components in
the signal to a non-overlapping frequency band and carry out noise
reduction in the entire frequency domain. This is another aspect which
is superior to the traditional denoising methods based on filtering. It has
been widely used in mechanical surface diagnosis [8]. One of the most
widely used methods was wavelet threshold denoising method. Donoho
and Johnstone [9] proposed a uniform threshold method in 1994. Cai
and Silverman [10] proposed a denoising method based on neigh-
bouring coefficients (NeighCoeff) in 1999. However, the wavelet de-
noising method still have some inevitable deficiencies [11], including
the interference terms, border distortion and energy leakage. In fact,
almost all the denoising methods have energy leakage problems.

Recently, another time–frequency analysis method named
Hilbert–Huang transform (HHT) [12–15] has become increasingly
popular. It is a combination of empirical mode decomposition (EMD)
and Hilbert transform (HT). EMD is a time adaptive decomposition
operation which can decompose the signal into a set of complete and
almost orthogonal components named intrinsic mode function (IMF)
[7], which are almost monocomponent. Zhang et al. [16] combined
wavelet reconstruction with EMD. However, one of the major draw-
backs of EMD is the mode mixing problem. To alleviate the problem,
ensemble empirical mode decomposition (EEMD), an improved method
of EMD, was presented by Wu and Huang [17] in 2011. The EEMD
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method can eliminate the mode mixing problem in all cases auto-
matically. It has been developed and widely applied in fault diagnosis
of rotating machinery recently [18,19]. By using the Hilbert transform
on IMFs, the instantaneous frequency, phase and amplitude of signals
can be obtained. In control systems, error compensation is often per-
formed with the help of transfer function [20,21]. For wavelet de-
noising process, the transfer function can be obtained by inputting and
outputting data with which the energy loss can be compensated to some
extent. In the seismic data processing, the problem of energy loss also
exist. There are many time–frequency analysis methods based on en-
ergy compensation [22–24]. Given that the high frequency data is easy
to lose, most of the compensation methods are only used for high fre-
quency compensation.

Almost all the traditional noise reduction methods have the problem
of energy loss. In order to effectively eliminate noise while retaining the
true component of machined surface feature, an improved signal de-
termination method —— wavelet denoising with compensation of the
loss (WDCL) is proposed in this paper. It utilizes the excellent properties
of wavelet in signal denoising throughout the entire frequency domain,
combined with good decomposition ability of EEMD and the compen-
sation roll of transfer function of each IMF. The result shows that the
WDCL method could not only denoise the entire frequency component,
but also perform energy compensation after noise reduction which
achieves a better denoising effect than traditional denoising method.

2. Wavelet transform and Hilbert–Huang transform theory

2.1. Wavelet transform theory

Wavelet transform is a mathematical transformation method, and it
can decompose a given signal into different levels using wavelet bases.
The base function of wavelet transform is given by:

= ⎛
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where ψ is mother wavelet, all the wavelet bases ψs,τ are formed by
translating and stretching mother wavelet with factor s and τ. The
discrete form of wavelet transform of signal f(x) at scale j can be written
as:
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where j= 1, 2, …, N, N is the total discrete steps.
In addition to the wavelet base function, another base function

named scale-function is also necessary which can be written as:
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The discrete form of wavelet transform of signal f(x) at scale j can be
written as:
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Thus, discrete wavelet decomposition of f(x) can be given by:
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{CJ,k} is low-frequency decomposition coefficients set, that is, the
coefficients of scale-functions. {Dj,k} is high-frequency decomposition
coefficients set, that is, coefficients of wavelet-functions.

2.2. Hilbert–Huang transform theory

Hilbert–Huang transform (HHT) [25], consisting of empirical mode

decomposition and Hilbert transform, is an adaptive data analysis
method, which has been widely used in signal processing. The tech-
nique works through performing EMD on signals. The signals can be
decomposed into a set of complete and almost orthogonal components
named IMF, which are almost monocomponent. Hilbert transform is
carried out for those obtained IMFs, so we can get their instantaneous
frequency and a full energy-frequency-time distribution of the signals.

2.2.1. Hilbert transform theory
Hilbert transform (HT), a well-known signal analysis method, is

essentially defined as the convolution of signal x(t) with 1/t and it can
emphasize the local properties of x(t) as follows:
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π
x τ
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where P is the Cauchy principal value. Coupling the x(t) and y(t), the
analytic signal z(t) of x(t) can be obtained which is given by

= + =z t x t t a t e( ) ( ) iy( ) ( ) ,iφ t( ) (7)

where
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a(t) is the instantaneous amplitude of x(t), which can reflect how the
energy of the x(t) varies with time, and φ(t) is the instantaneous phase
of x(t).

One important property of the Hilbert transform is that if the signal
x(t) is monocomponent, so that the physical meaning of time derivative
of instantaneous phase φ(t) would be the instantaneous frequency ω(t)
of signal x(t). The instantaneous frequency equation is given by

=ω t
dφ t

( )
( )

dt (9)

2.2.2. Ensemble empirical mode decomposition (EEMD)
EEMD can solve the problem of mode mixing problem in EMD well

[17]. It defines the true IMF components as the mean of an ensemble of
trials. Each trial consists of the decomposition results of the signal plus
a white noise of finite amplitude [26].

The EEMD algorithm can be given as follows.

(1) Initialize the number of ensemble M, the amplitude of the added
white noise, and m= 1.

(2) Perform the mth trial on the signal added white noise.
(a) Add a white noise series with the given amplitude to the in-

vestigated signal

= +x t x t n t( ) ( ) ( )m m (10)

where nm(t) indicates the mth added white noise series, and
xm(t) represents the noise-added signal of the mth trial.

(b) Decompose the noise-added signal xm(t) into IMFs (ci,m, i= 1,
2, …, I), where ci,m denotes the ith IMF of the mth trial, and I is
the number of IMFs.

(c) If m < M then go to step (a) with m= m+ 1. Repeat steps (a)
and (b) again and again, but with different white noise series
each time.

(3) Calculate the ensemble mean ci of the M trials for each IMF

∑= = … = …
=

c M c i I m M1 , 1, 2, , , 1, 2, ,i
m

M

i m
1

,
(11)

(4) Report the mean =c i I( 1, 2, ldots, )i of each of the I IMFs as the
final IMFs.
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3. Wavelet denoising with compensation of loss

3.1. Transfer function

Gaussian filter has been widely used in machined roughness mea-
surement. It is a linear contour filter of the continuous weighting
function defined by the equation s(x) [27]:
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with x being the distance from the centre of the weighing function, λc
the cut-off wavelength of the filter and α a constant value, defined by
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π

log 2
0.4697

(13)

As the measured profile is usually given only at equidistant discrete
points xk = kΔx, the discrete representation of the Gaussian filter
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must be used, which is a good approximation of the continuous
weighing function (12), as long as Δx is sufficiently small.

The transfer function of Gaussian filter can be calculated from a
weighing function with Fourier transform.
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Wavelet filters, like Gaussian filters, are linear contour filters. The
discrete form of wavelet transform of signal f(x) at scale j can be written
as:
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The base function ψ[n − i] in wavelet transform is also the
weighting function. The transfer function of wavelet filter can be cal-
culated from a base function with Fourier transform.

= −H ω F ψ n i( ) ( [ ]) (17)

3.2. Compensation using transfer function

For machined surface topography, wavelet transformation tech-
nique is applied for denoising firstly. However, while the surface noise
is removed, some of the actual surface features are removed too. In
order to obtain more accurate surface quality characteristics, it need to
be compensated in the second step. The transfer function is needed in
which instantaneous frequency is calculated by Hilbert transform. The
coefficients of the transfer function are adjusted by improving the
passing rate of real signals and lowering the passing rate of noise.
However, using the Hilbert-transform to calculate the instantaneous
frequency requires that the signal is monocomponent, so that the EEMD
is needed before Hilbert-transform to decompose the denoising signal
into several monocomponent layers. The correlation coefficient be-
tween each layer and the denoising signal is used to determine the IMFs
to be retained. The wavelet denoising with compensation of loss
(WDCL) process can be given as follows:

(1) Input original signal x(t) and use wavelet filter to denoise the ori-
ginal signal to get the output signal x1(t).

(2)
(a) Use EEMD to decompose x1(t) into several IMFs (ci, i = 1, 2...n).
(b) Use a threshold [28] which is dependent on the correlation

coefficients between each layer and the denoising signal to
determine the IMFs to be retained:
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where ρth is the threshold, ρi is the correlation coefficient of the
ith IMF with the original signal, and n is the total number of
IMFs; max(ρi) is the maximum correlation coefficient observed.
The selection criterion for IMFs is given as follows: If ρi ≥ ρth,
then keep the ith IMF, else eliminate the ith IMF and add it to
the residue.

(3) For those retained IMFs, calculate their instantaneous frequency by
HT respectively.
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where y(t) is calculated by (6).
(4)

(a) As can be seen from the transform equation above, wavelet
transform is essentially a discrete convolution form.
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According to the time-domain convolution theorem: the con-
volution integral of the two functions in the time domain cor-
responds to the product of the spectra of the two functions in
the frequency domain:

↔f t f t F F( ) ( ) (jw) (jw)1 2 1 2 (22)

After Fourier transform, the wavelet transform (21) becomes:

= = …W H Z i J1, 2, ,i i i (23)

where H is the Fourier transform of weighting function,
(b) Substitute the ωi (20) into the equation (17), we can get the pass

rate of each instantaneous frequency Hi(ωi). For wavelet filter,
it could delete noise and retain real surface feature. Thus a
smaller Hi(ωi) value indicates that the frequency is noise com-
ponent which should be reduced further. While a larger Hi(ωi)
value indicates that the frequency is real surface feature com-
ponent which should be enhanced further. H1,i(ωi) is the ad-
justed Hi(ω).

(c) Substitute H1,i(ω) into formula (23), we can get a new output:

= = …Z W H i J1, 2, ,i i i1, 1, (24)

(d) Through inverse Fourier transform (iFFT) we can get the signal
after compensation and further noise reduction:

= = …x t Z ω i J( ) iFFT( ( )) 1, 2, ,c i i i, 1, (25)

(5) The compensated signal of each retained IMF is added to the final
compensated signal xc(t):

∑=
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J
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,
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For the noise signal x(t), the denoising signal x1(t) and the com-
pensated signal xc(t), their signal-to-noise ratio (SNR) and energy
are compared respectively.
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4. Applications to the test of machined surface topography

4.1. Simulation experiment

Machined surface topography contains complex frequency compo-
nents, and it is often contaminated with heavy noise. These components
contain useful information to extract the information needed to provide
process feedback and trace errors of machine. This WDCL technology
can be applied to test the machined surface topography. The denoising
method based on Gaussian filtering is used to compare with WDCL.

Case 1: A test signal was given to show that WDCL could compensate
energy loss and remove noise further. The original signal was x0 = sin
(2pi · 10t) + sin(2pi · 50t) + sin(2pi · 100t). It was added to the Gaussian
white noise with a signal to noise ratio of 5. The signal is shown in Fig. 1.

The cutoff wavelength of Gaussian filter is 8 μm, and Haar wavelet
basis is used for 6-layer Wavelet decomposition. The spectrum of the

noiseless original signal x0 and the denoising signal x1 are shown in
Figs. 2 and 3 .

As we can see from Figs. 2 and 3, the original signal contains 3
frequency components 10 Hz, 50 Hz and 100 Hz. After denoising, en-
ergy loss occurred to the real frequency components of the original
signal. Fig. 4 shows the IMFs we get after EEMD.

As is shown in Table 1, these IMFs’ correlation coefficients with
denoising signal were calculated. The values were arranged from large
to small and the larger ones were picked out as the retained IMFs ac-
cording to Eq. (19).

According to the process of WDCL, the instantaneous frequency of
each point of the retained IMFs were calculated and put into transfer
function. The transfer function were adjusted to get the compensated
signal. The energy compensation effect of spectrum of the signal is
shown in Fig. 5.

As we can see, energy loss occurred to the denoising signal. After
EEMD decomposition, the spectrum of the signal reconstructed by the
retained IMFs almost equal to the denoising signal. After compensation,
the noise amplitude is still the same level as the denoising signal, but
the energy of real frequency component is compensated in some extent.

In the end, the signal-to-noise ratio (SNR) and energy are used to
measure the characteristics of the signal. The SNR of the noise signal,
the denoising signals and the compensated signal are shown in Table 2.
Table 3 shows their energy.

As we can see from tables above, energy loss after denoising is large,
while the compensated signal can well make amend for it, which make
it closer to the original signal. Besides, the SNR of the compensated
signal is further improved. The larger of SNR, the better the de-noising
effect is. It can be seen that the new method can achieve a good noise
reduction effect, while reducing the energy loss compared with tradi-
tional denoising method based on Gaussian filtering.

The original signal, the noise signal, the wavelet denoising signal
and the compensated signal are presented in Fig. 6. The original signal,
the noise signal and the Gaussian denoising signal are shown in Fig. 7.

Case 2: In order to prove the effectiveness of the WDCL method,
another test signal shown in Fig. 8 was analysed. The signal was

Fig. 2. Spectrum of original signal x0 (left) and wavelet denoising signal x1
(right).

Fig. 1. Original signal and noise signal.

J. Sun et al. Precision Engineering 51 (2018) 338–347

341



generated by simulation and it was added on the white noise with a
SNR of 5.

DC shift is removed first. The cutoff wavelength of Gaussian filter is
0.08 mm, and Haar wavelet basis is used for 5-layer Wavelet decom-
position. The spectrum of noiseless original signal x0 and denoising
signals x1 are shown in Figs. 9 and 10 .

As we can see from pictures above, the energy of the low frequency
components have a different degree of loss after different methods of
noise reduction. The high frequency components of wavelet denoising
signal are still retained while the high frequency components of

Fig. 4. Applying EEMD to denoising signal x1.

Fig. 3. Spectrum of original signal x0 (left) and Gaussian denoising signal
x1 (right).

Table 1
Correlation coefficient between each IMF and denoising signal.

EEMD IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Value 0.0882 0.4845 0.3991 0.1305 0.2948 0.025 0.012

Fig. 5. Spectrum of denoising signals, retained IMFs and compensated signal.

Table 2
SNR of 4 kinds of signals.

Signal SNR

Noise signal 5.0043
Gaussian denoising signal 6.0794
Wavelet denoising signal 6.6257
Compensated signal 7.9128

Table 3
Energy comparison of each signal.

Signal Energy

Noise signal 1948.4
Original signal 1500
Gaussian denoising signal 1169.3
Wavelet denoising signal 1200
Compensated signal 1536
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Gaussian denoising signal are directly removed. The calculation result
of the EEMD decomposition process and the correlation coefficients of
IMFs are no longer shown here.

According to the process of WDCL, the energy compensation effect
of spectrum of the signal is shown in Fig. 11.

By WDCL we can get the energy which is closer to the real frequency
component. The SNR and energy are used to measure the characteristics
of signal which are shown in Tables 4 and 5 .

As we can see from tables above, the SNR of the compensated signal
is further improved than the wavelet denoising signal while the energy
of the compensated signal is closer to the original signal. Besides,
compared with Gaussian noise reduction method, the SNR values show
that both methods can achieve good denoising effect. However, the
high frequency part of the signal is directly cut off causing the loss of
the true component in high frequency domain, which is not conducive
to the separation and extraction of surface features. But the WDCL
method could not only denoise signal in the entire frequency domain,
but also perform energy compensation after noise reduction which
achieves a better denoising effect than Gaussian denoising method.

By using iFFT the compensated signal was obtained. The original
signal, the noise signal, the denoising signals and the compensated
signal are shown in Figs. 12 and 13 .

As can be seen from picture above, Gaussian noise reduction method
results in loss of true high frequency components.

4.2. Test of S test-piece surface topography

A S test-piece [29] is an important workpiece in mechanical field
which is shown in Fig. 14. S-type specimen is a newly proposed test
piece to verify the dynamic performance of the machine tool which is
obtained by performing flank milling operation on it. By cutting S-type
specimen to a certain extent, the dynamic performance of five-axis CNC
machine tools can be reflected. However, the surface topography ob-
tained from S-type specimen is often immersed in heavy noise. The
noise could be generated by aperiodic stochastic vibration which is
caused by random factors during the cutting process and distribute
throughout the entire frequency domain. Therefore, the surface features
are denoised first. Surface profiler, 2300A-R with sample step of 1 μm,
has a measuring range of 1200 μm and a resolution of 18 nm/1200 μm,
was applied to measure the S-type specimen surface quality. The
measurement area is shown in Fig. 14. The signal length is 500, the
sampling interval is 1 μm and the sampling frequency is 1000 Hz. The
original signal and denoising signals are shown in Figs. 15 and 16 .

Noise signal is the real signal with noise that we measured from the
surface of the S-type specimen. Form error was removed first and noise
reduction was carried out by wavelet filter and Gaussian filter. The
cutoff wavelength of Gaussian filter is 8 μm, and Haar wavelet basis is
used for 6-layer wavelet decomposition. The spectrum of the noise
signal and the denoising signals are shown in Fig. 17. The wavelength is
inversely proportional to the frequency. As we can see, the high-fre-
quency component of signal is still retained after wavelet noise reduc-
tion, and noise reduction was also carried out in the low-frequency
component. Since the Gaussian filter is low-pass filter, so that there is
almost no noise reduction for low frequency components, but the
higher frequency components is directly eliminated.

According to the process of WDCL, the compensated signal was
obtained. The loss of the low-frequency component of wavelet de-
noising was compensated. The spectrum of the noise signal, the com-
pensated signal and the denoising signals are compared in Fig. 18.
Table 6 shows their energy comparison.

As noise is generated by the random factors of the matching tool so
that we could not get the original noiseless signal. SNR values are no
longer shown here. As can be seen from the figure and table above, the
energy of the compensated signal and the wavelet denoising signal are
almost equal but the energy of the low frequency component of the
compensated signal is higher than the wavelet denoising signal, so we
could deduce that the residual noise in the high frequency part is

Fig. 6. Noise signal, original signal, wavelet denoising signal and compensated signal.

Fig. 7. Noise signal, original signal and Gaussian denoising signal.

Fig. 8. Original signal and noise signal.
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reduced further, that is, the SNR is further improved. Besides, the SNR
of the compensated signal is also improved compared with the signal of
Gaussian noise reduction. In summary, the WDCL method can achieve a
good noise reduction effect in the entire frequency-domain while
compensating the energy loss effectively. These signals are shown in
Fig. 19.

5. Discussion and conclusion

To solve the problem of energy loss caused by wavelet denoising, an
improved signal determination method called WDCL was proposed in
this paper. The energy compensation was mainly carried out by the
adjustment of the transfer function. To get the transfer function, we

need the Fourier transform of wavelet base function and the in-
stantaneous frequency of each point as the independent variable of the
transfer function. First, the EEMD was used to decompose the denoising
signal. Second, for each IMF we selected, Hilbert transform was cal-
culated to get the instantaneous frequency of each point, thus transfer
coefficient of each point was obtained. Finally, to get the adjusted
transfer function, the coefficients of the high passing rate were in-
creased and the coefficients of the low passing rate were reduced fur-
ther. The compensated signal was obtained by multiplying the adjusted
transfer function and the denoising result.

The S test-piece was used to validate the capabilities of the proposed
method. The applications to machined surface topography show that
the proposed method can effectively compensate for energy loss caused

Fig. 9. Spectrum of original signal x0 and denoising signal x1.

Fig. 10. Spectrum of original signal x0 and denoising signal x1.
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by denoising. Compared to traditional denoising method, the wavelet
denoising method could reduce noise in the entire frequency-domain
and the compensation method could compensate the energy loss at the
same time. Thus, the WDCL could achieve good denoising effect while
reducing energy loss. The analysed results demonstrate that the pro-
posed method is an effective approach to denoise signals and analyse
surface topography quality.

Fig. 11. Spectrum of original signal, denoising signals and compensated signal.

Table 4
SNR of 4 kinds of signals.

Signal SNR

Noise signal 5.0021
Gaussian denoising signal 9.2238
Wavelet denoising signal 7.8744
Compensated signal 10.4233

Table 5
Energy comparison of each signal.

Signal Energy

Noise signal 4.0254e+04
Original signal 2.9956e+04
Gaussian denoising signal 2.5039e+04
Wavelet denoising signal 2.4328e+04
Compensated signal 2.9570e+04

Fig. 12. Noise signal, original signal, wavelet denoising signal and compensated signal.

Fig. 13. Noise signal, original signal and Gaussian denoising signal.

Fig. 14. S test-piece and the measured area.

Fig. 15. Noise signal and wavelet denoising signal.
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