Remarks on the Thickness of $K_{n,n,n}$ *

Yan Yang

Department of Mathematics Tianjin University, Tianjin 300072, P.R.China yanyang@tju.edu.cn

Abstract The thickness $\theta(G)$ of a graph G is the minimum number of planar subgraphs into which G can be decomposed. In this paper, we provide a new upper bound for the thickness of the complete tripartite graphs $K_{n,n,n}$ $(n \ge 3)$ and obtain $\theta(K_{n,n,n}) = \left\lceil \frac{n+1}{3} \right\rceil$, when $n \equiv 3 \pmod{6}$.

Keywords thickness; complete tripartite graph; planar subgraphs decomposition.

Mathematics Subject Classification 05C10.

1 Introduction

The thickness $\theta(G)$ of a graph G is the minimum number of planar subgraphs into which G can be decomposed. It was defined by Tutte [10] in 1963, derived from early work on biplanar graphs [2,11]. It is a classical topological invariant of a graph and also has many applications to VLSI design, graph drawing, etc. Determining the thickness of a graph is NP-hard [6], so the results about thickness are few. The only types of graphs whose thicknesses have been determined are complete graphs [1,3], complete bipartite graphs [4] and hypercubes [5]. The reader is referred to [7,8] for more background on the thickness problems.

In this paper, we study the thickness of complete tripartite graphs $K_{n,n,n}$, $(n \geq 3)$. When n = 1, 2, it is easy to see that $K_{1,1,1}$ and $K_{2,2,2}$ are planar graphs, so the thickness of both ones is one. Poranen proved $\theta(K_{n,n,n}) \leq \lceil \frac{n}{2} \rceil$ in [9] which was the only result about the thickness of $K_{n,n,n}$, as far as the author knows. We will give a new upper bound for $\theta(K_{n,n,n})$ and provide the exact number for the thickness of $K_{n,n,n}$, when n is congruent to 3 mod 6, the main results of this paper are the following theorems.

Theorem 1. For
$$n \geq 3$$
, $\theta(K_{n,n,n}) \leq \left\lceil \frac{n+1}{3} \right\rceil + 1$.

Theorem 2.
$$\theta(K_{n,n,n}) = \lceil \frac{n+1}{3} \rceil$$
 when $n \equiv 3 \pmod{6}$.

2 The proofs of the theorems

^{*}Supported by the National Natural Science Foundation of China under Grant No. 11401430

In [4], Beineke, Harary and Moon determined the thickness of complete bipartite graph $K_{m,n}$ for almost all values of m and n.

Lemma 3.[4] The thickness of $K_{m,n}$ is $\left\lceil \frac{mn}{2(m+n-2)} \right\rceil$ except possibly when m and n are odd, $m \leq n$ and there exists an integer k satisfying $n = \left\lfloor \frac{2k(m-2)}{m-2k} \right\rfloor$.

Lemma 4. For
$$n \geq 3$$
, $\theta(K_{n,n,n}) \geq \lceil \frac{n+1}{3} \rceil$.

Proof. Since $K_{n,2n}$ is a subgraph of $K_{n,n,n}$, we have $\theta(K_{n,n,n}) \geq \theta(K_{n,2n})$. From Lemma 3, the thickness of $K_{n,2n}$ $(n \geq 3)$ is $\lceil \frac{n+1}{3} \rceil$, so the lemma follows.

For the complete tripartite graph $K_{n,n,n}$ with the vertex partition (A, B, C), where $A = \{a_0, \ldots, a_{n-1}\}$, $B = \{b_0, \ldots, b_{n-1}\}$ and $C = \{c_0, \ldots, c_{n-1}\}$, we define a type of graphs, they are planar spanning subgraphs of $K_{n,n,n}$, denoted by $G[a_ib_{j+i}c_{k+i}]$, in which $0 \le i, j, k \le n-1$ and all subscripts are taken modulo n. The graph $G[a_ib_{j+i}c_{k+i}]$ consists of n triangles $a_ib_{j+i}c_{k+i}$ for $0 \le i \le n-1$ and six paths of length n-1, they are

$$a_0b_{j+1}c_{k+2}a_3b_{j+4}c_{k+5}\dots a_{3i}b_{j+3i+1}c_{k+3i+2}\dots,$$

$$c_ka_1b_{j+2}c_{k+3}a_4b_{j+5}\dots c_{k+3i}a_{3i+1}b_{j+3i+2}\dots,$$

$$b_jc_{k+1}a_2b_{j+3}c_{k+4}a_5\dots b_{j+3i}c_{k+3i+1}a_{3i+2}\dots,$$

$$a_0c_{k+1}b_{j+2}a_3c_{k+4}b_{j+5}\dots a_{3i}c_{k+3i+1}b_{j+3i+2}\dots,$$

$$b_ja_1c_{k+2}b_{j+3}a_4c_{k+5}\dots b_{j+3i}a_{3i+1}c_{k+3i+2}\dots,$$

$$c_kb_{j+1}a_2c_{k+3}b_{j+4}a_5\dots c_{k+3i}b_{j+3i+1}a_{3i+2}\dots.$$

Equivalently, the graph $G[a_ib_{j+i}c_{k+i}]$ is the graph with the same vertex set as $K_{n,n,n}$ and edge set

$$\{a_{i}b_{j+i-1}, a_{i}b_{j+i}, a_{i}b_{j+i+1}, a_{i}c_{k+i-1}, a_{i}c_{k+i}, a_{i}c_{k+i+1} \mid 1 \leq i \leq n-2\}$$

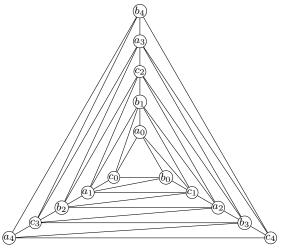
$$\cup \{b_{j+i}c_{k+i-1}, b_{j+i}c_{k+i}, b_{j+i}c_{k+i+1} \mid 1 \leq i \leq n-2\}$$

$$\cup \{a_{0}b_{j}, a_{0}b_{j+1}, a_{n-1}b_{j+n-2}, a_{n-1}b_{j+n-1}\}$$

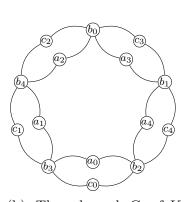
$$\cup \{a_{0}c_{k}, a_{0}c_{k+1}, a_{n-1}c_{k+n-2}, a_{n-1}c_{k+n-1}\}$$

$$\cup \{b_{j}c_{k}, b_{j}c_{k+1}, b_{j+n-1}c_{k+n-2}, b_{j+n-1}c_{k+n-1}\}.$$

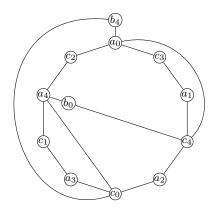
Figure 1(a) illustrates the planar spanning subgraph $G[a_ib_ic_i]$ of $K_{5,5,5}$.



(a) The subgraph $G_1 = G[a_ib_ic_i]$ of $K_{5,5,5}$



(b) The subgraph G_2 of $K_{5,5,5}$



(c) The subgraph G_3 of $K_{5,5,5}$

Figure 1 A planar subgraphs decomposition of $K_{5,5,5}$

Theorem 5. When n = 3p + 2 (p is a positive integer), $\theta(K_{n,n,n}) \le p + 2$.

Proof. When n = 3p + 2 (p is a positive integer), we will construct two different planar subgraphs decompositions of $K_{n,n,n}$ according to p is odd or even, in which the number of planar subgraphs is p + 2 in both cases.

Case 1. p is odd. Let G_1, \ldots, G_p be p planar subgraphs of $K_{n,n,n}$ where $G_t = G[a_ib_{i+3(t-1)}c_{i+6(t-1)}]$, for $1 \le t \le \frac{p+1}{2}$; and $G_t = G[a_ib_{i+3(t-1)}c_{i+6(t-1)+2}]$, for $\frac{p+3}{2} \le t \le p$ and $p \ge 3$. From the structure of $G[a_ib_{j+i}c_{k+i}]$, we get that no two edges in G_1, \ldots, G_p are repeated. Because subscripts in $G_t, 1 \le t \le p$ are taken modulo n, $\{3(t-1) \pmod n \mid 1 \le t \le p\} = \{0,3,6,\ldots,3(p-1)\}$, $\{6(t-1) \pmod n \mid 1 \le t \le \frac{p+1}{2}\} = \{0,6,\ldots,3(p-1)\}$ and $\{6(t-1)+2 \pmod n \mid \frac{p+3}{2} \le t \le p\} = \{3,9,\ldots,3(p-2)\}$, the subscript sets of b and c in $G_t, 1 \le t \le p$ are the same, i.e.,

$$\{i + 3(t - 1) \pmod{n} \mid 1 \le t \le p\}$$

$$= \{i + 6(t-1) \pmod{n} \mid 1 \le t \le \frac{p+1}{2}\} \cup \{i + 6(t-1) + 2 \pmod{n} \mid \frac{p+3}{2} \le t \le p\}.$$

Furthermore, if there exists $t \in \{1, ..., p\}$ such that $a_i b_j$ is an edge in G_t , then $a_i c_j$ is an edge in G_k for some $k \in \{1, ..., p\}$. If the edge $a_i b_j$ is not in any G_t , then neither is the edge $a_i c_j$ in any G_t , for $1 \le t \le p$.

From the construction of G_t , the edges that belong to $K_{n,n,n}$ but not to any G_t , $1 \le t \le p$, are

$$a_0b_{3(t-1)-1}, \quad a_0c_{3(t-1)-1}, \quad 1 \le t \le p$$
 (1)

$$a_{n-1}b_{3(t-1)}, \quad a_{n-1}c_{3(t-1)}, \quad 1 \le t \le p$$
 (2)

$$a_i b_{i-3}, \ a_i b_{i-2}, \ 0 \le i \le n-1$$
 (3)

$$a_i c_{i-3}, \quad a_i c_{i-2}, \quad 0 \le i \le n-1$$
 (4)

$$b_i c_{i+3(t-1)-1}$$
, $b_i c_{i+3(t-1)}$, $0 \le i \le n-1$ and $t = \frac{p+3}{2}$ (5)

$$b_{3(t-1)}c_{6(t-1)-1}, b_{3(t-1)-1}c_{6(t-1)}, 1 \le t \le \frac{p+1}{2}$$
 (6)

$$b_{3(t-1)}c_{6(t-1)+1}, b_{3(t-1)-1}c_{6(t-1)+2}, \frac{p+3}{2} \le t \le p \text{ and } p \ge 3$$
 (7)

Let G_{p+1} be the graph whose edge set consists of the edges in (3) and (5), and G_{p+2} be the graph whose edge set consists of the edges in (1), (2), (4), (6) and (7). In the following, we will describe plane drawings of G_{p+1} and G_{p+2} .

(a) A planar embedding of G_{p+1} .

Place vertices $b_0, b_1, \ldots, b_{n-1}$ on a circle, place vertices a_{i+3} and $c_{i+\frac{n+1}{2}}$ in the middle of b_i and b_{i+1} , join each of a_{i+3} and $c_{i+\frac{n+1}{2}}$ to both b_i and b_{i+1} , we get a planar embedding of G_{p+1} . For example, when p=1, n=5, Figure 1(b) shows the subgraph G_2 of $K_{5,5,5}$.

(b) A planar embedding of G_{p+2} .

Firstly, we place vertices $c_0, c_1, \ldots, c_{n-1}$ on a circle, join vertex a_{i+3} to c_i and c_{i+1} , for $0 \le i \le n-1$, so that we get a cycle of length 2n. Secondly, join vertex a_{n-1} to $c_{3(t-1)}$ for $1 \le t \le p$, with lines inside of the cycle. Let ℓ_t be the line drawn inside the cycle joining a_{n-1} with $c_{6(t-1)-1}$ if $1 \le t \le \frac{p+1}{2}$ or with $c_{6(t-1)+1}$ if $\frac{p+3}{2} \le t \le p$ $(p \ge 3)$. For $1 \le t \le p$, insert the vertex $b_{3(t-1)}$ in the line ℓ_t . Thirdly, join vertex a_0 to $c_{3(t-1)-1}$ for $1 \le t \le p$, with lines outside of the cycle. Let ℓ'_t be the line drawn outside the cycle joining a_0 with $c_{6(t-1)}$ if $1 \le t \le \frac{p+1}{2}$ or with $c_{6(t-1)+2}$ if $\frac{p+3}{2} \le t \le p$ $(p \ge 3)$. For $1 \le t \le p$, insert the vertex $b_{3(t-1)-1}$ in the line ℓ'_t . In this way, we can get a planar embedding of G_{p+2} . For example, when p = 1, n = 5, Figure 1(c) shows the subgraph G_3 of $K_{5,5,5}$.

Summarizing, when p is an odd positive integer and n = 3p + 2, we get a decomposition of $K_{n,n,n}$ into p + 2 planar subgraphs G_1, \ldots, G_{p+2} .

Case 2. p is even. Let G_1, \ldots, G_p be p planar subgraphs of $K_{n,n,n}$ where $G_t = G[a_ib_{i+3(t-1)}c_{i+6(t-1)+3}]$, for $1 \leq t \leq \frac{p}{2}$; and $G_t = G[a_ib_{i+3(t-1)}c_{i+6(t-1)+2}]$, for $\frac{p+2}{2} \leq t \leq p$. With a similar argument to the proof of Case 1, we can get that the subscript sets of b and c in G_t , $1 \leq t \leq p$ are the same, i.e.,

$${i + 3(t - 1) \pmod{n} \mid 1 \le t \le p}$$

$$= \{i + 6(t - 1) + 3 \pmod{n} \mid 1 \le t \le \frac{p}{2}\} \cup \{i + 6(t - 1) + 2 \pmod{n} \mid \frac{p + 2}{2} \le t \le p\}.$$

From the construction of G_t , $G_{\frac{p}{2}}$ and $G_{\frac{p+2}{2}}$ have n-2 edges in common, they are $b_{i+3(\frac{p+2}{2}-1)}c_{i+6(\frac{p+2}{2}-1)+1}$, $1 \le i \le n-1$ and $i \ne n-4$, we can delete them in one of these two graphs to avoid repetition.

The edges that belong to $K_{n,n,n}$ but not to any G_t , $1 \le t \le p$, are

$$a_0 b_{3(t-1)-1}, \quad a_0 c_{3(t-1)-1}, \quad 1 \le t \le p$$
 (8)

$$a_{n-1}b_{3(t-1)}, \quad a_{n-1}c_{3(t-1)}, \quad 1 \le t \le p$$
 (9)

$$a_i b_{i-3}, \quad a_i b_{i-2}, \qquad 0 \le i \le n-1$$
 (10)

$$a_i c_{i-3}, \ a_i c_{i-2}, \ 0 \le i \le n-1$$
 (11)

$$b_i c_{i-1}, b_i c_i, b_i c_{i+1}, 0 \le i \le n-1$$
 (12)

$$b_{3(t-1)}c_{6t-4}, \quad 1 \le t \le \frac{p}{2}$$
 (13)

$$b_{3(t-1)}c_{6t-5}, \quad \frac{p+2}{2} < t \le p$$
 (14)

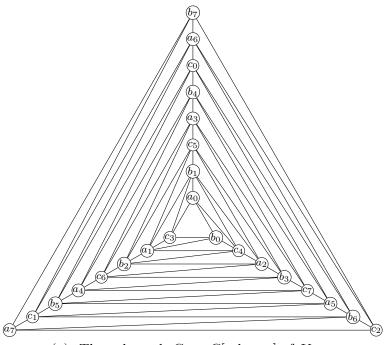
$$b_{3(t-1)-1}c_{6t-3}, \quad 1 \le t < \frac{p}{2}$$
 (15)

$$b_{3(t-1)-1}c_{6t-4}, \quad \frac{p+2}{2} \le t \le p$$
 (16)

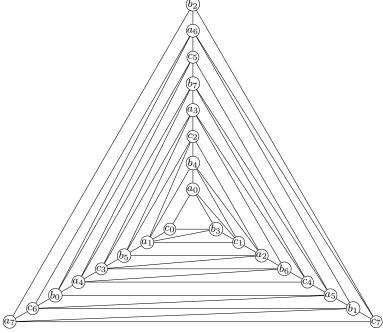
Let G_{p+1} be the graph whose edge set consists of the edges in (10), (11) and (12), and G_{p+2} be the graph whose edge set consists of the edges in (8), (9), (13), (14), (15) and (16). We draw G_{p+1} in the following way. Firstly, place vertices $b_0, c_0, b_1, c_1, \ldots, b_{n-1}, c_{n-1}$ on a circle C, join vertex c_i to b_i and b_{i+1} , we get a cycle of length 2n. Secondly, place vertices $a_0, a_2, \ldots, a_{n-2}$ on a circle C' in the unbounded region defined by the circle C such that C is contained in the closed disk defined by C', place vertices $a_1, a_3, \ldots, a_{n-1}$ on a circle C'' contained in the bounded region of C. Join a_i to $b_{i-3}, b_{i-2}, c_{i-3}$, and c_{i-2} , join b_i to c_{i+1} . We can get a planar embedding of G_{p+1} , so it is a planar graph. G_{p+2} is also planar because it is a subgraph of a graph homeomorphic to a dipole (two vertices joined by some edges). For example, when p=2, p=3, Figure 2(c) and Figure 2(d) show the subgraphs G_3 and G_4 of $K_{8,8,8}$ respectively.

Summarizing, when p is an even positive integer and n = 3p + 2, we obtain a decomposition of $K_{n,n,n}$ into p + 2 planar subgraphs G_1, \ldots, G_{p+2} .

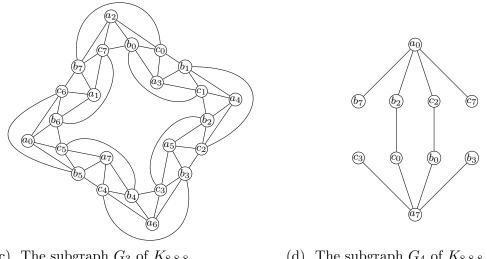
From the proof of Theorem 5, we draw planar subgraphs decompositions of $K_{5,5,5}$ and $K_{8,8,8}$ as illustrated in Figure 1 and Figure 2 respectively.



(a) The subgraph $G_1 = G[a_ib_ic_{i+3}]$ of $K_{8,8,8}$



(b) The subgraph $G_2 - b_4c_0 - b_5c_1 - b_6c_2 - b_0c_4 - b_1c_5 - b_2c_6$ of $K_{8,8,8}$ in which $G_2 = G[a_ib_{i+3}c_i]$



(c) The subgraph G_3 of $K_{8,8,8}$

(d) The subgraph G_4 of $K_{8,8,8}$

Figure 2 A planar subgraphs decomposition of $K_{8,8,8}$

Proof of Theorem 1. Because $K_{n-1,n-1,n-1}$ is a subgraph of $K_{n,n,n}$, $\theta(K_{n-1,n-1,n-1}) \le \theta(K_{n-1,n-1,n-1})$ $\theta(K_{n,n,n})$, by Theorem 5, $\theta(K_{n,n,n}) \leq p+2$ also holds, when n=3p or n=3p+1 (p is a positive integer), the theorem follows.

Proof of Theorem 2. When n = 3p is odd, i.e., $n \equiv 3 \pmod{6}$, we decompose $K_{n,n,n}$ into p+1 planar subgraphs G_1,\ldots,G_{p+1} , where $G_t=G[a_ib_{i+3(t-1)}c_{i+6(t-1)}]$, for $1 \le t \le p$. With a similar argument to the proof of Theorem 5, we can get that the subscript sets of b and c in G_t , $1 \le t \le p$ are the same, i.e.,

$${i + 3(t - 1) \pmod{n} \mid 1 \le t \le p} = {i + 6(t - 1) \pmod{n} \mid 1 \le t \le p}.$$

If the edge $a_i b_j$ is in G_t for some $t \in \{1, \ldots, p\}$, then there exists $k \in \{1, \ldots, p\}$ such that $a_i c_j$ is in G_k . If the edge $a_i b_j$ is not in any G_t , then neither is the edge $a_i c_j$ in any G_t , for $1 \le t \le p$.

From the construction of $G_t = G[a_i b_{i+3(t-1)} c_{i+6(t-1)}]$, we list the edges that belong to $K_{n,n,n}$ but not to any G_t , $1 \le t \le p$, as follows.

$$a_0 b_{3(t-1)-1}, \quad a_0 c_{6(t-1)-1}, \quad 1 \le t \le p$$
 (17)

$$a_{n-1}b_{3(t-1)}, \quad a_{n-1}c_{6(t-1)}, \qquad 1 \le t \le p$$
 (18)

$$b_{3(t-1)}c_{6(t-1)-1}, b_{3(t-1)-1}c_{6(t-1)}, 1 \le t \le p$$
 (19)

Let G_{p+1} be the graph whose edge set consists of the edges in (17), (18) and (19). It is easy to see that G_{p+1} is homeomorphic to a dipole and it is a planar graph.

Summarizing, when p is an odd positive integer and n = 3p, we obtain a decomposition of $K_{n,n,n}$ into p+1 planar subgraphs G_1, \ldots, G_{p+1} , therefor $\theta(K_{n,n,n}) \leq p+1$. Combining this fact and Lemma 4, the theorem follows.

According to the proof of Theorem 2, we draw a planar subgraphs decomposition of $K_{3,3,3}$ as shown in Figure 3.

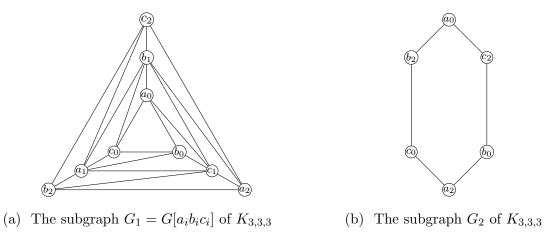
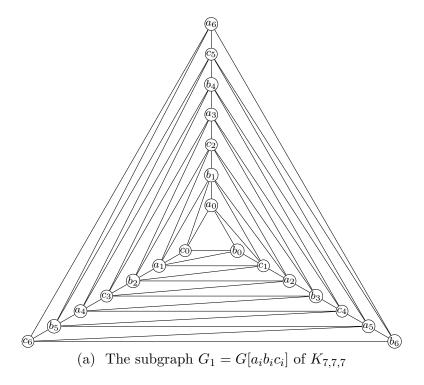
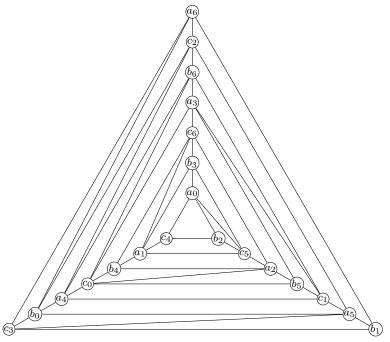


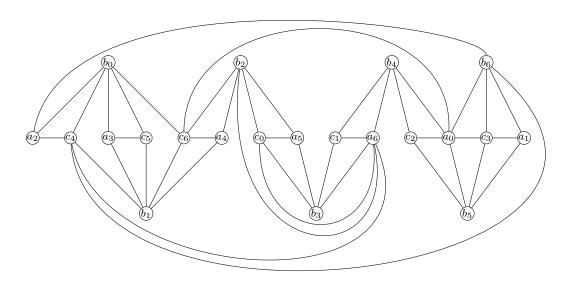
Figure 3 A planar subgraphs decomposition of $K_{3,3,3}$

For some other $\theta(K_{n,n,n})$ with small n, combining Lemma 4 and Poranen's result mentioned in Section 1, we have $\theta(K_{4,4,4}) = 2$, $\theta(K_{6,6,6}) = 3$. Since there exists a decomposition of $K_{7,7,7}$ with three planar subgraphs as shown in Figure 4, Lemma 4 implies that $\theta(K_{7,7,7}) = 3$. We also conjecture that the thickness of $K_{n,n,n}$ is $\lceil \frac{n+1}{3} \rceil$ for all $n \geq 3$.





(b) The subgraph $G_2 - a_1b_2 - a_2b_3 - a_3b_4 - a_4b_5 - a_5b_6 - b_0c_1 - b_1c_2 - b_3c_4 - b_4c_5 - b_5c_6$ of $K_{7,7,7}$ in which $G_2 = G[a_ib_{i+2}c_{i+4}]$



(c) The subgraph G_3 of $K_{7,7,7}$

Figure 4 A planar subgraphs decomposition of $K_{7,7,7}$

Acknowledgements

The author is grateful to the anonymous referees for many helpful comments and suggestions.

References

- [1] V.B. Alekseev and V.S. Gonchakov, Thickness of arbitrary complete graphs, Mat. Sbornik, 101(143)(2) (1976), 212–230.
- [2] J. Battle, F. Harary, and Y. Kodama, Every planar graph with nine points has a nonplanar complement, Bull. Amer. Math. Soc., 68 (1962), 569–571.
- [3] L.W. Beineke and F. Harary, The thickness of the complete graph, Canad. J. Math., 17 (1965), 850–859.
- [4] L.W. Beineke, F. Harary and J.W. Moon, On the thickness of the complete bipartite graph, Proc. Cambridge Philos. Soc., 60 (1964), 1–5.
- [5] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory, 3 (1967), 10–15.
- [6] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc., 93(9) (1983), 9–23.
- [7] E. Mäkinen and T. Poranen, An annotated bibliography on the thickness, outerthickness, and arboricity of a graph, Missouri J. Math. Sci., 24(1) (2012), 76–87.
- [8] P. Mutzel, T. Odenthal and M. Scharbrodt, The thickness a graph: a survey, Graphs and Combin., 14(1) (1998), 59–73.
- [9] T. Poranen, A simulated annealing algorithm for determining the thickness of a graph, Inform. Sci., 172 (2005), 155–172.
- [10] W.T. Tutte, The thickness of a graph, Indag. Math., 25 (1963), 567–577.
- [11] W.T. Tutte, The non-biplanar character of the complete 9-graph, Canad. Math. Bull., 6 (1963), 319–330.