Remarks on the Thickness of $K_{n, n, n}{ }^{*}$

Yan Yang
Department of Mathematics
Tianjin University, Tianjin 300072, P.R.China
yanyang@tju.edu.cn

Abstract

The thickness $\theta(G)$ of a graph G is the minimum number of planar subgraphs into which G can be decomposed. In this paper, we provide a new upper bound for the thickness of the complete tripartite graphs $K_{n, n, n}(n \geq 3)$ and obtain $\theta\left(K_{n, n, n}\right)=\left\lceil\frac{n+1}{3}\right\rceil$, when $n \equiv 3(\bmod 6)$.

Keywords thickness; complete tripartite graph; planar subgraphs decomposition.
Mathematics Subject Classification 05C10.

1 Introduction

The thickness $\theta(G)$ of a graph G is the minimum number of planar subgraphs into which G can be decomposed. It was defined by Tutte [10] in 1963, derived from early work on biplanar graphs $[2,11]$. It is a classical topological invariant of a graph and also has many applications to VLSI design, graph drawing, etc. Determining the thickness of a graph is NP-hard [6], so the results about thickness are few. The only types of graphs whose thicknesses have been determined are complete graphs [1,3], complete bipartite graphs [4] and hypercubes [5]. The reader is referred to [7,8] for more background on the thickness problems.
In this paper, we study the thickness of complete tripartite graphs $K_{n, n, n},(n \geq 3)$. When $n=1,2$, it is easy to see that $K_{1,1,1}$ and $K_{2,2,2}$ are planar graphs, so the thickness of both ones is one. Poranen proved $\theta\left(K_{n, n, n}\right) \leq\left\lceil\frac{n}{2}\right\rceil$ in [9] which was the only result about the thickness of $K_{n, n, n}$, as far as the author knows. We will give a new upper bound for $\theta\left(K_{n, n, n}\right)$ and provide the exact number for the thickness of $K_{n, n, n}$, when n is congruent to $3 \bmod 6$, the main results of this paper are the following theorems.

Theorem 1. For $n \geq 3, \theta\left(K_{n, n, n}\right) \leq\left\lceil\frac{n+1}{3}\right\rceil+1$.
Theorem 2. $\quad \theta\left(K_{n, n, n}\right)=\left\lceil\frac{n+1}{3}\right\rceil$ when $n \equiv 3(\bmod 6)$.

2 The proofs of the theorems

[^0]In [4], Beineke, Harary and Moon determined the thickness of complete bipartite graph $K_{m, n}$ for almost all values of m and n.

Lemma 3.[4] The thickness of $K_{m, n}$ is $\left\lceil\frac{m n}{2(m+n-2)}\right\rceil$ except possibly when m and n are odd, $m \leq n$ and there exists an integer k satisfying $n=\left\lfloor\frac{2 k(m-2)}{m-2 k}\right\rfloor$.

Lemma 4. For $n \geq 3, \theta\left(K_{n, n, n}\right) \geq\left\lceil\frac{n+1}{3}\right\rceil$.
Proof. Since $K_{n, 2 n}$ is a subgraph of $K_{n, n, n}$, we have $\theta\left(K_{n, n, n}\right) \geq \theta\left(K_{n, 2 n}\right)$. From Lemma 3, the thickness of $K_{n, 2 n}(n \geq 3)$ is $\left\lceil\frac{n+1}{3}\right\rceil$, so the lemma follows.

For the complete tripartite graph $K_{n, n, n}$ with the vertex partition (A, B, C), where $A=\left\{a_{0}, \ldots, a_{n-1}\right\}, B=\left\{b_{0}, \ldots, b_{n-1}\right\}$ and $C=\left\{c_{0}, \ldots, c_{n-1}\right\}$, we define a type of graphs, they are planar spanning subgraphs of $K_{n, n, n}$, denoted by $G\left[a_{i} b_{j+i} c_{k+i}\right]$, in which $0 \leq i, j, k \leq n-1$ and all subscripts are taken modulo n. The graph $G\left[a_{i} b_{j+i} c_{k+i}\right]$ consists of n triangles $a_{i} b_{j+i} c_{k+i}$ for $0 \leq i \leq n-1$ and six paths of length $n-1$, they are

$$
\begin{aligned}
& a_{0} b_{j+1} c_{k+2} a_{3} b_{j+4} c_{k+5} \ldots a_{3 i} b_{j+3 i+1} c_{k+3 i+2} \ldots, \\
& c_{k} a_{1} b_{j+2} c_{k+3} a_{4} b_{j+5} \ldots c_{k+3 i} a_{3 i+1} b_{j+3 i+2} \ldots, \\
& b_{j} c_{k+1} a_{2} b_{j+3} c_{k+4} a_{5} \ldots b_{j+3 i} c_{k+3 i+1} a_{3 i+2} \ldots, \\
& a_{0} c_{k+1} b_{j+2} a_{3} c_{k+4} b_{j+5} \ldots a_{3 i} c_{k+3 i+1} b_{j+3 i+2} \ldots, \\
& b_{j} a_{1} c_{k+2} b_{j+3} a_{4} c_{k+5} \ldots b_{j+3 i} a_{3 i+1} c_{k+3 i+2} \ldots, \\
& c_{k} b_{j+1} a_{2} c_{k+3} b_{j+4} a_{5} \ldots c_{k+3 i} b_{j+3 i+1} a_{3 i+2} \ldots
\end{aligned}
$$

Equivalently, the graph $G\left[a_{i} b_{j+i} c_{k+i}\right]$ is the graph with the same vertex set as $K_{n, n, n}$ and edge set

$$
\begin{aligned}
& \left\{a_{i} b_{j+i-1}, a_{i} b_{j+i}, a_{i} b_{j+i+1}, a_{i} c_{k+i-1}, a_{i} c_{k+i}, a_{i} c_{k+i+1} \mid 1 \leq i \leq n-2\right\} \\
& \cup\left\{b_{j+i} c_{k+i-1}, b_{j+i} c_{k+i}, b_{j+i} c_{k+i+1} \mid 1 \leq i \leq n-2\right\} \\
& \cup\left\{a_{0} b_{j}, a_{0} b_{j+1}, a_{n-1} b_{j+n-2}, a_{n-1} b_{j+n-1}\right\} \\
& \cup\left\{a_{0} c_{k}, a_{0} c_{k+1}, a_{n-1} c_{k+n-2}, a_{n-1} c_{k+n-1)}\right\} \\
& \cup\left\{b_{j} c_{k}, b_{j} c_{k+1}, b_{j+n-1} c_{k+n-2}, b_{j+n-1} c_{k+n-1}\right\} .
\end{aligned}
$$

Figure 1(a) illustrates the planar spanning subgraph $G\left[a_{i} b_{i} c_{i}\right]$ of $K_{5,5,5}$.

Figure 1 A planar subgraphs decomposition of $K_{5,5,5}$

Theorem 5. When $n=3 p+2$ (p is a positive integer), $\theta\left(K_{n, n, n}\right) \leq p+2$.
Proof. When $n=3 p+2$ (p is a positive integer), we will construct two different planar subgraphs decompositions of $K_{n, n, n}$ according to p is odd or even, in which the number of planar subgraphs is $p+2$ in both cases.
Case 1. p is odd. Let G_{1}, \ldots, G_{p} be p planar subgraphs of $K_{n, n, n}$ where $G_{t}=G\left[a_{i} b_{i+3(t-1)} c_{i+6(t-1)}\right]$, for $1 \leq t \leq \frac{p+1}{2}$; and $G_{t}=G\left[a_{i} b_{i+3(t-1)} c_{i+6(t-1)+2}\right]$, for $\frac{p+3}{2} \leq t \leq p$ and $p \geq 3$. From the structure of $G\left[a_{i} b_{j+i} c_{k+i}\right]$, we get that no two edges in G_{1}, \ldots, G_{p} are repeated. Because subscripts in $G_{t}, 1 \leq t \leq p$ are taken modulo n, $\{3(t-1)(\bmod \mathrm{n}) \mid 1 \leq t \leq p\}=\{0,3,6, \ldots, 3(p-1)\},\{6(t-1)(\bmod \mathrm{n}) \mid 1 \leq t \leq$ $\left.\frac{p+1}{2}\right\}=\{0,6, \ldots, 3(p-1)\}$ and $\left\{6(t-1)+2(\bmod n) \left\lvert\, \frac{p+3}{2} \leq t \leq p\right.\right\}=\{3,9, \ldots, 3(p-2)\}$, the subscript sets of b and c in $G_{t}, 1 \leq t \leq p$ are the same, i.e.,

$$
\begin{aligned}
& \{i+3(t-1)(\bmod \mathrm{n}) \mid 1 \leq t \leq p\} \\
= & \left\{i+6(t-1)(\bmod \mathrm{n}) \left\lvert\, 1 \leq t \leq \frac{p+1}{2}\right.\right\} \cup\left\{i+6(t-1)+2(\bmod \mathrm{n}) \left\lvert\, \frac{p+3}{2} \leq t \leq p\right.\right\} .
\end{aligned}
$$

Furthermore, if there exists $t \in\{1, \ldots, p\}$ such that $a_{i} b_{j}$ is an edge in G_{t}, then $a_{i} c_{j}$ is an edge in G_{k} for some $k \in\{1, \ldots, p\}$. If the edge $a_{i} b_{j}$ is not in any G_{t}, then neither is the edge $a_{i} c_{j}$ in any G_{t}, for $1 \leq t \leq p$.
From the construction of G_{t}, the edges that belong to $K_{n, n, n}$ but not to any $G_{t}, 1 \leq$ $t \leq p$, are

$$
\begin{gather*}
a_{0} b_{3(t-1)-1}, \quad a_{0} c_{3(t-1)-1}, \quad 1 \leq t \leq p \tag{1}\\
a_{n-1} b_{3(t-1)}, \quad a_{n-1} c_{3(t-1)}, \quad 1 \leq t \leq p \tag{2}\\
a_{i} b_{i-3}, \quad a_{i} b_{i-2}, \quad 0 \leq i \leq n-1 \tag{3}\\
a_{i} c_{i-3}, \quad a_{i} c_{i-2}, \quad 0 \leq i \leq n-1 \tag{4}\\
b_{i} c_{i+3(t-1)-1}, \quad b_{i} c_{i+3(t-1)}, \quad 0 \leq i \leq n-1 \text { and } t=\frac{p+3}{2} \tag{5}\\
b_{3(t-1)} c_{6(t-1)-1}, \quad b_{3(t-1)-1} c_{6(t-1)}, \quad 1 \leq t \leq \frac{p+1}{2} \tag{6}\\
b_{3(t-1)} c_{6(t-1)+1}, \quad b_{3(t-1)-1} c_{6(t-1)+2}, \quad \frac{p+3}{2} \leq t \leq p \text { and } p \geq 3 \tag{7}
\end{gather*}
$$

Let G_{p+1} be the graph whose edge set consists of the edges in (3) and (5), and G_{p+2} be the graph whose edge set consists of the edges in (1), (2), (4), (6) and (7). In the following, we will describe plane drawings of G_{p+1} and G_{p+2}.
(a) A planar embedding of G_{p+1}.

Place vertices $b_{0}, b_{1}, \ldots, b_{n-1}$ on a circle, place vertices a_{i+3} and $c_{i+\frac{n+1}{2}}$ in the middle of b_{i} and b_{i+1}, join each of a_{i+3} and $c_{i+\frac{n+1}{2}}$ to both b_{i} and b_{i+1}, we get a planar embedding of G_{p+1}. For example, when $p=1, n=5$, Figure 1(b) shows the subgraph G_{2} of $K_{5,5,5}$. (b) A planar embedding of G_{p+2}.

Firstly, we place vertices $c_{0}, c_{1}, \ldots, c_{n-1}$ on a circle, join vertex a_{i+3} to c_{i} and c_{i+1}, for $0 \leq i \leq n-1$, so that we get a cycle of length $2 n$. Secondly, join vertex a_{n-1} to $c_{3(t-1)}$ for $1 \leq t \leq p$, with lines inside of the cycle. Let ℓ_{t} be the line drawn inside the cycle joining a_{n-1} with $c_{6(t-1)-1}$ if $1 \leq t \leq \frac{p+1}{2}$ or with $c_{6(t-1)+1}$ if $\frac{p+3}{2} \leq t \leq p(p \geq 3)$. For $1 \leq t \leq p$, insert the vertex $b_{3(t-1)}$ in the line ℓ_{t}. Thirdly, join vertex a_{0} to $c_{3(t-1)-1}$ for $1 \leq t \leq p$, with lines outside of the cycle. Let ℓ_{t}^{\prime} be the line drawn outside the cycle joining a_{0} with $c_{6(t-1)}$ if $1 \leq t \leq \frac{p+1}{2}$ or with $c_{6(t-1)+2}$ if $\frac{p+3}{2} \leq t \leq p(p \geq 3)$. For $1 \leq t \leq p$, insert the vertex $b_{3(t-1)-1}$ in the line ℓ_{t}^{\prime}. In this way, we can get a planar embedding of G_{p+2}. For example, when $p=1, n=5$, Figure 1(c) shows the subgraph G_{3} of $K_{5,5,5}$.
Summarizing, when p is an odd positive integer and $n=3 p+2$, we get a decomposition of $K_{n, n, n}$ into $p+2$ planar subgraphs G_{1}, \ldots, G_{p+2}.

Case 2. p is even. Let G_{1}, \ldots, G_{p} be p planar subgraphs of $K_{n, n, n}$ where $G_{t}=G\left[a_{i} b_{i+3(t-1)} c_{i+6(t-1)+3}\right]$, for $1 \leq t \leq \frac{p}{2}$; and $G_{t}=G\left[a_{i} b_{i+3(t-1)} c_{i+6(t-1)+2}\right]$, for $\frac{p+2}{2} \leq t \leq p$. With a similar argument to the proof of Case 1, we can get that the subscript sets of b and c in $G_{t}, 1 \leq t \leq p$ are the same, i.e.,

$$
\begin{aligned}
& \{i+3(t-1)(\bmod \mathrm{n}) \mid 1 \leq t \leq p\} \\
= & \left\{i+6(t-1)+3(\bmod \mathrm{n}) \left\lvert\, 1 \leq t \leq \frac{p}{2}\right.\right\} \cup\left\{i+6(t-1)+2(\bmod \mathrm{n}) \left\lvert\, \frac{p+2}{2} \leq t \leq p\right.\right\} .
\end{aligned}
$$

From the construction of $G_{t}, G_{\frac{p}{2}}$ and $G_{\frac{p+2}{2}}$ have $n-2$ edges in common, they are $b_{i+3\left(\frac{p+2}{2}-1\right)} c_{i+6\left(\frac{p+2}{2}-1\right)+1}, 1 \leq i \leq n-1$ and ${ }^{2} \neq n-4$, we can delete them in one of these two graphs to avoid repetition.
The edges that belong to $K_{n, n, n}$ but not to any $G_{t}, 1 \leq t \leq p$, are

$$
\begin{gather*}
a_{0} b_{3(t-1)-1}, \quad a_{0} c_{3(t-1)-1}, \quad 1 \leq t \leq p \tag{8}\\
a_{n-1} b_{3(t-1)}, \quad a_{n-1} c_{3(t-1)}, \quad 1 \leq t \leq p \tag{9}\\
a_{i} b_{i-3}, \quad a_{i} b_{i-2}, \quad 0 \leq i \leq n-1 \tag{10}\\
a_{i} c_{i-3}, \quad a_{i} c_{i-2}, \quad 0 \leq i \leq n-1 \tag{11}\\
b_{i} c_{i-1}, \quad b_{i} c_{i}, \quad b_{i} c_{i+1}, \quad 0 \leq i \leq n-1 \tag{12}\\
b_{3(t-1)} c_{6 t-4}, \quad 1 \leq t \leq \frac{p}{2} \tag{13}\\
b_{3(t-1)} c_{6 t-5}, \quad \frac{p+2}{2}<t \leq p \tag{14}\\
b_{3(t-1)-1} c_{6 t-3}, \quad 1 \leq t<\frac{p}{2} \tag{15}\\
b_{3(t-1)-1} c_{6 t-4}, \quad \frac{p+2}{2} \leq t \leq p \tag{16}
\end{gather*}
$$

Let G_{p+1} be the graph whose edge set consists of the edges in (10), (11) and (12), and G_{p+2} be the graph whose edge set consists of the edges in (8), (9), (13), (14), (15) and (16). We draw G_{p+1} in the following way. Firstly, place vertices $b_{0}, c_{0}, b_{1}, c_{1}, \ldots, b_{n-1}, c_{n-1}$ on a circle C, join vertex c_{i} to b_{i} and b_{i+1}, we get a cycle of length $2 n$. Secondly, place vertices $a_{0}, a_{2}, \ldots, a_{n-2}$ on a circle C^{\prime} in the unbounded region defined by the circle C such that C is contained in the closed disk defined by C^{\prime}, place vertices $a_{1}, a_{3}, \ldots, a_{n-1}$ on a circle $C^{\prime \prime}$ contained in the bounded region of C. Join a_{i} to $b_{i-3}, b_{i-2}, c_{i-3}$, and c_{i-2}, join b_{i} to c_{i+1}. We can get a planar embedding of G_{p+1}, so it is a planar graph. G_{p+2} is also planar because it is a subgraph of a graph homeomorphic to a dipole (two vertices joined by some edges). For example, when $p=2, n=8$, Figure 2(c) and Figure 2(d) show the subgraphs G_{3} and G_{4} of $K_{8,8,8}$ respectively.
Summarizing, when p is an even positive integer and $n=3 p+2$, we obtain a decomposition of $K_{n, n, n}$ into $p+2$ planar subgraphs G_{1}, \ldots, G_{p+2}.

Theorem follows from Cases 1 and 2.
From the proof of Theorem 5, we draw planar subgraphs decompositions of $K_{5,5,5}$ and $K_{8,8,8}$ as illustrated in Figure 1 and Figure 2 respectively.

(a) The subgraph $G_{1}=G\left[a_{i} b_{i} c_{i+3}\right]$ of $K_{8,8,8}$

(b) The subgraph $G_{2}-b_{4} c_{0}-b_{5} c_{1}-b_{6} c_{2}-b_{0} c_{4}-b_{1} c_{5}-b_{2} c_{6}$ of $K_{8,8,8}$ in which

$$
G_{2}=G\left[a_{i} b_{i+3} c_{i}\right]
$$

(c) The subgraph G_{3} of $K_{8,8,8}$

(d) The subgraph G_{4} of $K_{8,8,8}$

Figure 2 A planar subgraphs decomposition of $K_{8,8,8}$
Proof of Theorem 1. Because $K_{n-1, n-1, n-1}$ is a subgraph of $K_{n, n, n}, \theta\left(K_{n-1, n-1, n-1}\right) \leq$ $\theta\left(K_{n, n, n}\right)$, by Theorem $5, \theta\left(K_{n, n, n}\right) \leq p+2$ also holds, when $n=3 p$ or $n=3 p+1$ (p is a positive integer), the theorem follows.

Proof of Theorem 2. When $n=3 p$ is odd, i.e., $n \equiv 3(\bmod 6)$, we decompose $K_{n, n, n}$ into $p+1$ planar subgraphs G_{1}, \ldots, G_{p+1}, where $G_{t}=G\left[a_{i} b_{i+3(t-1)} c_{i+6(t-1)}\right]$, for $1 \leq t \leq p$. With a similar argument to the proof of Theorem 5 , we can get that the subscript sets of b and c in $G_{t}, 1 \leq t \leq p$ are the same, i.e.,

$$
\{i+3(t-1)(\bmod \mathrm{n}) \mid 1 \leq t \leq p\}=\{i+6(t-1)(\bmod \mathrm{n}) \mid 1 \leq t \leq p\} .
$$

If the edge $a_{i} b_{j}$ is in G_{t} for some $t \in\{1, \ldots, p\}$, then there exists $k \in\{1, \ldots, p\}$ such that $a_{i} c_{j}$ is in G_{k}. If the edge $a_{i} b_{j}$ is not in any G_{t}, then neither is the edge $a_{i} c_{j}$ in any G_{t}, for $1 \leq t \leq p$.
From the construction of $G_{t}=G\left[a_{i} b_{i+3(t-1)} c_{i+6(t-1)}\right]$, we list the edges that belong to $K_{n, n, n}$ but not to any $G_{t}, 1 \leq t \leq p$, as follows.

$$
\begin{array}{rll}
a_{0} b_{3(t-1)-1}, & a_{0} c_{6(t-1)-1}, \quad 1 \leq t \leq p \\
a_{n-1} b_{3(t-1)}, & a_{n-1} c_{6(t-1)}, \quad 1 \leq t \leq p \\
b_{3(t-1)} c_{6(t-1)-1}, & b_{3(t-1)-1} c_{6(t-1)}, \quad 1 \leq t \leq p \tag{19}
\end{array}
$$

Let G_{p+1} be the graph whose edge set consists of the edges in (17), (18) and (19). It is easy to see that G_{p+1} is homeomorphic to a dipole and it is a planar graph.
Summarizing, when p is an odd positive integer and $n=3 p$, we obtain a decomposition of $K_{n, n, n}$ into $p+1$ planar subgraphs G_{1}, \ldots, G_{p+1}, therefor $\theta\left(K_{n, n, n}\right) \leq p+1$. Combining this fact and Lemma 4, the theorem follows.

According to the proof of Theorem 2, we draw a planar subgraphs decomposition of $K_{3,3,3}$ as shown in Figure 3.

(a) The subgraph $G_{1}=G\left[a_{i} b_{i} c_{i}\right]$ of $K_{3,3,3}$

(b) The subgraph G_{2} of $K_{3,3,3}$

Figure 3 A planar subgraphs decomposition of $K_{3,3,3}$

For some other $\theta\left(K_{n, n, n}\right)$ with small n, combining Lemma 4 and Poranen's result mentioned in Section 1, we have $\theta\left(K_{4,4,4}\right)=2, \theta\left(K_{6,6,6}\right)=3$. Since there exists a decomposition of $K_{7,7,7}$ with three planar subgraphs as shown in Figure 4, Lemma 4 implies that $\theta\left(K_{7,7,7}\right)=3$. We also conjecture that the thickness of $K_{n, n, n}$ is $\left\lceil\frac{n+1}{3}\right\rceil$ for all $n \geq 3$.

(a) The subgraph $G_{1}=G\left[a_{i} b_{i} c_{i}\right]$ of $K_{7,7,7}$

(b) The subgraph $G_{2}-a_{1} b_{2}-a_{2} b_{3}-a_{3} b_{4}-a_{4} b_{5}-a_{5} b_{6}-b_{0} c_{1}-b_{1} c_{2}-b_{3} c_{4}-b_{4} c_{5}-b_{5} c_{6}$ of $K_{7,7,7}$ in which $G_{2}=G\left[a_{i} b_{i+2} c_{i+4}\right]$

(c) The subgraph G_{3} of $K_{7,7,7}$

Figure 4 A planar subgraphs decomposition of $K_{7,7,7}$

Acknowledgements

The author is grateful to the anonymous referees for many helpful comments and suggestions.

References

[1] V.B. Alekseev and V.S. Gonchakov, Thickness of arbitrary complete graphs, Mat. Sbornik, 101(143)(2) (1976), 212-230.
[2] J. Battle, F. Harary, and Y. Kodama, Every planar graph with nine points has a nonplanar complement, Bull. Amer. Math. Soc., 68 (1962), 569-571.
[3] L.W. Beineke and F. Harary, The thickness of the complete graph, Canad. J. Math., 17 (1965), 850-859.
[4] L.W. Beineke, F. Harary and J.W. Moon, On the thickness of the complete bipartite graph, Proc. Cambridge Philos. Soc., 60 (1964), 1-5.
[5] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory, 3 (1967), 10-15.
[6] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc., 93(9) (1983), 9-23.
[7] E. Mäkinen and T. Poranen, An annotated bibliography on the thickness, outerthickness, and arboricity of a graph, Missouri J. Math. Sci., 24(1) (2012), 76-87.
[8] P. Mutzel, T. Odenthal and M. Scharbrodt, The thickness a graph: a survey, Graphs and Combin., 14(1) (1998), 59-73.
[9] T. Poranen, A simulated annealing algorithm for determining the thickness of a graph, Inform. Sci., 172 (2005), 155-172.
[10] W.T. Tutte, The thickness of a graph, Indag. Math., 25 (1963), 567-577.
[11] W.T. Tutte, The non-biplanar character of the complete 9-graph, Canad. Math. Bull., 6 (1963), 319-330.

[^0]: *Supported by the National Natural Science Foundation of China under Grant No. 11401430

