
1 23

Multimedia Tools and Applications
An International Journal
 
ISSN 1380-7501
 
Multimed Tools Appl
DOI 10.1007/s11042-017-5357-7

Adaptive propagation matting based on
transparency of image

Xiangyu Zhu, Ping Wang & Zhenghai
Huang



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Multimed Tools Appl
https://doi.org/10.1007/s11042-017-5357-7

Adaptive propagation matting based on transparency
of image

Xiangyu Zhu1 ·Ping Wang1 ·Zhenghai Huang1

Received: 12 April 2017 / Revised: 10 September 2017 / Accepted: 25 October 2017
© Springer Science+Business Media, LLC 2017

Abstract Image matting is an essential technique in many image and video editing applica-
tions. Although many matting methods have been proposed, it is still a challenge for most to
obtain satisfactory matting results in the transparent foreground region of an image. To solve
this problem, this paper proposes a novel matting algorithm, i.e. adaptive transparency-
based propagation matting (ATPM) algorithm. ATPM algorithm considers image matting
from a new slant. We pay attention to the transparencies of the input images and cre-
atively assign them into three categories (highly transparent, strongly transparent and little
transparent) according to the transparencies of the foreground objects in the images. Our
matting model can make relevant adjustment in terms of the transparency types of the input
images. Moreover, many current matting methods do not perform well when the foreground
and background regions have similar color distributions. Our method adds texture as an
additional feature to effectively discriminate the foreground and background regions. Exper-
imental results on the benchmark dataset show that our method gets high-quality matting
results for images of three transparency types, especially provides more accurate results for
highly transparent images comparing with the state-of-the-art methods.
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1 Introduction

Matting aims to estimate the foreground and background layers of an image accurately.
It is essential in many image and video editing applications. Mathematically, an observed
image I is a convex combination of a foreground image F and a background image B as
the following [25]:

I = αF + (1 − α)B (1)

where α represents the unknown alpha matte which defines the opacity of each pixel. And
the value of α lies in [0, 1] with α = 1 denoting a foreground pixel and α = 0 indicating a
background pixel. For a given input image, the foreground F , background B and α are all
unknown. From the matting (1), we can easily see that all quantities on the right-hand side
are unknown. Thus, for a three-channel color image, there are three equations and seven
unknowns at each pixel, which makes matting a highly ill-posed problem. To simplify the
problem and improve the results, it is necessary to consider a kind of prior knowledge about
the foreground and background such as a trimap [39] or some user scribbles. In general,
trimap is used in most matting methods and it roughly partitions an image into foreground,
background, and unknown region.

Existing matting methods can be mainly categorized into color sampling-based
approaches, propagation-based approaches and a combination of these two methods. Color
sampling-based approaches collect enough color samples from known foreground and back-
ground regions for each unknown pixel firstly. Then the best sample pair is chosen from
these samples to represent the foreground and background colors of the unknown pixel and
estimate the alpha value of the unknown pixel. Early color sampling-based methods are
parametric color-sampling methods [8, 30, 36]. These methods fit parametric models to
color distributions of foreground and background regions. All recent color sampling-based
methods are nonparametric methods [9, 10, 12, 13, 17, 26, 31, 34, 35, 37, 38, 43]. They col-
lect the set of known F and B samples to estimate the alpha values of the unknown pixels.
The main challenge is to prevent the true foreground and background samples from being
missed when collecting the sample sets.

Propagation-based approaches [1, 4–6, 11, 14, 18–22, 33, 41, 42, 44, 45] do not need
to estimate the foreground and background colors of the unknown pixels. They define the
affinities representing the similarity between pixels and propagate alpha values of known
regions toward unknown ones. Poisson matting [33] assumes that the foreground and back-
ground in the local window are smooth and the matte gradient is proportional to the image
gradient. Random walk matting [11] describes the matting problem as a random walk prob-
lem. Closed-form matting [19] only needs a few black-and-white scribbles to show the
input constraints instead of an accurate trimap. It assumes color line model [24] in local
windows to obtain a matrix L called matting Laplacian and solves the alpha matte by
minimizing a cost function. In general, the matting Laplacian is often added to other mat-
ting methods to strengthen the local smoothness of the matting results. The above three
methods all belong to local propagation-based approaches. KNN matting [5] capitalizes on
the nonlocal principle by using K nearest neighbors in matching nonlocal neighborhoods.
This fast algorithm produces competitive results in transparent objects extraction. Mani-
fold preserving editing propagation method [4] seeks to maintain the manifold structure
formed by all pixels in a feature space and it is a novel nonlocal smooth prior on the alpha
matte. Later, this nonlocal smooth prior is combined with the local Laplacian smooth term
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which comes from Closed-form matting to generate LNSP matting [6]. This combination
generates some good results. Information-flow matting [1] relies on carefully defined pixel-
to-pixel connections that enable effective use of information available in the image and the
trimap. It achieves significant improvements on matte quality near challenging regions of
the foreground object.

Combination of sampling and propagation matting usually puts the two ideas into an
energy function. These combined methods [3, 15, 28] seek to make a good trade-off between
the two approaches.

Recently, several deep learning works [7, 40] have been proposed for image matting.
DCNNmatting [7] takes the results of Closed-formmatting [19], the results of KNNmatting
[5] and normalized RGB color images as inputs, and directly learns an end-to-end deep
network to predict a new alpha matte. Given an input image and trimap, Deep matting [40]
uses deep learning to directly compute the alpha matte. These methods achieve outstanding
performance in image matting.

In this paper, we propose a new propagation framework for alpha matting. Unlike previ-
ous matting approaches, we consider the matting problem based on the transparency of the
input image. A novel transparency detecting method is proposed and the input images are
assigned into three categories according to the detecting results. Our method can adapt the
matting model to fit nicely with different categories of images. Experimental results show
that our framework outperforms previous propagation-based approaches and it shows con-
siderable improvements when processing highly transparent images. In addition, the texture
feature is used in our framework to improve matting by distinguishing between the fore-
ground and background regions with similar color distributions. Experiments show that our
method provides quantitatively better results after adding the texture information.

The main contributions of this paper are summarized as follows:

1) We see image matting from a new perspective. We propose an image transparency
detecting strategy, which can be applied to any input image and does not need the
ground truth matte of the input image. According to the detection results, the input
images are divided into three categories: highly transparent, strongly transparent and
little transparent.

2) We develop a novel propagation framework for alpha matting. According to the image’s
transparency type, our matting model can be adjusted adaptively for an excellent
matting result. Our method provides both visually and quantitatively good results
on a benchmark dataset [27]. Especially, it outperforms the state-of-the-art matting
approaches in highly transparent image matting.

The paper is organized as follows: in Section 2, we present a brief introduction of two
propagation-based methods related to our matting framework and compare their perfor-
mances for images of different transparency types. In Section 3, we categorize the input
images, extract the texture feature, and propose our matting algorithm. Experimental results
are presented in Section 4. Finally the conclusion is presented in Section 5.

2 Related work

In the previous section, depending on the amount of transparencies in the respective
ground truth matte, the original images are divided into three categories: highly transpar-
ent, strongly transparent and little transparent. The highly transparent images contain the
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most transparencies in its ground truth matte while the strongly transparent images take the
second place and the little transparent images have the least transparencies. The specific
classification strategy will be explained in the subsequent section. Our method involves
two representative nonlocal propagation-based approaches, KNN matting [5] and manifold
preserving editing propagation (MPEP) method [4]. In this section, we will analyze the dif-
ferent performances of these two approaches for images of different transparency types.
Figure 1 shows the extracted mattes of images of three different transparency types. The
insight originated from this section will motivate our novel propagation framework for alpha
matting.

2.1 KNN matting

KNNmatting [5] employs the nonlocal principle [2] to construct affinities for natural image
matting. The nonlocal principle assumes that a denoised pixel i is a weighted sum of the
pixels with similar characteristics and the weights are given by a kernel function K(i, j).

Fig. 1 Matting results of images of three different transparency types. The three examples from top to
bottom represent the highly transparent image, the strongly transparent image and the little transparent image,
respectively. a Input image. b KNN matting [5]. cManifold preserving editing propagation [4]
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Then, an N ×N affinity matrixA = [K(i, j)] can be obtained by using the kernel function
K(i, j), where N is the total number of pixels in the input image. This matrix A provides
the affinity of the image’s α values. To computeA, it is necessary to collect nonlocal neigh-
borhoods j of pixel i in the feature space firstly. In KNN matting, a feature vector X(i) at a
given pixel i includes color and spatial information. For each pixel i, the K nearest neigh-
bors (represented by j ) in the feature space are collected through efficient KNN search.
Then, the kernel function is computed as follows:

K(i, j) = 1 − ‖X(i) − X(j)‖
C

(2)

where C is set to make K(i, j) ∈ [0, 1]. Further, the affinity matrix A can be computed.
When trimap as the user input comes along, an optimization function can be derived and the
optimal solution can be obtained.

In practice, KNN matting can achieve a high-quality matting result when processing the
highly transparent image as shown in the first row of Fig. 1b. This thanks to the choice of
kernel function K(i, j). In highly transparent images, most of the pixels in the trimap are
unknown and a large proportion of the alpha values fall in between 0 and 1. Thus, highly
transparent images pose a great challenge for matting. KNN matting computes the kernel
function as (2) and obtains good results when extracting highly transparent objects. How-
ever, it cannot achieve satisfactory matting results in strongly transparent images. From the
KNN matting result for the strongly transparent image, the second row of Fig. 1b, we can
see that lots of the details are lost in the hair area. What’s more, KNN matting has sim-
ilar performance with manifold preserving editing propagation [4] in the little transparent
image, as shown in the third row of Fig. 1b and c.

2.2 Manifold preserving editing propagation

Manifold preserving editing propagation (MPEP) [4] is a novel edit propagation algorithm
that attempts to maintain the manifold structure constituted by all pixels in a feature space. It
uses the locally linear embedding (LLE) [29] to represent each pixel as a linear combination
of its nearest neighbors in a feature space. Firstly, for each pixel i with feature vector Xi ,
MPEP method finds its K nearest neighbors in the feature space. Then, it computes a set of
weights wij that best linearly reconstruct Xi from its neighbors and the specific computing
method is introduced by Roweis and Saul [29]. All of the weights wij constitute a matrix
W which captures the manifold structure of the data set in the feature space. At last, taking
advantages of the user’s input and the matrix W , an energy function about alpha value can
be obtained and minimized by solving a sparse linear system.

In order to make the most of MPEP matting, we add matting Laplacian derived from
Closed-form matting [19] into the energy function, which can strengthen the local smooth-
ness of the matting results. In practice, MPEP matting can extract fine matting result in the
strongly transparent image as shown in the second row of Fig. 1c. For the hair region in
the second row of Fig. 1c, most of the details of the hair are retained for the reason that
MPEP method preserves the overall manifold structure formed by all pixels in the feature
space. MPEP matting, however, fails in extracting matting result of the highly transparent
image, as shown in the first row of Fig. 1c. This is because there is insufficient feature for
the method to differentiate the highly transparent object from the background region.
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3 Adaptive transparency-based propagation matting algorithm

As discussed in Section 2, KNN matting [5] and MPEP matting [4] have different perfor-
mances for images of different transparency types. For highly transparent images, KNN
matting can extract high-quality matting results, but MPEP matting is weak for them. How-
ever, for strongly transparent images, KNN matting dose not perform well while MPEP
matting can achieve high-quality matting results. For little transparent images, the matting
results of these two methods are close to each other. Based on these observations, we try
to construct a framework that incorporates the advantages of both KNN matting and MPEP
matting effectively. To give full play to our framework, we can easily state that it is nec-
essary to coordinate the proportion of KNN matting and MPEP matting in our framework
according to the transparency types of the input images. For highly transparent images, a
higher proportion of KNN matting is required. For strongly transparent images, a higher
proportion of MPEP matting is effective. Finally, for little transparent images, a reasonable
balance between these two methods must be found. In this section, we will describe how
to construct our matting framework. It mainly consists of the following steps: 1) detecting
the transparencies of the input images in order to divide them into three categories: highly
transparent, strongly transparent and little transparent. 2) building the feature space. 3) con-
structing our matting framework by combining KNN matting and MPEP matting. 4) using
a pre-processing step to expand known regions to unknown regions in the trimap. These
steps combine to form our algorithm, i.e., adaptive transparency-based propagation matting
(ATPM) algorithm. The framework of ATPM algorithm is shown in Fig. 2.

Fig. 2 Framework of ATPM algorithm. Here, the orange rectangles represent the intermediate processes,
and the green rectangles represent the results of the corresponding processes. Here, pi and qi (i = 1, 2, 3)
are two parameters controlling the weights of these two nonlocal smooth terms
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3.1 Detection of image transparency

The idea of categorizing images according to their transparencies is inspired by Rhemann
et al. [27]. A ground truth matte is formed by the true alpha value of each pixel in an image.
The alpha value lies in [0, 1] with α = 1 denoting a foreground pixel and α = 0 indicating
a background pixel. If the alpha value is between 0 and 1, the pixel is called a mixed pixel.
The amount of mixed pixels in an image determines its transparency. Thus, to categorize the
input images, we should find the mixed pixels at first. In [27], the ground truth matte of each
image in the benchmark dataset is known, so it is easy to find the mixed pixels and obtain
the transparency of each image. But in reality, it is impossible to acquire the ground truth
matte of an ordinary input image. So to find a substitute may be a solution. From Section 2,
we know that KNN matting [5] performs well when processing highly transparent images.
Hence, we try to use KNN matting to make a contribution. The process of detecting the
transparency of the input image is shown in Fig. 3. Firstly, we use KNN matting to estimate
the alpha matte of the input image. After obtaining the estimated alpha matte, we count up
all the mixed pixels in it. It is important to note that some alpha values of the alpha matte
estimated by KNNmatting may be inaccurate. For example, the truth alpha values of several
pixels are 0 essentially, but in the estimated alpha matte, the alpha values of these pixels
may be very close to 0 but not equal to 0. Hence, in the estimated alpha matte, we define
the pixel whose alpha value is between 0.1 and 0.9 as a mixed pixel. Then we find all the

Fig. 3 Process of detecting the transparency of the input image. Here, tra is the amount of the mixed pixels
in the estimated alpha matte. f ore is the total number of the foreground pixels and the mixed pixels in the
estimated alpha matte. We use the ratio pre to classify the input images
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mixed pixels and define tra as the amount of the mixed pixels in the estimated alpha matte.
We define f ore as the total number of the foreground pixels and the mixed pixels. Finally,
a ratio pre is defined as follows:

pre = tra

f ore
. (3)

Then, we can use pre to classify the input images. Through many experiments, we provide
the classification strategy like this: for a given input image I , if pre ∈ (0, 0.15], I belongs
to little transparent images; if pre ∈ (0.15, 0.40], I belongs to strongly transparent images;
if pre > 0.40, I belongs to highly transparent images.

3.2 Constructing feature space

After determining the category of the input image, we will define a feature vector X(i) at
a given pixel i. In an original image, there are color and spatial information of the pixels.
In general, many matting methods use these two features to construct the feature space.
However, if the foreground and background regions of the input image have similar color
distributions, these two features are insufficient for good matting results. The problem of
overlapped color distributions is shown in Fig. 4. As shown in Fig. 4b, in the zoomed area,
the color of the tower of the bridge is very similar to that of the hairs, so many matting
methods fail in these regions. To solve this problem, we add texture as an additional feature
for the matting task. So we use Local Binary Patterns (LBP) [23] to capture the texture
feature of an image. LBP is an operator used to describe the local texture feature of an
image. LBP works on a gray image. When getting an input image, we first convert it to a
gray image. Then we compute the LBP value of each pixel in this gray image. All of the

Fig. 4 Illustration of overlap in color distributions of foreground and background regions. a Original image.
b Zoomed-in region. c Closed-form matting [19]. d KNN matting [5]. e Shared matting [10]. f Proposed
method
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computed LBP values form a matrix with the same size as the original image. This matrix
contains the texture feature of the input image.

After acquiring the texture feature, we will combine it with the color and spatial infor-
mation to construct the feature space. We construct two feature spaces based on HSV and
RGB color spaces respectively. In this paper, we use RGB color space in KNN matting.
Because when processing highly transparent images, RGB color space is better than HSV
color space, an example is shown in Fig. 5. So, in KNN matting, a feature vector X(i) at a
given pixel i can be defined as

X(i) = (r, g, b, x, y, t)i (4)

where r, g, b are the respective RGB coordinates, (x, y) are the spatial coordinates of pixel
i, t represents the LBP value of pixel i.

In this paper, we use HSV color space in MPEP matting, which is seldom used in pre-
vious matting methods. For some visually similar colors, their color values in RGB space
are close while they can be distinguished in HSV space. Hence, in MPEP matting, a feature
vector X(i) at a given pixel i can be defined as

X(i) = (cos(h), sin(h), s, v, x, y, t)i (5)

where h, s, v represent the HSV coordinates, (x, y) are the spatial coordinates of pixel i, t
is the LBP value of pixel i.

3.3 Proposed matting model

In Sections 3.1 and 3.2, we categorize the input images according to their transparencies
and construct two different feature spaces. Based on these preparations, we will propose
our matting model in this section. From KNN matting and MPEP matting, we can obtain
two nonlocal smooth terms. In order to strengthen the local smoothness, we add matting
Laplacian derived from Closed-form matting [19] as a local smooth term. By combining
these two nonlocal smooth terms and the local smooth term in a matting model, we propose
a newmatting method which can adaptively adjust the weights of these two nonlocal smooth
terms depending on the transparency type of the input image. Finally, the optimal result of
the alpha matte can be obtained by solving a linear equation efficiently.

Fig. 5 KNN matting [5] results in the highly transparent image with different color spaces. a Input image.
b Matting result with HSV color space. cMatting result with RGB color space
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3.3.1 KNN nonlocal smooth term

As mentioned above, the key point of KNN matting is the nonlocal principle [2] which
assumes that a denoised pixel i is a weighted sum of the pixels with similar appearance
and the weights are given by a kernel function K(i, j). Firstly, for each pixel in the input
image, we use KNN search to collect the K nearest neighbors in the feature space that is
constructed for KNN matting in Section 3.2. We use j to represent the collected neighbors.
According to the nonlocal principle, we can get:

E[X(i)] ≈
∑

j

X(j)K(i, j)
1

Di

, (6)

Di =
∑

j

K(i, j) (7)

where X(i) is the feature vector of pixel i in the given feature space, K(i, j) is the kernel
function computed as (2). By analogy of (6), we can obtain the expected value of the alpha
matte

E[αi] ≈
∑

j

αjK(i, j)
1

Di

. (8)

From (8), we can derive that

Diαi ≈ K(i, ·)T α (9)

where α is a vector consisting of all α over the input image. Further, we can get the
derivation:

Dα ≈ Aα (10)

whereA = [K(i, j)] is an N × N affinity matrix andD = diag(Di ) is an N × N diagonal
matrix. N is the total number of pixels in the image. So, (D − A)α ≈ 0, and we obtain the
Laplacian L1 = D − A.

3.3.2 MPEP nonlocal smooth term

As mentioned earlier, MPEP matting [4] uses the locally linear embedding (LLE) [29] to
represent each pixel as a linear combination of its nearest neighbors in a feature space. It
aims to maintain the manifold structure formed by all pixels in the given feature space.
It propagates user edits by preserving the relationship in the result image. We use Xi to
represent the feature vector of pixel i. All the pixels in the input image form a data set
X1, . . . , XN . For each pixelXi , we find itsK nearest neighbors in the feature space, namely
Xi1, . . . , Xik . To compute the weights wij that make Xi be best reconstructed from these
K nearest neighbors, we minimize

N∑

i=1

∥∥∥∥∥∥
Xi −

K∑

j=1

wijXij

∥∥∥∥∥∥

2

(11)

subject to the constraint
∑K

j=1wij = 1. The specific computing method of wij is introduced
by Roweis and Saul [29]. All thewij form amatrixW , which captures the manifold structure
of the pixels in the feature space. Because it tries to maintain the manifold structure, in the
result alpha matte, it requires αi = ∑K

j=1wijαij .
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3.3.3 Local smooth term

Closed-form matting [19] is a representative local propagation-based approach based on the
color line model [24]. It derives a matting Laplacian matrix to constrain the alpha matte in
local windows. Thismatting Laplacian can enhance the local smoothness of the result alpha
matte. Here, we define the matting Laplacian as L2, which is an N ×N matrix. The (i, j)th
element of L2 is

∑

k|(i,j)∈wk

(
δij − 1

|wk|

(
1 + (Ii − μk)

(
�k + ε

|wk| I3
)−1

(Ij − μk)

))
(12)

where δij is the Kronecker delta, wk is a 3 × 3 window, |wk| is the number of pixels in this
window, μk is a 3× 1 mean vector of the colors in the window wk , �k is a 3× 3 covariance
matrix, I3 is a 3 × 3 identity matrix, and ε is a regularization coefficient.

3.3.4 Closed-form solution

Firstly, we collect a subset of pixels S , which represents the known foreground and back-
ground pixels from the trimap. To solve alpha value, we should minimize the energy
function as follows:

E = λ
∑

i∈S

(αi − gi)
2 + δαT L2α + pαT L1α

+q

N∑

i=1

⎛

⎝αi −
∑

j∈Ni

wijαj

⎞

⎠
2

(13)
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where λ is a constant which is set to 1000, gi is set to 1 if i belongs to known foreground and
0 otherwise, the parameter δ controls the strength of the local smoothness and we set it to 1
here, N is the number of all pixels in the image, and α is a vector formed by concatenating
all αi . The set Ni is the set of neighbors of pixel i. This energy function can be further
written in a matrix form as

E = (α − G)T �(α − G) + δαT L2α + pαT L1α

+qαT (I − W)T (I − W)α (14)

where I is the identity matrix, � is a diagonal matrix, and G is a vector. �ii is λ if i ∈ S
and 0 otherwise. Gi is gi if i ∈ S and 0 otherwise. p and q control the weights of the
two nonlocal smooth terms. If the input image belongs to highly transparent images, we
set p = 1, q = 0.001. If the input image belongs to strongly transparent images, we set
p = 0.001, q = 1. If the input image belongs to little transparent images, we set p =
1, q = 1. The reason to set the values of p and q like this will be introduced in Section 4.1.
Equation (14) is a quadratic function about α, which can be minimized by solving the linear
equation in closed-form solution

(� + δL2 + pL1 + q(I − W)T (I − W))α = �G. (15)

3.4 Pre-processing

In this section, to get more accurate matting results, we use a pre-processing method that
comes from [32] to expand known regions to unknown regions in the trimap. According to
this pre-processing method, an unknown pixel i is regarded as foreground if, for a known
foreground pixel m,

(D(i, m) < Ethr ) ∧ (‖Ii − Im‖ ≤ (Cthr − D(i, m))) (16)

where D(i, m) is the Euclidean distance between pixels i and m in spatial domain, Ii is
the color value of pixel i, Ethr and Cthr are the thresholds in spatial and color spaces.
Similarly, we can compare the unknown pixels with a known background pixel by using the
same method. After the pre-processing, we can obtain a more accurate trimap that has less
unknown pixels.

All of the above processes are combined to form our ATPM algorithm.

4 Experimental results

In this section, we firstly discuss how to determine the combination weights p and q. Then
we illustrate the effectiveness of LBP to discriminate between the regions that have similar
color distributions. In Section 4.3, we give quantitative and visual comparisons of the pro-
posed method with other matting methods over a benchmark dataset [27]. The benchmark
dataset is composed of a test dataset and a training dataset. There are 27 images in the train-
ing dataset and their ground truth alpha mattes are available. The test dataset is formed by
8 images whose ground truth alpha mattes are hidden from the public. In Section 4.4, to
further demonstrate the effectiveness of our method in extracting the alpha mattes of highly
transparent images, we select some representative images that contain highly transparent
objects to continue the experiment. Finally, failure cases are presented. All our experiments
are executed on an Intel Xeon E5-2620 v3 running at 2.40 GHz with 32.0 GB memory and
64-bit Windows 7 operating system.
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4.1 Combination weights p and q

To determine the weights p and q in (14), we do experiments on the training dataset. Exper-
imental results are shown in Fig. 6. Firstly, all images in the training dataset are divided
into three categories: highly transparent, strongly transparent and little transparent. Then
we set 11 groups of values for weights p and q as shown in Fig. 6. For each combination

Fig. 6 Matting results of our method with different combinations of the weights p and q on the training
dataset. All the images in the training dataset are divided into three categories (Highly, Strongly and Little)
according to their transparencies. For each category, there are variations of average SAD (Sum of Absolute
Differences) and MSE (Mean Squared Error)
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Fig. 7 The effectiveness of LBP to discriminate between the regions that have similar color distributions.
a Original image. b KNN matting [5] without LBP. c KNN matting with LBP. d MPEP matting [4] without
LBP. eMPEP matting with LBP. f Proposed method without LBP. g Proposed method with LBP

of weights p and q, our method works on the whole training dataset. Finally, we compute
the average SAD and MSE for each transparency category. In Fig. 6, the average SAD and
MSE of the highly transparent images both get the lowest when p = 1 and q = 0.001.
When p = 0.001 and q = 1, the average SAD and MSE of the strongly transparent images
reach the minimum. For the little transparent images, the average SAD and MSE both get
the minimum when p = 1 and q = 1. Therefore, we set the values of p and q as described
in Section 3.3.4.

Table 1 Quantitative
comparison to demonstrate the
effectiveness of LBP

Method GT04 GT03

Sum of absolute differences (103)

KNN matting (without LBP) 15.540 9.272

KNN matting (with LBP) 15.483 9.056

MPEP matting (without LBP) 64.158 22.207

MPEP matting (with LBP) 21.526 9.502

Proposed method (without LBP) 7.117 7.921

Proposed method (with LBP) 7.016 6.553

Mean squared error (10−2)

KNN matting (without LBP) 9.227 6.704

KNN matting (with LBP) 8.984 6.618

MPEP matting (without LBP) 31.828 15.921

MPEP matting (with LBP) 12.919 7.538

Proposed method (without LBP) 4.266 6.524

Proposed method(with LBP) 4.007 5.233

Author's personal copy



Multimed Tools Appl

4.2 Effectiveness of LBP

In Section 3.2, we use LBP as the texture feature for accurate matte extraction. To demon-
strate the effectiveness of LBP, in Fig. 7 we select 3 images (troll, GT04 and GT03) that
contain significant overlaps in color distributions of foreground and background from the
benchmark dataset. In our experiments, the parameters of LBP are set as follows: the radius
size is 1 and the number of neighbors is 8. In our experiments, while the radius size we
set is enough to produce satisfactory matting results, a larger radius cannot further improve
the results. The results of KNN matting without and with LBP are shown in Fig. 7b and c
respectively. By comparison, we find that KNN matting can remove the background from
the foreground more effectively after LBP is added. Figure 7d and e are the comparisons of
MPEP matting. Without LBP, the 3 images in Fig. 7d all lose lots of details of the hairs. In
Fig. 7e, MPEP matting can preserve more details of the foreground with the help of LBP.
Due to the use of matting Laplacian and pre-processing in our method, the performance
improvement is not obvious enough in Fig. 7f and g. Thus, the quantitative comparison of 2
images (GT04 and GT03) from the benchmark training dataset is shown in Table 1. It is easy
to see that SAD and MSE of our method both get lower after LBP is added. Besides that,
SAD and MSE of KNN matting and MPEP matting are notably lower after LBP is added.

Table 2 Rank of matting methods with respect to SAD and MSE on the benchmark test dataset [27]

Method Overall rank Avg. small rank Avg. large rank Avg. user rank

Sum of absolute differences

1. Information-flow matting 3.2 4.0 2.8 2.9

2. Deep matting 3.3 4.3 2.5 3.3

3. DCNN matting 4.6 6.3 2.8 4.8

4. Three-layer Graph matting 8.8 5.9 6.1 14.5

5. Proposed method 11.7 14.9 13.1 7.1

6. CSC matting 12.4 16.0 8.5 12.6

7. LNSP matting 13.1 9.4 12.8 17.1

8. GS matting 13.5 14.0 14.1 12.4

9. Patch-based matting 13.6 8.6 15.4 16.9

10. KL matting 14.1 13.3 13.3 15.8

Mean squared error

1. Information-flow matting 4.8 6.5 3.6 4.1

2. DCNN matting 4.9 5.9 3.1 5.8

3. Deep matting 5.3 4.0 4.6 7.3

4. Three-layer Graph matting 9.3 6.6 6.8 14.6

5. LNSP matting 11.4 8.6 10.9 14.6

6. Patch-based matting 12.7 8.9 13.0 16.1

7. KL matting 13.9 13.3 12.8 15.8

8. CCM 14.0 17.3 14.5 10.4

9. Proposed method 14.5 18.3 15.9 9.4

10. GS matting 14.7 15.0 15.1 13.9

Small, large and user refer to the sizes of the trimaps

The results of our proposed method are highlighted in bold
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Fig. 8 Visual comparison of our method with other five matting methods in the top ten on the benchmark
dataset [27]. a Original image. b Zoomed-in region. c Information-flow matting [1]. d DCNN matting [7]. e
CSC matting [9]. f LNSP matting [6]. g GS matting [16]. h Proposed method

4.3 Evaluation on benchmark dataset

Table 2 shows the quantitative evaluation of our method when comparing with the top 9
matting approaches on the benchmark test dataset [27]. “Average small/large/user ranks” is
the average ranks over all images in the test dataset for each of the three types of trimaps.
The overall rank refers to the average rank over the whole test dataset and for all the trimaps.
Our method performs well among the state-of-the-art methods. It ranks fifth for SAD and
ranks ninth for MSE.

Visual comparisons of the proposed method with other five matting methods in the top
ten on the benchmark test dataset [27] are shown in Figs. 8 and 9. These five matting meth-
ods are Information-flow matting [1], DCNN matting [7], CSC matting [9], LNSP matting
[6] and GS matting [16]. Their matting results are from the benchmark dataset. We select
five images from the benchmark test dataset to represent three different transparency types.

Fig. 9 Visual comparison of our method with other five matting methods on the image plastic bag from
the benchmark dataset [27]. a Original image. b Information-flow matting [1]. c DCNN matting [7]. d CSC
matting [9]. e LNSP matting [6]. f GS matting [16]. g Proposed method
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The first and second rows of Fig. 8a represent the little transparent images, the third and
fourth rows of Fig. 8a represent the strongly transparent images and Fig. 9a represents the
highly transparent image. As shown in the first row of Fig. 8, in the zoomed region of the
plant, it is hard for the other five methods to estimate the true background colors for the
gaps between the leaves in the unknown region while our method performs well in this
area. The similar situation appears in the second row, our method does better when estimat-
ing the true foreground color for pineapple’s leaves and the true background color for the
holes in these leaves while the other methods cannot perform well on both points simulta-
neously. These two examples benefit from the balance of the two nonlocal smooth terms in
our matting model when the input image belongs to little transparent images. In addition,
the pre-processing contributes to the satisfactory results, too.

Both the third and fourth rows of Fig. 8 illustrate the problem about similar color dis-
tributions in foreground and background regions. In the third row of Fig. 8a, the color of
the bridge in the background is very similar to that of the hairs of the troll. For the zoomed
region of the troll, some parts of the bridge is considered as foreground as shown in the third
row of Fig. 8g. The other four methods provide better results but miss some foreground
details in the hairs as shown in the third row of Fig. 8c, d, e and f. Our method can discrimi-
nate between the foreground and background better and achieve a significantly better result.
Similarly, in the fourth row of Fig. 8a, the color of the book in the background is similar
to that of the hairs of the doll. Comparing to the other five methods, our method is able to
remove the book from the foreground better and effectively restore the gaps between the
hairs. Here, the LBP texture information helps to extract a more accurate alpha matte. It is
more important that the MPEP nonlocal smooth term brings advantages when processing
strongly transparent images.

In Fig. 9a, most region of the plastic bag is transparent, which is another great challenge
for alpha matting. As shown in Fig. 9a, both foreground and background information is con-
tained in the transparent region of the plastic bag, and there is a painting on the wall of the
background. Due to the advantage of the KNN nonlocal smooth term, our method can avoid
estimation bias and get the most accurate alpha matte. In Fig. 9b, c, d, e and f, these meth-
ods fail to differentiate the background pixels from the foreground. In contrast, our method

Table 3 Rank of the top 5
matting methods with respect to
SAD and MSE on the image
plastic bag from the benchmark
dataset [27]

Method Avg. Small Large User

Sum of absolute differences

Proposed method 16.8 17.2 17.6 15.7

Information-flow matting 17.8 18.3 19.3 15.8

KNN matting 18.2 18.1 19.6 17.0

Deep matting 19.2 19.2 19.6 18.7

DCNN matting 19.4 19.9 19.2 19.1

Mean squared error

Proposed method 1.0 1.1 1.1 0.8

KNN matting 1.0 1.1 1.1 0.9

Information-flow matting 1.1 1.3 1.2 0.8

Deep matting 1.1 1.1 1.1 1.1

LNSP matting 1.1 1.4 1.2 0.8

Small, large, and user refer to
different trimap sizes

The results of our proposed
method are highlighted in bold
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obtains a considerably superior alpha matte. In Table 3, we select the top 5 matting methods
on the plastic bag from the benchmark dataset, and our method ranks first with respect to
both SAD and MSE. Here, we find that our method has better performance than KNN mat-
ting [5] when processing the highly transparent image. This demonstrates that our matting
model not only leverages the advantage of the KNN nonlocal smooth prior, but also makes
considerable improvements by combining it with the MPEP nonlocal smooth prior. The
local smooth prior and the texture feature also make contributions to these improvements.

We also carry out experiments on the benchmark training dataset [27]. As shown in
Fig. 10a, the four images from top to bottom are GT02, GT04, GT11, GT13 and they are
chosen from the benchmark training dataset. Here, we compare our method with other five
methods whose source codes are available. For GT02 and GT13, the difficulty of matting
is to restore the tiny holes on the foreground objects. The results of Closed-form matting
and LB matting lose lots of holes as shown in the first and fourth rows of Fig. 10b and d.
Comparing to other algorithms, the proposed method retains the details of GT02 and GT13
better. The similarity of images GT04 and GT11 is that there are a lot of filiform objects
in the foreground. In the second and third rows of Fig. 10, the results of our method are
closest to the ground truth. Table 4 shows the quantitative comparison of our method with
other five methods over the whole benchmark training dataset. For each method, there are
average SAD and MSE over all images in the training dataset. In Table 4, our method gets
the lowest SAD and MSE.

The proposed method is propagation-based which makes it have an advantage on running
time when comparing to the sampling-based approaches. When the total number of pixels
in the image is N , the complexity of our algorithm is O(N). The complexities of KNN
Matting and MPEP Matting are O(1) and O(N) respectively. So, our method is not more
costly after combining the two approaches. Table 5 is the comparison of the running time of
some matting algorithms. This experiment is carried out on 8 images from the benchmark
test dataset. In Table 5, the first three methods are propagation-based approaches and the
fourth, fifth and sixth methods are sampling-based approaches. The results presented in

Fig. 10 Visual comparison of our method with other five matting methods on the benchmark training dataset
[27]. aOriginal image. b Closed-form matting [19]. cKNNmatting [5]. d LBmatting [44]. eWCTMmatting
[31]. f KL matting [17]. g Proposed method. h Ground truth
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Table 4 Quantitative
comparison of our method with
other five matting methods on the
benchmark training dataset [27]

Method SAD (103) MSE (10−2)

Closed-form matting 5.325 5.348

KNN matting 6.358 5.572

LB matting 5.187 5.252

WCTM matting 4.920 4.514

KL matting 5.159 4.357

Proposed method 4.127 4.021The results of our proposed
method are highlighted in bold

Table 5 demonstrate that our algorithm has a significantly shorter running time than the three
sampling-based approaches. However, our method does not have advantage on running time
when comparing to the three propagation-based approaches. This may be caused by the
computations of the weights wij in Section 3.3.2 and matting Laplacian in Section 3.3.3.
The pre-processing in our method also takes some time.

4.4 Matte extraction in highly transparent images

From the experimental results in Section 4.3, we know that our method produces a remark-
ably superior result on the highly transparent image. In order to further illustrate the
effectiveness of the proposed matting method in dealing with highly transparent images,
we collect a set of images containing highly transparent objects. As shown in Fig. 11, we
select four representative images from this set to compare our method with other five mat-
ting methods: Comprehensive Sampling [32], WCTM matting [31], KNN matting [5], LB
matting [44] and Closed-form matting [19]. Because the images we select do not belong to
the benchmark dataset, we can only compare our method with these five methods whose

Table 5 Comparison of the running time(s) of the matting algorithms

Method Troll Doll Donkey Elephant

Closed-form matting 21.3 11.0 7.2 7.4

KNN matting 10.1 8.0 7.4 9.4

LB matting 16.5 9.7 5.7 5.8

WCTM matting 348.8 216.1 167.5 159.3

KL matting 517.6 784.6 282.8 381.2

Comprehensive sampling 558.0 561.6 329.1 352.2

Proposed method 97.2 72.8 63.0 67.2

Method Plant Pineapple Plastic bag Net

Closed-form matting 13.9 8.7 16.4 28.5

KNN matting 7.4 8.2 10.9 10.7

LB matting 10.8 7.1 13.3 24.8

WCTM matting 256.2 196.2 336.6 668.3

KL matting 415.2 463.8 470.9 591.0

Comprehensive sampling 562.9 306.4 1106.1 1734.4

Proposed method 82.8 81.8 109.6 111.2
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Fig. 11 Qualitative evaluations of matting methods on highly transparent images. a Original image. b
Trimap. c Comprehensive Sampling [32]. d WCTM matting [31]. e KNN matting [5]. f LB matting [44]. g
Closed-form matting [19]. h Proposed method

source codes are available. In the first row, the bridal veil produces a large transparent area
and the background information is complicated. As shown in the first row of Fig. 11c, d, e,
f and g, the estimated alpha values of the competitive methods for this transparent region
are either too high or too low. However, our method shows less estimation bias in the first
example. The examples in the second and third rows of Fig. 11 are both glasses, which are
also common transparent objects in our lives. In the second row, for the first three methods,
the estimated alpha values of the center area are all too low. LB matting and Closed-form
matting both fail to differentiate the background pixels from the foreground. In contrast,
our method extracts a more accurate result. In the third row, our method produces a bet-
ter estimation of the alpha values in the glass bowl region than the other five methods. The
last example is fire, which also contains some transparent pixels in the outer and inner. Our
method performs better in some details of the fire while the other five methods cannot avoid
estimation bias. The performance of our method in estimating high quality mattes for highly
transparent images shows the potential advantage of the KNN nonlocal smooth term.

Fig. 12 Failure example of the proposed method. a Input image. b Trimap. c DCNNmatting [7]. d Proposed
method
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4.5 Failure cases

There is an unsatisfactory example when dealing with an image from the benchmark test
dataset [27], as shown in Fig. 12. The image net belongs to highly transparent images
but it is different from the common highly transparent images which have smooth sur-
faces. In the image net, most region is composed of net structure which is very rough. Our
method is derived from the traditional propagation-based methods. It exploits the relation-
ships between pixels but the constrains constructed by it are not reliable on the image net.
Another reason may be that the feature vector in our method cannot reflect the special con-
struction of the image net well. These reasons may block the propagation of alpha and lead
to the unsatisfactory result in the image net. For future work, the following directions will
be considered to solve this problem. The first is to design some new features which are more
adaptable. The second is to design a new framework which can find the reliable constrains
in all circumstances.

5 Conclusion

In this paper, we proposed a novel propagation-based matting method, ATPM. What distin-
guishes this paper from previous matting methods is that our approach is adaptively based
on the transparencies of the input images. Specifically, we firstly detect the transparencies
of the input images. According to the detection results, we divide the input images into
three categories: highly transparent, strongly transparent and little transparent. Our method
adaptively coordinates the matting model based on the transparency type of the input image.
Hence, the constraints in our framework can complement each other in different images to
generate surprisingly good results. In addition, we add a local smooth term from Closed-
form matting [19] to enhance the local smoothness of the result. We also use texture as a
complementary information in the feature space to overcome the problem of overlapped
color distributions. Our method can obtain fine matting results for images of three trans-
parency types. Especially, our method produces remarkably superior alpha mattes for highly
transparent images comparing with the state-of-the-art methods.
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