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Abstract. We are interested in nonlinear fractional Schrödinger equations

with singular potential of form

(−∆)su =
λ

|x|α
u+ |u|p−1u, Rn \ {0},

where s ∈ (0, 1), α > 0, p ≥ 1 and λ ∈ R. Via Caffarelli-Silvestre extension

method, we obtain existence, nonexistence, regularity and symmetry proper-
ties of solutions to this equation for various α, p and λ.

1. Introduction and main results

The purpose of this paper is to investigate nonlinear fractional Schrödinger e-
quations with singular potentials as follows,

(−∆)su =
λ

|x|α
u+ |u|p−1u, Rn \ {0}, (1.1)

where

(−∆)su = Cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy (1.2)

is the fractional Laplacian with s ∈ (0, 1), α > 0, p ≥ 1 and λ ∈ R. Here Cn,s is a
normalized constant.

Because of the nonlocal property, traditional analysis techniques for local dif-
ferential equations become difficult when dealing with (1.1). Instead, we use the
extension method for fractional Laplacian developed by Caffarelli and Silvestre
in [9]. Let Rn+1

+ = Rn × R+, then ∂Rn+1
+ = Rn. We consider the following

degenerate elliptic problem div(t1−2s∇U) = 0, in Rn+1
+ ,

− lim
t→0+

t1−2s∂tU(x, t) = κs

(
λ

|x|α
U(x, 0) + (|U |p−1U)(x, 0)

)
, on ∂Rn+1

+ ,

(1.3)

where κs = Γ(1−s)
22s−1Γ(s) . Let

H1(Rn+1
+ , t1−2s) :=

{
U : Rn+1

+ → R
∣∣∣ ∫

Rn+1
+

(U2 + |∇U |2)t1−2sdxdt <∞

}
with inner product

〈U, V 〉H1(Rn+1
+ ,t1−2s) =

∫
Rn+1

+

(UV +∇U ·∇V )t1−2sdxdt, U, V ∈ H1(Rn+1
+ , t1−2s),

1
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and

L2(Rn,
1

|x|α
) :=

{
u
∣∣∣ ∫

Rn

|u|2

|x|α
dx <∞

}
.

By the extension formula in [9], in the Sobolev space H1(Rn+1
+ , t1−2s), the trace

U(x, 0) of a solution U(x, t) for (1.3) on ∂Rn+1
+ is a solution to (1.1). Let Br (resp.

Br) be the ball with radius r centered at 0 in Rn+1 (resp. Rn), B+
r := Br ∩Rn+1

+

and S+
r := ∂Br ∩Rn+1

+ .
The first result of this article is a Pohozaev type identity for (1.3) which gener-

alizes a result of [20]. As its application, we then obtain some non-existence results
for (1.1).

Theorem 1.1. If U ∈ H1(Rn+1
+ , t1−2s) with U(·, 0) ∈ Lp+1(Rn)∩L2(Rn, 1

|x|α ) is a

weak solution to (1.3) (see Definition 2.1 below for the definition of weak solutions),
then for almost everywhere r ∈ (0,+∞), it holds that

κsλ

(
2s− α

2

)∫
Br

U2

|x|α
+ κs

(
n

p+ 1
− n− 2s

2

)∫
Br

|U |p+1 (1.4)

=
r

2

∫
S+
r

t1−2s|∇U |2 − r
∫
S+
r

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2 − κsλr

2

∫
∂Br

U2

|x|α

− κsr

p+ 1

∫
∂Br

|U |p+1 − n− 2s

2

∫
S+
r

t1−2s ∂U

∂ν
U,

here ν is the unit out normal vector of S+
r .

Remark 1.1. In the case λ = 0, i.e., the case without singular potential, the Po-
hozaev type identity was obtained in [4], [6], [7], [42], [50]. Also note that [4] and [7]
deal with the operator As (s ∈ (0, 1)) which is the spectral fractional Laplacian de-
fined via the eigenvalues of the Dirichlet Laplacian in bounded domains. By [46],

As is different from (−∆)s defined by (1.2). When α = 2s, λ < 22s Γ2(n+2s
4 )

Γ2(n−2s
4 )

and p ∈ (1, n+2s
n−2s ], Theorem 1.1 was obtained in [20]. Pohozaev identities for

space-dependent fractional-order operators was obtained in [26], the authors of [43]
found and proved new Pohozaev identities and integration by parts type formulas
for anisotropic integro-differential operators.

Let 2∗(s) = 2n
n−2s and Hs(Rn) be the Sobolev space of order s. As applications

of the Pohozaev type identity above, we have

Corollary 1.1. (1) If λ ≥ 0, α < 2s and 1 ≤ p < 2∗(s)− 1, then (1.1) has no
nontrivial solution in Hs(Rn) ∩ L2(Rn, 1

|x|α );

(2) If α = 2s and p 6= 2∗(s)−1, then there exists no nontrivial solution to (1.1)
in Hs(Rn) ∩ Lp+1(Rn);

(3) If α 6= 2s and p = 2∗(s)−1, then there exists no nontrivial solution to (1.1)
in Hs(Rn) ∩ L2(Rn, 1

|x|α ).

Remark 1.2. For equation (1.1) on bounded domains in Rn, the existence and
nonexistence problems become quite different, we refer the interested readers to
reference [18] for details.
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Next, we focus on the nonnegative solutions to (1.1) for α = 2s and p = 2∗(s)−
1 = n+2s

n−2s . In this case, (1.1) becomes

(−∆)su =
λ

|x|2s
u+ |u|

4s
n−2su, Rn \ {0}. (1.5)

The operator H := (−∆)s − λ
|x|2s appears in the study of stability of relativistic

matter in magnetic fields (see i.e. [23, 27, 34]). It is also related to the following
Hardy-type inequality which was obtained by Herbst [27] (see also [2, 49]):

Λn,s

∫
Rn

|x|−2s|u(x)|2dx ≤
∫
Rn

|ξ|2s|û(ξ)|2dξ, u ∈ C∞0 (Rn), (1.6)

where the sharp constant Λn,s is given by 22s Γ2((n+2s)/4)
Γ2((n−2s)/4) , Γ is the usual gamma

function and û denotes the Fourier transform of u. Note that Λn,s converges to
the classical Hardy constant (n − 2)2/4 as s → 1. Some basic properties (Hardy-
Lieb-Thirring inequalities, self-adjointness, spectrum, unique continuation, etc.)
of such kind of relativistic Schrödinger operator have been investigated. See, for
example, [23], [22], [19], [20]. When s = 1, we refer the readers to [32, 41] and the
references therein for some related results.

In recent years, motivated by various applications, there is a large amount of
work on fractional Schrödinger equations with critical exponent. In [36] and [13],
the authors proved that every positive regular entire solution u(x) of equation

(−∆)su = u
n+2s
n−2s (1.7)

is radially symmetric and decreasing about some point x0, precisely,

u(x) = c

(
a

a2 + |x− x0|2

)n−2s
2

with some positive constants c and a. In [8], the authors proved that all nonnegative
solutions with isolated singularities to Equation (1.7) on a ball are asymptotically
radial symmetric, those results generalize the classical results obtained by [25],
[10]. In [14], Delaunay-type solutions for (1.7) with an isolated singularity were
constructed. Note that (1.7) is the spacial case of (1.5) when λ = 0, it is closely
related to the fractional Yamabe problem, we refer the interested readers to [31,33]
and the references therein on this topic. Consider the extension form of (1.5) for
nonnegative U , div(t1−2s∇U) = 0, in Rn+1

+ ,

− lim
t→0+

t1−2s∂tU(x, t) = κs

(
λ

|x|2s
U(x, 0) + U

n+2s
n−2s (x, 0)

)
, on ∂Rn+1

+ .

(1.8)
Then we have

Theorem 1.2. Let λ ≥ 0, if U is a nonnegative weak solution to (1.8), then (1) U

is positive and U ∈ C∞(Rn+1
+ \{0}); (2) for any t ≥ 0, U(x, t) is radial symmetric,

decreasing in radial directions with respect to x.

The proof of Theorem 1.2 is based on a combination of the Cafferelli-Silvestre’s
extension and the method of moving spheres. The method of moving planes or
moving spheres is a strong technique in studying the symmetry and monotonicity
of solutions of various elliptic differential equations and some conformal invariant
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integral equations. See, for example, [3,10,11,13,25,30,35–38,45] and the references
therein. In [8, 31], the authors applied the method of moving spheres to fractional
Yamabe equations successfully by using the Cafferelli-Silvestre’s extension tech-
nique. In [1, 12, 16, 21, 28, 29], the authors developed a direct method of moving
planes to prove the symmetry and existence of solutions to some semi-linear elliptic
equations involving fractional Laplacian. Both of these approaches need to recover
concrete maximum principles as in the classical case.

When using the method of moving spheres (or moving planes), each problem
has its own difficulties. In our problem, equation (1.8) is not exactly conformally
invariant as the ones in [8, 31] (λ = 0), that is, after Kelvin transformation, (1.5)
becomes

(−∆)sux0,ρ −
(

ρ

|x− x0|

)4s
λ

|xρ,x0
|2s
ux0,ρ = u

n+2s
n−2s
x0,ρ , (1.9)

where x0 is any fixed point in Rn \ {0}, ux0,ρ is the Kelvin transformation of u:

ux0,ρ(ξ) =

(
ρ

|ξ − x0|

)n−2s

u

(
x0 +

ρ2(ξ − x0)

|ξ − x0|2

)
, ξ ∈ Rn \ {x0}.

For the detailed proof of this equation, see Appendix A below. The second term
in the left side of (1.9) makes the verification of main ingredients of the method of
moving spheres more complicated. For more details, see Section 5.

As a consequence of Theorem 1.2, we have

Corollary 1.2. Let λ ≥ 0, if u is a nonnegative weak solution to (1.5), then u
is smooth and positive in Rn \ {0}, radial symmetric about the origin and strictly
decreasing in radial directions.

Remark 1.3. When s = 1, this kind of results was obtained in [30, 48].

In the classical case s = 1, when λ is greater than the Hardy constant (n−2)2/4,
there is no positive solution to (1.5), see, for example, [30, 48]. In the fractional
case, we have a similar nonexistence result as follows.

Theorem 1.3. Assume that λ ≥ Λn,s, there is no nonnegative nontrivial solution

of (1.8) in Ḣ1(Rn+1
+ , t1−2s).

Here Ḣ1(Rn+1
+ , t1−2s) denotes the completion of the set C∞0 (Rn+1

+ ) under the
norm

‖U‖Ḣ1(Rn+1
+ ,t1−2s) =

(∫
Rn+1

+

t1−2s|∇U |

) 1
2

.

The key point of verifying this theorem is constructing proper test functions by
an eigenvalue problem on the up-half unit sphere in Rn+1

+ . To be more precisely,
let Sn be the unit n-dimensional sphere in Rn+1 and

Sn+ = {θ = (θ1, · · · , θn, θn+1) ∈ Sn : θn+1 > 0}.

From the compactness of Sn+ and [44, Theorem 6.16], there exists some positive

function ψ1 in H1(Sn+, θ
1−2s
n+1 ) satisfying{

divSn(θ1−2s
n+1 ∇Snψ1) =

(
2s−n

2

)2
θ1−2s
n+1 ψ1 in Sn+,

− lim
θn+1→0

θ1−2s
n+1 ∇Snψ1 · en+1 = Λn,sκsψ1, on ∂Sn+.

(1.10)
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Here en+1 = (0, · · ·, 0, 1) ∈ Sn+. This yields the nonexistence for λ ≥ Λn,s by

choosing |X| 2s−n2 ψ1

(
X
|X|

)
as a test function for problem (1.8). For more details,

see Section 6 below.
As a consequence, we have

Corollary 1.3. Assume that λ ≥ Λn,s, then there is no nonnegative nontrivial

solution of (1.5) in Ḣs(Rn).

Here and what follows, Ḣs(Rn) denotes the completion of C∞0 (Rn) with respect
to the norm ‖ · ‖Ḣs(Rn) induced by the scalar product∫

Rn

|ξ|2sû(ξ)v̂(ξ)dξ, u, v ∈ C∞0 (Rn). (1.11)

We denote the corresponding inner product by 〈·, ·〉Ḣs(Rn).

Finally, we prove a existence result. To this aim, we consider the following
minimization problem

β(λ) = inf
U∈Ḣ(Rn+1

+ ,t1−2s)

Q(U)

‖U(·, 0)‖22∗(s)
, (1.12)

where

Q(U) :=

∫
Rn+1

+

t1−2s|∇U |2 − κsλ
∫
Rn

U2(x, 0)

|x|2s
, U ∈ Ḣ1(Rn+1

+ , t1−2s).

Then we have

Theorem 1.4. If 0 ≤ λ < Λn,s, then there exists a positive solution to (1.8) in

Ḣ1(Rn+1
+ , t1−2s) which is a minimizer of problem (1.12).

In order to prove this result, we prove that any minimization sequence {Uk} of
(1.12) with nontrivial weak limit V yields that {Uk} approaches to V with respect
to the H1(Rn+1

+ , t1−2s)-norm topology. Thus the existence follows. Then, inspired
by [16, Proof of Theorem 1.5], we show that if a minimization sequence {Uk} has
a trivial weak limit, then after rearrangement and some proper rescaling of {Uk},
there exists a minimization sequence {Ûk} with nontrivial weak limit.

From Corollary 1.2 and Theorem 1.4, we have

Corollary 1.4. If 0 ≤ λ < Λn,s, then (1.5) has a positive solution in Ḣs(Rn) and
it is smooth and positive in Rn \{0}, radial symmetric about the origin and strictly
decreasing in radial directions.

Remark 1.4. (1) For the classical case s = 1, the existence and classification of
positive solutions were investigated in many papers, see e.g. [48], [30], [47] and the
references therein.

(2) Corollary 1.4 was also proved in [16] by a nonlocal setting moving plane
method and maximizing the problem

S(λ) = sup
u∈Ḣs(Rn)\{0}

‖u‖2
∗(s)

2∗(s)

Q(u)
2∗(s)

2

, (1.13)

where

Q(u) :=
Cn,s

2

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dxdy − λ

∫
Rn

u2(x)

|x|2s
, u ∈ Ḣs(Rn).
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Note that (1.13) is equivalent to

inf
u∈Ḣs(Rn)\{0}

Q(u)

‖u‖22∗(s)
, (1.14)

the existence of minimizers to (1.14) does not imply the existence of minimizers to
(1.12).

(3) In [24], the authors established the existence of nontrivial weak solutions for
the following doubly critical problem on Rn,

(−∆)su− λ

|x|2s
u = |u|

4s
n−2su+

|u|
2(n−γ)
n−2s −2u

|x|γ
, Rn \ {0}, u > 0

for s ∈ (0, 1), γ ∈ (0, 2s) and 0 ≤ λ < Λn,s.

This paper is organized as follows: in Section 2, we give some preliminaries for
our further investigation. In Section 3, we prove Theorem 1.1 and Corollary 1.1.
Section 4 contains the proof of regularity property in Theorem 1.2. In Section 5, we
prove the symmetry and monotonicity properties in Theorem 1.2 by the method of
moving spheres. Sections 6 and 7 are devoted to the proof of Theorems 1.3 and 1.4
respectively. Appendix contains the detailed computation of Kelvin transformation.

2. Preliminaries

In this section, we illustrate some definitions and basic results.
Let Ω be a domain in Rn with Lipschitz boundary and s ∈ (0, 1). The s-order

Sobolev space Hs(Ω) is defined by

Hs(Ω) :=

{
u ∈ L2(Ω)

∣∣∣ ∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy <∞

}
with its norm given by

‖u‖Hs(Ω) :=

(∫
Ω

u2dx+

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

.

Let X := (x, t) ∈ Rn+1 where x ∈ Rn and t ∈ R, D ⊂ Rn+1
+ be a domain with

Lipschitz boundary. It is well-known that |t|1−2s is an element of the Muckenhoupt
A2 class in Rn+1 (see [39]). Define L2(D, t1−2s) to be the Hilbert space of all
measurable functions U on D with norm

‖U‖L2(D,t1−2s) :=

(∫
D

t1−2sU2(X)dX

) 1
2

<∞.

The space of all functions U ∈ L2(D, t1−2s) with its weak derivatives ∇U exists
and belongs to L2(D, t1−2s) is denoted as H1(D, t1−2s). The norm in H1(D, t1−2s)
is

‖U‖H1(D,t1−2s) :=

(∫
D

t1−2sU2(X)dX +

∫
D

t1−2s|∇U |2(X)dX

) 1
2

.

Correspondingly, the inner product on H1(D, t1−2s) is given by

〈U, V 〉H1(D,t1−2s) :=

∫
D

t1−2s(UV +∇U · ∇V )dX.
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Every element in H1(D, t1−2s) has a well-defined trace. To be more precisely,
one has the following proposition (for the details of its proof and other related
results, see e.g. [17, 31]).

Lemma 2.1. ( [31, Proposition 2.1]) Let Ω ⊂ Rn be a domain with Lipschitz
boundary and R > 0. Set D = Ω× (0, R) ⊂ Rn×R+. If U ∈ H1(D, t1−2s)∩C(D∪
∂′D), then u := U( · , 0) ∈ Hs(Ω) and

‖u‖Hs(Ω) ≤ C‖U‖H1(D,t1−2s),

where C is a positive constant only depending on n, s, R and Ω. Therefore, for
every U ∈ H1(D, t1−2s), the trace U( · , 0) is well-defined and belongs to Hs(Ω).
Furthermore, there exists a positive constant Cn,s depending only on n, s such that

‖U( · , 0)‖
L

2n
n−2s (Ω)

≤ Cn,s‖∇U‖L2(D,t1−2s) for all U ∈ C∞c (D ∪ ∂′D).

Here and after, for a domain D ⊂ Rn+1
+ with boundary ∂D, ∂′D denotes the

interior of D ∩ ∂Rn+1
+ in Rn = ∂Rn+1 and ∂′′D =: ∂D \ ∂′D.

For further applications, we need the following Sobolev embedding inequali-
ty which was proved in [15, Proposition 2.1.1]. The embedding for more general
weighted functions of Ap type can be found in [17].

Lemma 2.2. There exists a constant C such that, for all U ∈ Ḣ1(Rn+1
+ , t1−2s),

one has (∫
Rn+1

+

t1−2s|U |2γ
) 1

2γ

≤ C

(∫
Rn+1

+

t1−2s|∇U |2
) 1

2

,

where γ = 1 + 2
n−2s .

Let BR(X) be the ball in Rn+1 with radius R and center X, B+
R(X) = BR(X)∩

Rn+1
+ and BR(x) be the ball in Rn with radius R centered at x. For simplicity, we

will write B(0), B+(0) and BR(0) as B, B+ and BR, respectively.

Definition 2.1. We say W ∈ H1(B+
R , t

1−2s) ∩ L2(B+
R ,

1
|x|α ) is a weak solution to div(t1−2s∇U) = 0, in B+

R ,

− lim
t→0+

t1−2s∂tU(x, t) = κs

(
λ

|x|α
U(x, 0) + (|U |p−1U)(x, 0)

)
, on ∂B+

R = BR,

(2.1)
if for all V ∈ C∞0 (B+

R ∪BR), the following equation holds,∫
Rn+1

+

t1−2s∇W · ∇V dxdt = κs

∫
BR

(
λ

|x|α
W (x, 0) + (|W |p−1W )(x, 0)

)
V dx.

The functions in Ḣs(Rn) have natural extension in Ḣ1(Rn+1
+ , t1−2s). To be

more precisely, for all u ∈ Ḣs(Rn), define

U(x, t) = (Ps ∗ u)(x, t) :=

∫
Rn

Ps(x− ξ, t)u(ξ)dξ, (x, t) ∈ Rn+1
+ , (2.2)

where

Ps(x, t) = ι(n, s)
t2s

(|x|2 + t2)
n+2s

2

(2.3)
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with the normalized constant ι(n, s) such that
∫
Rn Ps(x, 1)dx = 1. Then U ∈

C∞(Rn+1
+ ) and U ∈ L2(K, t1−2s) for any compact setK in Rn+1

+ ,∇U ∈ L2(Rn+1
+ , t1−2s).

Moreover,

div(t1−2s∇U) = 0, in Rn+1
+ ,

and

‖∇U‖L2(t1−2s,Rn+1
+ ) = κs‖u‖Ḣs(Rn). (2.4)

We call U(x, t) = (Ps ∗ u)(x, t) the extension of u(x) for any u ∈ Ḣs(Rn).

Lemma 2.3. [31, Lemma A.3] Let u ∈ C∞0 (Rn) and U(·, t) = Ps(·, t)∗u(·). Then

for any W ∈ C∞0 (Rn+1
+ ) with W (·, 0) = u(x), it holds that∫

Rn+1
+

t1−2s|∇U |2 ≤
∫
Rn+1

+

t1−2s|∇W |2.

Lemma 2.4. Let U ∈ Ḣ1(Rn+1
+ , t1−2s). Then

κs‖U(·, 0)‖Ḣs(Rn) ≤ ‖U‖Ḣ1(Rn+1
+ ,t1−2s). (2.5)

Proof. Combining (2.4) and Lemma 2.3, we immediately have (2.5). �

3. Proof of Theorem 1.1 and Corollary 1.1

In this section, we prove a Pohozaev-type identity for (1.3) inspired by the proof
of [20, Theorem 3.1]. Moreover, as its applications, we investigate the nonexistence
of solutions for problem (1.1).

Proof of Theorem 1.1. Let ρ < r < R. Set Oδ := (B+
r \ B+

ρ ) ∩ {(x, t) | t > δ} with
δ > 0. Let ∂′Oδ = Ōδ ∩{t = δ}, ∂′′Oδ = ∂Oδ \∂′Oδ and ν be the unit outer normal
of ∂Oδ. Multiplying (1.3) by X ·∇U and integrating by parts in Oδ, we obtain that

−
∫
∂′Oδ

t1−2s∂tU(X · ∇U) +

∫
S+
r ∩{t>δ}

t1−2sr

∣∣∣∣∂U∂ν
∣∣∣∣2 − ∫

S+
ρ ∩{t>δ}

t1−2sρ

∣∣∣∣∂U∂ν
∣∣∣∣2

=

∫
Oδ

t1−2s∇U · ∇(X · ∇U)

=

∫
Oδ

t1−2s|∇U |2 +
1

2

∫
Oδ

t1−2sX · ∇(|∇U |2)

=

∫
Oδ

t1−2s|∇U |2 +
1

2

∫
Oδ

div(t1−2s|∇U |2X)− 1

2

∫
Oδ

div(t1−2sX)|∇U |2

= −n− 2s

2

∫
Oδ

t1−2s|∇U |2 − 1

2

∫
∂′Oδ

t2−2s|∇U |2 +
1

2

∫
∂′′Oδ

t1−2s|∇U |2X · ν.

That is,

−
∫
∂′Oδ

δ1−2s∂tU(X · ∇U) +

∫
S+
r ∩{t>δ}

t1−2sr

∣∣∣∣∂U∂ν
∣∣∣∣2 − ∫

S+
ρ ∩{t>δ}

t1−2sρ

∣∣∣∣∂U∂ν
∣∣∣∣2

= −n− 2s

2

∫
Oδ

t1−2s|∇U |2 − 1

2

∫
∂′Oδ

δ2−2s|∇U |2

+
1

2

∫
S+
r ∩{t>δ}

t1−2sr|∇U |2 − 1

2

∫
S+
ρ ∩{t>δ}

t1−2sρ|∇U |2. (3.1)
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Rewriting the first term of the left side of (3.1), we have∫
∂′Oδ

δ1−2s∂tU(X · ∇U) = δ2−2s

∫
∂′Oδ

|∂tU |+
∫
∂′Oδ

δ1−2s(x · ∇xU)∂tU.

Thus

n− 2s

2

∫
Oδ

t1−2s|∇U |2 = −δ
2−2s

2

∫
∂′Oδ

|∇U |2 + δ2−2s

∫
∂′Oδ

|∂tU |2

+
r

2

∫
S+
r ∩{t>δ}

t1−2s|∇U |2 − r
∫
S+
r ∩{t>δ}

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2

−ρ
2

∫
S+
ρ ∩{t>δ}

t1−2s|∇U |2 + ρ

∫
S+
ρ ∩{t>δ}

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2

+

∫
∂′Oδ

δ1−2s(x · ∇xU)∂tU.

Since U ∈ H1(Rn+1, t1−2s), there exists a sequence δn → 0 such that

lim
n→∞

(
δ2−2s
n

2

∫
∂′Oδn

|∇U |2 + δ2−2s
n

∫
∂′Oδn

|∂tU |2
)

= 0.

From the Dominated Convergence Theorem and Lemma 3.3, Remark 3.6 in [20], it
holds that

lim
δ→0

∫
∂′Oδ

δ1−2s(x·∇xU)∂tU = −κs
∫
Br\Bρ

(x·∇xU)

(
λ

|x|α
U(x, 0) + (|U |p−1U)(x, 0)

)
.

Note that ∫
Br\Bρ

(x · ∇xU)

(
λ

|x|α
U(x, 0) + (|U |p−1U)(x, 0)

)
(3.2)

=
1

2

∫
Br\Bρ

λx

|x|α
· ∇x(U2) +

1

p+ 1

∫
Br\Bρ

x · ∇x(|U |p+1)

:= T1 + T2. (3.3)

Then integrating by parts, we have

T1 =
1

2

∫
Br\Bρ

div

[
λx

|x|α
U2

]
− U2div

[
λx

|x|α

]
=

λr

2

∫
∂Br

U2

|x|α
− λρ

2

∫
∂Bρ

U2

|x|α
− n− α

2

∫
Br\Bρ

U2

|x|α

and

T2 =
1

p+ 1

∫
Br\Bρ

div(|U |p+1x)− |U |p+1div(x)

=
r

p+ 1

∫
∂Br

|U |p+1 − ρ

p+ 1

∫
∂Bρ

|U |p+1 − n

p+ 1

∫
Br\Bρ

|U |p+1.
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Therefore,

n− 2s

2

∫
B+
r \B+

ρ

t1−2s|∇U |2 (3.4)

=
r

2

∫
S+
r

t1−2s|∇U |2 − r
∫
S+
r

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2 − ρ

2

∫
S+
ρ

t1−2s|∇U |2 + ρ

∫
S+
ρ

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2

−κsλr
2

∫
∂Br

U2

|x|α
+
κsλρ

2

∫
∂Bρ

U2

|x|α
+ κs

n− α
2

∫
Br\Bρ

U2

|x|α

− κsr

p+ 1

∫
∂Br

|U |p+1 +
κsρ

p+ 1

∫
∂Bρ

|U |p+1 +
κsn

p+ 1

∫
Br\Bρ

|U |p+1.

Since U ∈ H1(Rn+1
+ ), U(·, 0) ∈ L2(Rn, 1

|x|α ) ∩ Lp+1(Rn), there exists a sequence

ρi → 0 such that when i→∞

ρi
2

∫
S+
ρi

t1−2s|∇U |2 + ρi

∫
S+
ρi

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2 → 0,

κsλρi
2

∫
∂Bρi

U2

|x|α
→ 0

and

κsρi
p+ 1

∫
∂Bρi

|U |p+1 → 0.

Choosing ρ = ρi and letting i→∞ in (3.4), we have(
n− 2s

2

)∫
B+
r

t1−2s|∇U |2 =
r

2

∫
S+
r

t1−2s|∇U |2 − r
∫
S+
r

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2 (3.5)

− κsλr

2

∫
∂Br

U2

|x|α
+ κsλ

(
n− α

2

)∫
Br

U2

|x|α

− κsr

p+ 1

∫
∂Br

|U |p+1 +
κsn

p+ 1

∫
Br

|U |p+1.

We now prove that for a.e. r ∈ (0, R),∫
B+
r

t1−2s|∇U |2 =

∫
S+
r

t1−2s ∂U

∂ν
U + κsλ

∫
Br

U2

|x|α
+ κs

∫
Br

|U |p+1. (3.6)

Indeed, let ηk(ρ) be a sequence of cut-off functions such that ηk(ρ) = 1 if 0 ≤ ρ <
r− 1

k , ηk(ρ) = 0 if ρ > r and ηk = k(r−ρ) if r− 1
k ≤ ρ ≤ r. Choosing ηk(|X|)U(X)

as a test function in (2.1), we have that∫
B+
r

t1−2s∇U(X) · ∇ [ηk(|X|)U(X)]

= κs

∫
Br

λ

|x|α
U2(x, 0)ηk(|x|) + κs

∫
Br

|U |p+1(x, 0)ηk(|x|). (3.7)
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A direct calculation yields that∫
B+
r

t1−2s∇U(X) · ∇ [ηk(|X|)U(X)]

=

∫
B+
r

t1−2s|∇U(X)|2ηk(|X|)− k
∫
B+
r \Br− 1

k

t1−2s ∂U

∂ν
U

=

∫
B+
r

t1−2s|∇U(X)|2ηk(|X|)− k
∫ r

r− 1
k

(∫
S+
ρ

t1−2s ∂U

∂ν
UdS

)
dρ.

Note that t1−2s ∂U
∂ν U ∈ L

1(Rn+1
+ ), so for a.e. r ∈ (0, R) there holds

k

∫ r

r− 1
k

(∫
S+
ρ

t1−2s ∂U

∂ν
UdS

)
dρ→

∫
S+
r

t1−2s ∂U

∂ν
UdS, as k →∞.

On the other hand, as k →∞, we have

κs

∫
Br

λ

|x|α
U2(x, 0)ηk(|x|) + κs

∫
Br

|U |p+1(x, 0)ηk(|x|)

→ κs

∫
Br

λ

|x|α
|U |2(x, 0) + κs

∫
Br

|U |p+1(x, 0)

and ∫
B+
r

t1−2s|∇U(X)|2ηk(|X|)→
∫
B+
r

t1−2s|∇U(X)|2. (3.8)

Therefore, from (3.7)-(3.8), we obtain (3.6).
Finally, by (3.5) and (3.6), we have (1.4). This completes the proof. �

Proof of Corollary 1.1. (1) From the Pohozaev-type identity (1.4), we deduce that
if U is a nontrivial solution to (1.3), then for a.e. r > 0 there holds

κsλ

(
2s− α

2

)∫
Br

U2

|x|α
+ κs

(
n

p+ 1
− n− 2s

2

)∫
Br

|U |p+1 (3.9)

=
r

2

∫
S+
r

t1−2s|∇U |2 − r
∫
S+
r

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2 − κsλr

2

∫
∂Br

U2

|x|α

− κsr

p+ 1

∫
∂Br

|U |p+1 − n− 2s

2

∫
S+
r

t1−2s ∂U

∂ν
U.

By assumption of λ, α, p, the left side of (3.9) is positive.
Now we claim that there exists a sequence ri →∞ such that

ri
2

∫
S+
ri

t1−2s|∇U |2 → 0, as i→∞.

Indeed, if this is not true, then there is a constant C > 0 such that

r

2

∫
S+
r

t1−2s|∇U |2 ≥ C > 0, as r →∞.

Thus, there exists an r1 sufficiently large such that for all r > r1,∫
S+
r

t1−2s|∇U |2 ≥ C

r
. (3.10)
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Since U ∈ H1(Rn+1, t1−2s), it holds that∫ ∞
0

dr

∫
S+
r

t1−2s|∇U |2 <∞.

This is impossible when (3.10) holds. So we get our claim. Similarly, since U ∈
H1(Rn+1, t1−2s) and U(·, 0) ∈ Hs(Rn)∩L2(Rn, 1

|x|α ), there exists a sequence ri →
∞ such that

ri

∫
S+
ri

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2 +

κsλri
2

∫
∂Bri

U2

|x|α
+

κsri
p+ 1

∫
∂Bri

Up+1 +
n− 2s

2

∫
S+
ri

t1−2s ∂U

∂ν
U → 0.

Therefore, choosing r = ri and letting i→∞ in (3.9), we have∫
Rn

|U |p+1 = 0.

That means that U(·, 0) ≡ 0 in Rn. From (3.6), we have U ≡ 0 in Rn+1
+ . This

yields the result of (1).
(2) Assume that U ∈ H1(Rn+1

+ , t1−2s) ∩ Lp+1(Rn). When α = 2s, by (1.4), we
have for a.e. r > 0

κs

(
n

p+ 1
− n− 2s

2

)∫
Br

|U |p+1 (3.11)

=
r

2

∫
S+
r

t1−2s|∇U |2 − r
∫
S+
r

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2 − κsλr

2

∫
∂Br

U2

|x|2s

− κsr

p+ 1

∫
∂Br

|U |p+1 − n− 2s

2

∫
S+
r

t1−2s ∂U

∂ν
U.

A similar argument as in the proof of (1) yields that U ≡ 0 in Rn+1
+ .

(3) Let U ∈ Hs(Rn) ∩ L2(Rn, 1
|x|α ). From Pohozaev type identity (1.4), for

p = 2∗(s)− 1, it holds that

κsλ

(
2s− α

2

)∫
Br

U2

|x|α
=

r

2

∫
S+
r

t1−2s|∇U |2 − r
∫
S+
r

t1−2s

∣∣∣∣∂U∂ν
∣∣∣∣2 − κsλr

2

∫
∂Br

U2

|x|α

− κsr

p+ 1

∫
∂Br

|U |p+1 − n− 2s

2

∫
S+
r

t1−2s ∂U

∂ν
U.

Similarly, we have U ≡ 0 in Rn+1
+ by an argument in the proof of (1). This

completes the proof. �

4. Regularity of the solutions

In this section, we will give the proof of the regularity conclusion in Theorem
1.2. Throughout this section and Section 5 below, we omit the constant κs for
simplicity since it is not essential in the proof.

Let D ⊂ Rn+1
+ be a bounded domain with ∂′D 6= ∅ and 0 /∈ ∂′D, a ∈ L

2n
n+2s (∂′D)

and b ∈ L1
loc(∂

′D). Consider the following boundary value problem,{
div(t1−2s∇U(x, t)) = 0, inD,

− lim
t→0+

t1−2s∂tU(x, t) = a(x)U(x, 0) + b(x), on ∂′D. (4.1)
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Definition 4.1. U ∈ H1(D, t1−2s) is a weak solution (resp. supersolution, subso-
lution) of (4.1), if for every nonnegative V ∈ C∞c (D ∪ ∂′D), one has∫

D

t1−2s∇U∇V = ( resp. ≥, ≤)

∫
∂′D

aUV + bV.

Let QR = BR × (0, R), f+ = max(f, 0) and f− = max(−f, 0). First, we recall

Lemma 4.1. ( [31, Lemma 2.8]) Suppose that a ∈ L n
2s (B1), b ∈ Lp(B1) with p > n

2s

and U ∈ H1(Q1, t
1−2s) is a weak solution of (4.1) in Q1. There exists δ > 0 which

depends only on n and s such that if ‖a+‖
L
n
2s (B1)

< δ, then

‖U+( · , 0)‖Lq(∂′Q1/2) ≤ C
(
‖U+‖H1(Q1,t1−2s) + ‖b+‖Lp(B1)

)
,

where C > 0 only depends on n, p, s , δ and q = min
(

2(n+1)
n−2s ,

n(p−1)
(n−2s)p ·

2n
n−2s

)
.

Lemma 4.2. ( [31, Proposition 2.6]) Suppose that a, b ∈ Lp(B1) for some p > n
2s .

Let U ∈ H1(Q1, t
1−2s) be a nonnegative weak solution to (4.1) in Q1. Then

(1) ∀ν > 0, there holds

sup
Q1/2

U ≤ C(‖U‖Lν(Q1,t1−2s) + ‖b+‖Lp(B1)),

where C > 0 only depends on n, s, p, ν and ‖a+‖Lp(B1).
(2) We have the following Harnack inequality,

sup
Q1/2

U ≤ C( inf
Q1/2

U + ‖b‖Lp(B1)),

where C > 0 only depends on n, s, p and ‖a‖Lp(B1). Moreover, any weak solution U

of (4.1) is in C%(Q1/2) for some % ∈ (0, 1) only depending on n, s, p and ‖a‖Lp(B1).

Let D be a domain in Rn+1
+ with ∂′D 6= ∅ and 0 /∈ ∂′D. We consider the

following problem, div(t1−2s∇U(x, t)) = 0, inD,

− lim
t→0+

t1−2s∂tU(x, t) =
λ

|x|2s
U(x, 0) + U

n+2s
n−2s (x, 0), on ∂′D.

(4.2)

Proposition 4.1. Let D = (BR \Br)× (0, 1) where 0 < r < R, 0 < δ < R−r
2 and

Kδ/2 = (BR−δ/2 \ Br+δ/2) × (0, 1/2). Suppose U ∈ H1(t1−2s, D) is a nonnegative
weak solution of (4.2). Then we have

sup
Kδ/2

U ≤ C inf
Kδ/2

U,

where C depends only on n, s and δ. Moreover, any weak solution U of (4.2) is in
C%(Kδ/2) for some % ∈ (0, 1) depending only on n, s and δ.

Proof. Note that ∂′D = BR\Br, it follows that 1
|x|n−2s ∈ L∞(∂′D). Since U( · , 0) ∈

Hs(∂′D) ⊂ L
2n
n−2s ( [31, Proposition 2.1]), U

4s
n−2s ( · , 0) ∈ L

n
2s (∂′D). Hence from

Lemma 4.1 (in our case b = 0, so p can be any positive number > n
2s ), we have

U( · , 0) ∈ Lq(∂′K3δ/4),

where q = min
(

2(n+1)
n−2s ,

n(p−1)
(n−2s)p ·

2n
n−2s

)
> 2n

n−2s . Therefore

U
4s

n−2s ( · , 0) ∈ Lq
′
(∂′K3δ/4)

with q′ > n
2s . Finally, by Lemma 4.2, we obtain the desired estimate. �
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Proof of Theorem 1.2 (1). As in the proof of Proposition 4.1, set a(x) = λ
|x|n−2s +

U
4s

n−2s (x, 0) and b(x) = 0. Then for any x ∈ Rn \ {0}, by Proposition 4.1, a(x) ∈
C%(Br(x)) for some small positive number r and % ∈ (0, 1) which depends only on

n, s, δ, p. From Theorem 2.11 of [31], U ∈ C%+2s(B+
r/2(x)). By a bootstrapping

argument, we then have U ∈ C∞(Rn+1
+ \ {0}). This completes the proof. �

5. Symmetry of the solutions: the method of moving spheres

In this section, we prove Theorem 1.2 (2) by the method of moving spheres which
was developed in [38], [36], [37], [30].

5.1. Technical lemmas. We begin with some technical lemmas.
Let X ∈ ∂Rn+1

+ , ρ > 0 and UX,ρ be the Kelvin transformation defined by

UX,ρ(ξ) =

(
ρ

|ξ −X|

)n−2s

U

(
X +

ρ2(ξ −X)

|ξ −X|2

)
, ξ ∈ Rn+1

+ \ {X}.

Lemma 5.1. If U satisfies (1.8), then UX,ρ is a solution of the following equation
div(t1−2s∇UX0,ρ)(ξ) = 0, in Rn+1

+ ,

− lim
t→0+

t1−2s∂tUX0,ρ(ξ) =

(
ρ

|x− x0|

)4s
λ

|xρ,x0 |2s
UX0,ρ(xρ,x0

, 0) + U
n+2s
n−2s

X0,ρ
(xρ,x0

, 0), on Rn,

(5.1)
where ξ = (x, t), X0 = (x0, 0) and

xρ,x0
:= x0 +

ρ2(x− x0)

|x− x0|2
. (5.2)

The result of this lemma is the case of α = 2s, p = 2∗(s) in Lemma A.1. For the
detailed proof, see Appendix A.

Lemma 5.2. Let 0 < ρ < |x0|. Then one has(
ρ

|x− x0|

)4s(
1

|xρ,x0 |2s

)
≤ 1

|x|2s
, ∀ ρ < |x− x0| < |x0| (5.3)

and (
ρ

|x− x0|

)4s(
1

|xρ,x0
|2s

)
≥ 1

|x|2s
, ∀ 0 < |x− x0| < ρ. (5.4)

Proof. A direct computation yields that∣∣∣∣x+

(
|x− x0|2

ρ2
− 1

)
x0

∣∣∣∣2 − |x|2
=

(
|x− x0|2

ρ2
− 1

)(
2〈x, x0〉 − 〈x0, x0〉+ (〈x, x〉 − 2〈x, x0〉+ 〈x0, x0〉)

〈x0, x0〉
ρ2

)
.

Since 0 < ρ < |x0|, it holds that

2〈x, x0〉 − 〈x0, x0〉+ (〈x, x〉 − 2〈x, x0〉+ 〈x0, x0〉)
〈x0, x0〉
ρ2

≥ 2〈x, x0〉 − 〈x0, x0〉+ (〈x, x〉 − 2〈x, x0〉+ 〈x0, x0〉)
= 〈x, x〉 > 0.
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Hence, for all ρ < |x− x0| < |x0|,∣∣∣∣x+

(
|x− x0|2

ρ2
− 1

)
x0

∣∣∣∣2 − |x|2 ≥ 0

and, for all 0 < |x− x0| < ρ,∣∣∣∣x+

(
|x− x0|2

ρ2
− 1

)
x0

∣∣∣∣2 − |x|2 ≤ 0.

Then we have (5.3) and (5.4) from (5.2). This completes the proof. �

Next, we need two versions of the maximum principle.

Lemma 5.3. ( [31, Lemma 2.5]) Let U ∈ H1(D, t1−2s) be a weak super-solution of
(4.1) in D with a ≡ b ≡ 0. If U ≥ 0 on ∂′′D in the trace sense, then U ≥ 0 in D.

Lemma 5.4. [31, Proposition 3.1] Assume that U ∈ H1(B+
1 \ B

+

ε , |t|1−2s) is a
solution of the following boundary value problem{

div(t1−2s∇U) ≤ 0 in B+
1 ,

− lim
t→0

t1−2s∂tU(x, t) ≥ 0 on B1 \ B̄ε,

for every ε ∈ (0, 1). If U ∈ C(B+
1 ∪B1 \ {0}) and U > 0 in B+

1 ∪B1 \ {0}, then

lim inf
|X|→0

U(X) > 0.

5.2. The method of moving spheres. We verify the symmetry property of the
solutions for (1.8). Firstly, we prove

Proposition 5.1. For each x0 6= 0, there exists a constant ρ(x0) > 0 depending
on x0 such that for any 0 < ρ < ρ(x0), it holds that

UX0,ρ(ξ) ≤ U(ξ) in Rn+1
+ \ (B+

ρ (X0) ∪ {0}),
where X0 = (x0, 0).

We divide the proof by several lemmas.

Lemma 5.5. For each ρ2 ∈ (0, |X0|), there exists ρ1 > 0 small enough such that,
when ρ ∈ (0, ρ1),

UX0,ρ ≤ U on ∂′′
[
B+
ρ2

(X0) \ B+
ρ (X0)

]
.

Proof. Assume that ξ ∈ ∂′′B+
ρ2

(X0). Then for every ρ satisfying 0 < ρ < ρ1 < ρ2 <
|X0|, we have

X0 +
ρ2(ξ −X0)

|ξ −X0|
∈ B+

ρ2
(X0).

Therefore, by Proposition 4.1, we can choose ρ1 small enough such that

UX0,ρ(ξ) =

(
ρ

|ξ −X0|

)n−2s

U

(
X0 +

ρ2(ξ −X0)

|ξ −X0|

)
≤

(
ρ1

ρ2

)n−2s

sup
B+
ρ2

(X0)

U ≤ inf
∂′′B+

ρ2
(X0)

U

≤ U(ξ).

Note that on ∂′′B+
ρ (X0), UX0,ρ = U holds obviously. This completes the proof of

this lemma. �
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Lemma 5.6. If ρ2 ∈ (0, |X0|) is small enough, then there exists a constant ρ1 =
ρ1(ρ2) depending on ρ2 and satisfying 0 < ρ1(ρ2) < ρ2 such that, for all ρ ∈
(0, ρ1(ρ2)) and ξ ∈ B+

ρ2
(X0) \ B+

ρ (X0), it holds that

UX0,ρ(ξ) ≤ U(ξ).

Proof. From (1.8) and (5.1), we have

div
(
t1−2s∇(UX0,ρ − U)

)
= 0 in B+

ρ2
(X0) \ B+

ρ (X0) (5.5)

and

− lim
t→0+

∂t(UX0,ρ − U) =

[(
ρ

|x− x0|

)4s
a

|xρ,x0 |2s
UX0,ρ(xρ,x0 , 0)− a

|x|2s
U(x, 0)

]
(5.6)

+

[
U
n+2s
n−2s

X0,ρ
(xρ,x0

, 0)− U
n+2s
n−2s (x, 0)

]
on ∂′

[
B+
ρ2

(X0) \ B+

ρ (X0)
]
.

Set (UX0,ρ−U)+ := max(0, UX0,ρ−U), by Lemma 5.5, it equals to 0 on ∂′′
[
B+
ρ2

(X0) \ B+

ρ (X0)
]
.

Let (UX0,ρ−U)+ be a test function in the definition of weak solution for (4.2), then
from (5.5), (5.6) and Definition 4.1, we have

−
∫
B+
ρ2

(X0)\B+
ρ (X0)

t1−2s|∇(UX0,ρ − U)+|2

=

∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

]
[(

ρ

|x− x0|

)4s
λ

|xρ,x0 |2s
UX0,ρ(xρ,x0 , 0)− λ

|x|2s
U(x, 0)

]
(UX0,ρ − U)+

+

∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

]
[
U
n+2s
n−2s

X0,ρ
(xρ,x0

, 0)− U
n+2s
n−2s (x, 0)

]
(UX0,ρ − U)+

:= T1 + T2.

In the following, we estimate T1 and T2 respectively.
(1) T1: A direct computation yields that

T1 =

∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

]
[(

ρ

|x− x0|

)4s
λ

|xρ,x0 |2s
(UX0,ρ(xρ,x0 , 0)− U(x, 0))

]
(UX0,ρ − U)+

+

∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

]
[(

ρ

|x− x0|

)4s
λ

|xρ,x0 |2s
− λ

|x|2s

]
U(x, 0)(UX0,ρ − U)+

=

∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

]
(

ρ

|x− x0|

)4s
λ

|xρ,x0
|2s
(
(UX0,ρ − U)+

)2
+

∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

]
[(

ρ

|x− x0|

)4s
λ

|xρ,x0
|2s
− λ

|x|2s

]
U(x, 0)(UX0,ρ − U)+.

Since ρ2 ≤ |x0| = |X0|, then, by Lemma 5.2, we have(
ρ

|x− x0|

)4s
λ

|xρ,x0
|2s
− λ

|x|2s
≤ 0, in ∂′

[
B+
ρ2

(X0) \ B+

ρ (X0)
]
.

Therefore,

T1 ≤
∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

]
(

ρ

|x− x0|

)4s
λ

|xρ,x0 |2s
(
(UX0,ρ − U)+

)2
.
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By Hölder inequality, one has

T1 ≤(∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

] ρ2n

|x− x0|2n
λ
n
2s

|xρ,x0 |n

) 2s
n
(∫

∂′
[
B+
ρ2

(X0)\B+
ρ (X0)

] ((UX0,ρ − U)+
) 2n
n−2s

)n−2s
n

.

(2) T2: By the mean value theorem and Hölder inequality, we have

T2 ≤ C

∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

] U 4s
n−2s

X0,ρ

(
(UX0,ρ − U)+

)2
≤ C

(∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

] U 2n
n−2s

X0,ρ

) 2s
n
(∫

∂′
[
B+
ρ2

(X0)\B+
ρ (X0)

] ((UX0,ρ − U)+
) 2n
n−2s

)n−2s
n

≤ C

(∫
B+
ρ2

(X0)

U
2n
n−2s

) 2s
n
(∫

∂′
[
B+
ρ2

(X0)\B+
ρ (X0)

] ((UX0,ρ − U)+
) 2n
n−2s

)n−2s
n

,

where C > 0 is a constant depending only on n and s.
By Proposition 2.1,

T1 + T2 ≤ C

(∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

] ρ2n

|x− x0|2n
λ
n
2s

|xρ,x0
|n

) 2s
n

+

(∫
B+
ρ2

(X0)

U
2n
n−2s

) 2s
n


×
∫
B+
ρ2

(X0)\B+
ρ (X0)

t1−2s|∇(UX0,ρ − U)+|2.

Thus, if we choose ρ2 small enough such that

C

(∫
∂′

[
B+
ρ2

(X0)\B+
ρ (X0)

] ρ2n

|x− x0|2n
λ
n
2s

|xρ,x0
|n

) 2s
n

+

(∫
B+
ρ2

(X0)

U
2n
n−2s

) 2s
n

 < 1

2
,

we get

∇(UX0,ρ − U)+ = 0 in B+
ρ2

(X0) \ B+
ρ (X0).

Since (UX0,ρ − U)+ = 0 on ∂′′(B+
ρ2

(X0) \ B+
ρ (X0)), we have

(UX0,ρ − U)+ = 0 in B+
ρ2

(X0) \ B+
ρ (X0).

Therefore, for 0 < ρ < ρ1(ρ2), one has

UX0,ρ ≤ U in B+
ρ2

(X0) \ B+
ρ (X0).

This completes the proof. �

Lemma 5.7. Let ρ1 be the number given in the proof of Lemma 5.6, then there
exists ρ0 ∈ (0, ρ1) such that, for all ρ ∈ (0, ρ0) and ξ ∈ Rn+1

+ \ (B̄+
ρ2

(X0) ∪ {0}), it
holds that

UX0,ρ(ξ) ≤ U(ξ).

Proof. Set

ϕ(ξ) =

(
ρ2

|ξ −X0|

)n−2s

inf
∂′′Bρ2 (X0)

U,
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where ρ2 is given by Lemma 5.6. A direct calculation yields that{
div(t1−2s∇ϕ) = 0, in Rn+1

+ \ B+
ρ2

(X0),

− lim
t→0+

∂tϕ(x, t) = 0, on Rn \Bρ2
(x0).

From Proposition 5.4, for ρ2 > 0 small enough, there exists a positive number ε0

such that, for all ε ∈ (0, ε0),

U(ξ) ≥ ϕ(ξ), in B+

ε (0) \ {0}.

Particularly,

U(ξ) ≥ ϕ(ξ), on ∂′′B+
ε (0).

Note that ϕ(ξ) ≤ U(ξ) on ∂′′B+
ρ2

(X0), then by Lemma 5.3, we have

U(ξ) ≥ ϕ(ξ), in Rn+1
+ \ [B+

ρ2
(X0) ∪ B+

ε (0)].

Define

ρ0 = min

ρ1, ρ2

(
inf∂′′Bρ2 (X0) U

supBρ2 (X0) U

) 1
n−2s

 .

Then in Rn+1
+ \ [B+

ρ2
(X0) ∪ B+

ε (0)], one has

UX0,ρ(ξ) =

(
ρ

|ξ −X0|

)n−2s

U

(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
≤

(
ρ0

|ξ −X0|

)n−2s

sup
Bρ2 (X0)

U

≤
(

ρ2

|ξ −X0|

)n−2s

inf
∂′′Bρ2 (X0)

U ≤ U(ξ).

Since ε ∈ (0, ε0) is arbitrarily chosen, then it holds that

UX0,ρ(ξ) ≤ U(ξ), in Rn+1
+ \ (B+

ρ2
(X0) ∪ {0}).

This completes the proof. �

Proof of Proposition 5.1. Combining Lemma 5.6 and Lemma 5.7, we get the desired
result. �

Define

ρ̄(X0) = sup{0 < µ ≤ |X0| : UX0,ρ ≤ U in Rn+1
+ \

(
B+
ρ (X0) ∪ {0}

)
, ∀ 0 < ρ < µ}.

By Proposition 5.1, it holds that ρ̄(X0) > 0.

Proposition 5.2. For all X0 ∈ Rn+1
+ \ {0}, we have

ρ̄(X0) = |X0|.

Proof. We argue by contradiction. Suppose ρ̄(X0) < |X0|. For simplicity, we set
ρ̄ := ρ̄(X0). By the definition of ρ̄(X0), it holds that

UX0,ρ̄ ≤ U, in Rn+1
+ \ (B̄+

ρ̄ (X0) ∪ {0}).

By Kelvin transformation, this is equivalent to

UX0,ρ̄ ≥ U, in B+
ρ̄ (X0) \ {X0, 0ρ̄,X0

}.
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Here 0ρ̄,X0
is the Kelvin transformation in Rn+1

+ of 0. Let δ ∈
(

0, 1
2 min{ρ̄, ρ̄− ρ̄2

|X0|}
)

,

then, by (1.8) and (5.1), UX0,ρ̄ − U satisfies

div(t1−2s(UX0,ρ̄ − U)) = 0 in B+
ρ̄ (X0) \ [B+

δ (X0) ∪ B+
δ (0ρ̄,X0

)]

and

− lim
t→0+

t1−2s∂t(UX0,ρ − U)

=

(
ρ

|x− x0|

)4s
λ

|xρ,x0
|2s
UX0,ρ(xρ,x0

, 0) + U
n+2s
n−2s

X0,ρ
(xρ,x0

, 0)

−
(

λ

|x|2s
U(x, 0) + U

n+2s
n−2s (x, 0)

)
=

[(
ρ

|x− x0|

)4s
λ

|xρ,x0 |2s
UX0,ρ(xρ,x0

, 0)− λ

|x|2s
U(x, 0)

]

+

[
U
n+2s
n−2s

X0,ρ
(xρ,x0

, 0)− U
n+2s
n−2s (x, 0)

]
:= T3 + T4, on ∂′[B+

ρ̄ (X0) \ (B+
δ (X0) ∪ B+

δ (0ρ̄,X0
))].

Here xρ,x0 is given by (5.2). Note that T4 ≥ 0 on ∂′[B+
ρ̄ (X0)\(B+

δ (X0)∪B+
δ (0ρ̄,X0))].

So we only have to estimate T3.
By Lemma 5.2, for x ∈ Bρ̄(x0) \ (Bδ(x0) ∪Bδ(0ρ̄,x0

)), it holds that(
ρ̄

|x− x0|

)4s
λ

|xρ̄,x0
|2s
≥ λ

|x|2s
. (5.7)

Then we have, in ∂′[B+
ρ̄ (X0) \ (B+

δ (X0) ∪ B+
δ (0ρ̄,X0

))],

T3 ≥ λ

|x|2s
(UX0,ρ(xρ,x0

, 0)− U(x, 0)) ≥ 0.

Therefore,

− lim
t→0+

t1−2s∂t(UX0,ρ − U) ≥ 0 in ∂′[B+
ρ̄ (X0) \ (B+

δ (X0) ∪ B+
δ (0ρ̄,X0

))].

If UX0,ρ − U is not identically 0, then by Lemma 4.2, we have

UX0,ρ > U, in B+

ρ̄ (X0) \ [B+
δ (X0) ∪ B+

δ (0ρ̄,X0
) ∪ ∂′′B+

ρ̄ (X0)]. (5.8)

From Proposition 5.4, it holds that

lim inf
ξ→X0

(UX0,ρ̄(ξ)− U(ξ)) > 0

and

lim inf
ξ→0ρ̄,X0

(UX0,ρ̄(ξ)− U(ξ)) > 0.

Hence there exist ε1 > 0 and δ1 > 0 such that

UX0,ρ̄(ξ) > U(X0) + ε1, ∀ 0 < |ξ −X0| < δ1

and

UX0,ρ̄(ξ) > U(0ρ̄,X0
) + ε1, ∀ 0 < |ξ − 0ρ̄,X0

| < δ1.
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Then for all 0 < |ξ −X0| < δ1 and ρ̄ < ρ < |X0|, we have

UX0,ρ(ξ) =

(
ρ

|ξ −X0|

)n−2s

U

(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)

=

(
ρ

ρ̄

)n−2s(
ρ̄

|ξ −X0|

)n−2s

U

X0 +
ρ̄2
(
ρ̄2

ρ2 (ξ −X0)
)

∣∣∣ ρ̄2

ρ2 (ξ −X0)
∣∣∣2


=

(
ρ

ρ̄

)n−2s

UX0,ρ̄

(
ρ̄2

ρ2
(ξ −X0)

)
≥ UX0,ρ̄

(
ρ̄2

ρ2
(ξ −X0)

)
> U(X0) + ε1.

Similarly, for all 0 < |ξ − 0ρ̄,X0
| < δ1 and ρ̄ < ρ < |X0|,

UX0,ρ(ξ) ≥ U(0ρ̄,X0) + ε1.

Since U is uniformly continuous in B+

ρ̄ (X0), there exists δ2 ∈ (0, δ1/2) such that for

all |ξ1 − ξ2| < δ2 with ξ1, ξ2 ∈ B
+

δ1(0ρ̄,X0
) or ξ1, ξ2 ∈ B

+

δ1(X0),

|U(ξ1)− U(ξ2)| < ε1

2
.

Note that we have assume ρ̄ < |X0|, so there exists δ3 > 0 such that for all
ρ̄ < ρ < ρ̄+ δ3 < |X0|,

|0ρ,X0
− 0ρ̄,X0

| < δ2
2
.

Thus 0ρ,X0 ∈ B+
δ2
2

(0ρ̄,X0) ⊂ B+
δ2

(0ρ̄,X0). Hence for all ξ ∈ B+
δ2

(0ρ̄,X0) \ {0ρ,X0} and

ρ̄ < ρ < ρ̄+ δ3, we have

UX0,ρ(ξ) ≥ U(ξ) +
ε1

2
> U(ξ).

Similarly, we obtain that for all ξ ∈ B+
δ2

(X0) \ {X0} and ρ̄ < ρ < ρ̄+ δ3,

UX0,ρ(ξ) ≥ U(ξ) +
ε1

2
> U(ξ).

Therefore, it holds that for all ρ̄ < ρ < ρ̄+ δ3,

UX0,ρ > U in
[
B+
δ2

(X0) \ {X0}
]
∪
[
B+
δ2

(0ρ̄,X0
) \ {0ρ,X0

}
]
.

Let δ > 0 be a small number which will be fixed later. Denote

Kδ,δ2 := B+

ρ̄−δ(X0) \
[
B+
δ2

(X0) ∪ B+
δ2

(0ρ̄,X0)
]
.

From (5.8) and the compactness of Kδ,δ2 , there exists a positive ε3 depending on δ
and δ2 such that

UX0,ρ̄ − U > ε3 in Kδ,δ2 .

Since U is uniformly continuous in the compact set Kδ,δ2 , there is a constant δ4
satisfying 0 < δ4 < δ3 such that for all ρ̄ < ρ < ρ̄+ δ4,

UX0,ρ − UX0,ρ̄ > −
ε3

2
in Kδ,δ2 .

Hence

UX0,ρ − U >
ε3

2
in Kδ,δ2 . (5.9)
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Finally, we prove that UX0,ρ > U in B+

ρ (X0) \ B+
ρ̄−δ(X0). In our setting, the

proof is based on a narrow domain technique which is the same as that in Lemma
5.6. the function U − UX0,ρ satisfies

div
(
t1−2s∇(U − UX0,ρ)

)
= 0 in B+

ρ (X0) \ B+

ρ̄−δ(X0) (5.10)

and

− lim
t→0+

∂t(U − UX0,ρ) =

[
λ

|x|2s
U(x, 0)−

(
ρ

|x− x0|

)4s
λ

|xρ,x0
|2s
UX0,ρ(xρ,x0 , 0)

]
(5.11)

+

[
U
n+2s
n−2s (x, 0)− U

n+2s
n−2s

X0,ρ
(xρ,x0

, 0)

]
on ∂′

[
B+
ρ (X0) \ B+

ρ̄−δ(X0)
]
.

Let (U−UX0,ρ)
+ := max(0, U−UX0,ρ) which equals to 0 on ∂′′

[
B+
ρ (X0) \ B+

ρ̄−δ(X0)
]

by (5.9). We choose (U−UX0,ρ)
+ as a test function in the definition of weak solution

for (4.1). Thus from (5.10), (5.11) and Definition 4.1, we have∫
B+
ρ (X0)\B+

ρ̄−δ(X0)

t1−2s|∇(U − UX0,ρ)
+|2

=

∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
]
[

λ

|x|2s
U(x, 0)−

(
ρ

|x− x0|

)4s
λ

|xρ,x0 |2s
UX0,ρ(xρ,x0 , 0)

]
(U − UX0,ρ)

+

+

∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
]
[
U
n+2s
n−2s (x, 0)− U

n+2s
n−2s

X0,ρ
(xρ,x0

, 0)

]
(U − UX0,ρ)

+

:= T5 + T6.

From Lemma 5.2, we have, in ∂′
[
B+
ρ (X0) \ B+

ρ̄−δ(X0)
]
,

(
ρ

|x− x0|

)4s
λ

|xρ,x0 |2s
≥ λ

|x|2s
.

Then

T5 ≤
∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] λ

|x|2s
(
(U − UX0,ρ)

+
)2

≤

(∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] λ

n
2s

|x|n

) 2s
n
(∫

∂′
[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] ((U − UX0,ρ)

+
) 2n
n−2s

)n−2s
n

.

On the other hand, by the mean value theorem and Hölder inequality, we have

T6 ≤ C

∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] U 4s

n−2s ((U − UX0,ρ)
+

)2

≤ C

(∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] U 2n

n−2s

) 2s
n
(∫

∂′
[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] ((U − UX0,ρ)

+
) 2n
n−2s

)n−2s
n

.
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Hence

T5 + T6 ≤ C

(∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] λ

n
2s

|x|n

) 2s
n

+

(∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] U 2n

n−2s

) 2s
n


×
∫
B+
ρ (X0)\B+

ρ̄−δ(X0)

t1−2s|∇(U − UX0,ρ)
+|2.

Let δ and δ3 be sufficiently small such that

C

(∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] λ

n
2s

|x|n

) 2s
n

+

(∫
∂′

[
B+
ρ (X0)\B+

ρ̄−δ(X0)
] U 2n

n−2s

) 2s
n

 < 1

2
.

Then

∇(U − UX0,ρ)
+ = 0 in B+

ρ (X0) \ B+
ρ̄−δ(X0).

Since (U − UX0,ρ)
+ = 0 on ∂′′

[
B+
ρ (X0) \ B+

ρ̄−δ(X0)
]
, we have

(U − UX0,ρ)
+ = 0 in B+

ρ (X0) \ B+
ρ̄−δ(X0).

So UX0,ρ > U in B+

ρ (X0) \ B+
ρ̄−δ(X0).

Putting the results obtained above together, we have that

UX0,ρ ≥ U, in B+
ρ (X0) \ {X0, 0ρ̄,X0

}.

This contradicts with the definition of ρ̄. �

Proof of Theorem 1.2 (2). Let ξ = (x, t). From Proposition 5.2, we have that for
X0 = (x0, 0),

UX0,ρ(ξ) ≤ U(ξ), ∀ |ξ −X0| ≥ ρ, ξ 6= 0, ∀ 0 < ρ < |x0|. (5.12)

Let e be any unit vector in Rn, for any l > 0, ξ ∈ Rn+1
+ with 〈(ξ − le), e〉 < 0.

Choosing x0 = Re and ρ = R− l in (5.12) and letting R→ +∞, we obtain that

U(x, t) ≥ U(x− 2(〈x, e〉 − l)e, t).

This yields the conclusion (2) of Theorem 1.2. �

Proof of Corollary 1.2. The first conclusion is a direct corollary of Theorem 1.2.
We now focus on the second conclusion.

From Theorem 1.2 and Caffarelli-Silvestre extension, we have that the nonnega-
tive solutions to (1.5) is radially symmetric about the origin and non-increasing in
radial directions. In what follows, for simplicity, we use the notation u(r) instead
of u(x) for r = |x|. Thus, we only need to prove that u is strictly decreasing in
radial directions if u is nontrivial.

We argue by contradiction. Assume that there exist 0 < r1 < r2 <∞ such that
u(r1) = u(r2). Without loss of generality, we may assume that u(r) > u(r1) for
r < r1 and u(r) < u(r2) for r > r2. Let Ar1,r2 := {x ∈ Rn | r1 < |x| < r2}. So u is
a constant in Ar1,r2 . Let x0 be any point in Ar1,r2 . Note that (1.5) at x0 is

Cn,sP.V.

∫
Rn

u(x0)− u(y)

|x0 − y|n+2s
dy =

λ

|x0|2s
u(x0) + u

n+2s
n−2s (x0). (5.13)
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A calculation yields that

Cn,sP.V.

∫
Rn

u(x0)− u(y)

|x0 − y|n+2s
dy

= Cn,s

∫
Rn\Ar1,r2

u(x0)− u(y)

|x0 − y|n+2s
dy

= Cn,s

∫
Br1

u(x0)− u(y)

|x0 − y|n+2s
dy + Cn,s

∫
Rn\Br2

u(x0)− u(y)

|x0 − y|n+2s
dy. (5.14)

Let η1 = (z1, 0, · · · , 0), η2 = (z2, 0, · · · , 0) with r1 < z1 < z2 < r2. Observe that

u(η1)− u(y) = u(η2)− u(y) < 0, ∀y ∈ Br1
and

1

|η1 − y|n+2s
>

1

|η2 − y|n+2s
, ∀y ∈ Br1 .

Then we have

Cn,s

∫
Br1

u(η1)− u(y)

|η1 − y|n+2s
dy < Cn,s

∫
Br1

u(η2)− u(y)

|η2 − y|n+2s
dy. (5.15)

Next, we prove

Cn,s

∫
Rn\Br2

u(η1)− u(y)

|η1 − y|n+2s
dy < Cn,s

∫
Rn\Br2

u(η2)− u(y)

|η2 − y|n+2s
dy. (5.16)

In fact, let y = (y1, · · · , yn) and

I(η) =

∫
Rn\Br2

u(η)− u(y)

|η − y|n+2s
dy.

Set

P =

{
y = (y1, · · · , yn) ∈ Rn | y1 =

z1 + z2

2

}
,

that is, P is the hyperplane orthogonal segment [η1, η2] at η1+η2

2 . Define

D1 =

{
y ∈ Rn \Br2(0) | y1 >

z1 + z2

2

}
and

D2 =

{
y ∈ Rn \Br2(0) | y1 <

z1 + z2

2

}
.

A direct computation yields that

I(η2)− I(η1) =

∫
D1

(
1

|η2 − y|n+2s
− 1

|η1 − y|n+2s

)
(u(η1)− u(y)) dy

+

∫
D2

(
1

|η2 − y|n+2s
− 1

|η1 − y|n+2s

)
(u(η1)− u(y)) dy

:= T7 + T8.

Since

u(η1)− u(y) = u(η2)− u(y) > 0, ∀y ∈ Rn \Br2 ,
1

|η1 − y|n+2s
<

1

|η2 − y|n+2s
, ∀y ∈ D1
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and
1

|η1 − y|n+2s
>

1

|η2 − y|n+2s
, ∀y ∈ D2,

we have

T7 > 0 and T8 < 0.

We now compare the absolute values of T7 and T8. Let ŷ be the reflection
point of y with respect to the hyperplane P , so 0̂ = (z1 + z2, 0, · · · , 0). Define

D̂2 = D1 \ Br2(0̂), that is, D̂2 is the reflection domain of D2 with respect to P .
Since u is non-increasing in radial direction, we have

u(ŷ) ≤ u(y), ∀y ∈ D2.

Note that η̂1 = η2, then we obtain that

T8 =

∫
D2

(
1

|η1 − ŷ|n+2s
− 1

|η2 − ŷ|n+2s

)
(u(η2)− u(y)) dy

=

∫
D̂2

(
1

|η1 − y|n+2s
− 1

|η2 − y|n+2s

)
(u(η2)− u(ŷ)) dy

≥
∫
D̂2

(
1

|η1 − y|n+2s
− 1

|η2 − y|n+2s

)
(u(η2)− u(y)) dy

= −
∫
D̂2

(
1

|η2 − y|n+2s
− 1

|η1 − y|n+2s

)
(u(η2)− u(y)) dy.

By the definition of D̂2, we get

T7 + T8 ≥
∫
D1∩Br2 (0̂)

(
1

|η2 − y|n+2s
− 1

|η1 − y|n+2s

)
(u(η1)− u(y)) dy > 0.

Therefore, (5.16) holds.
Finally, from (5.14), (5.16) and (5.15), we have

Cn,sP.V.

∫
Rn

u(η1)− u(y)

|η1 − y|n+2s
dy < Cn,sP.V.

∫
Rn

u(η2)− u(y)

|η2 − y|n+2s
dy. (5.17)

On the other hand, it holds that

λ

|η1|2s
u(η1) + u

n+2s
n−2s (η1) ≥ λ

|η2|2s
u(η2) + u

n+2s
n−2s (η2).

This is impossible since inequality (5.17) and equation (5.13) hold at η1 and η2.
Therefore, the assumption at the beginning can not be true. That is, u(r) is strictly
decreasing with respect to r. This completes the proof. �

6. Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3.
Define

Q(U, V ) =

∫
Rn+1

+

t1−2s∇U ·∇V−κsλ
∫
Rn

U(x, 0)V (x, 0)

|x|2s
, U, V ∈ Ḣ1(Rn+1

+ , t1−2s).

Let

Q(U) :=

∫
Rn+1

+

t1−2s|∇U |2 − κsλ
∫
Rn

U2(x, 0)

|x|2s
, U ∈ Ḣ1(Rn+1

+ , t1−2s). (6.1)
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Note that by Hardy inequality and trace inequality, we have

κsΛn,s

∫
Rn

U2(x, 0)

|x|2s
≤
∫
Rn+1

+

t1−2s|∇U |2. (6.2)

Thus, if λ < Λn,s, then Q(U) ≥ 0 for all U ∈ Ḣ1(Rn+1
+ , t1−2s). By (6.2) we obtain

that Q is continuous in Ḣ1(Rn+1
+ , t1−2s) × Ḣ1(Rn+1

+ , t1−2s). Then there exists a

unique bounded symmetric operator LQ ∈ L(Ḣ1(Rn+1
+ , t1−2s)) such that

〈LQU, V 〉Ḣ1(Rn+1
+ ,t1−2s) = Q(U, V ).

Define the first eigenvalue of Q as

ν1(λ) = inf
U ∈ Ḣ1(Rn+1

+ , t1−2s)
and U(·, 0) 6= 0

Q(U)

κs
∫
Rn

U2(x,0)
|x|2s

.

Hardy-type inequality yields that if λ = 0, then ν1(0) = Λn,s.
Let Sn be the unit n-dimensional sphere and

Sn+ = {θ = (θ1, · · · , θn, θn+1) ∈ Sn : θn+1 > 0}.

Thus

Rn+1
+ = R+ × Sn+ with X = (r, θ) :=

(
|X|, X

|X|

)
.

Let H1(Sn+, θ
1−2s
n+1 ) be the completion of C∞(Sn+) with the weighted norm given

by

‖ψ‖H1(Sn+,θ
1−2s
n+1 ) =

(∫
Sn+

θ1−2s
n+1 (|∇Snψ(θ)|2 + ψ2(θ))

) 1
2

.

Define

L2(Sn+, θ
1−2s
n+1 ) :=

{
ψ : Sn+ → R measurable such that

∫
Sn+

θ1−2s
n+1 ψ

2(θ) <∞

}
.

Since the weight θ1−2s
n+1 belongs to the second Muckenhoupt class A2, the embedding

H1(Sn+, θ
1−2s
n+1 ) ↪→ L2(Sn+, θ

1−2s
n+1 ) is compact (see [17]). The trace operator

tr : H1(Sn+, θ
1−2s
n+1 )→ L2(Sn−1) (6.3)

is well-defined and satisfies the following inequality: for every ψ ∈ H1(Sn+, θn+1),
one has

κsΛn,s

(∫
Sn−1

|ψ(θ′, 0)|2
)
≤
(
n− 2s

2

)2 ∫
Sn+

θ1−2s
n+1 ψ

2 +

∫
Sn+

θ1−2s
n+1 |∇Snψ|2, (6.4)

where Sn−1 = ∂Sn+ = {(θ′, θn+1) | θn+1 = 0}. This trace inequality was obtained
in [20, Lemma 2.2].

Consider the following eigenvalue problem{
divSn(θ1−2s

n+1 ∇Snψ) =
(
n−2s

2

)2
θ1−2s
n+1 ψ, in Sn+,

− lim
θn+1→0

θ1−2s
n+1 ∇Snψ · en+1 − λκsψ = µκsψ, on ∂Sn+,

(6.5)
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where en+1 = (0, · · · , 0, 1). We say that µ ∈ R is an eigenvalue of problem (6.5) if
there exists ψ ∈ H1(Sn+, θ

1−2s
n+1 ) \ {0} such that

E(ψ, φ) = µκs

∫
Sn−1

ψφ, for all φ ∈ H1(Sn+, θ
1−2s
n+1 ),

where

E : H1(Sn+, θ
1−2s
n+1 )×H1(Sn+, θ

1−2s
n+1 )→ R

is given by

E(ψ, φ) =

∫
Sn+

θ1−2s
n+1 ∇Snψ · ∇Snφ+

(
n− 2s

2

)2 ∫
Sn+

θ1−2s
n+1 ψφ− λκs

∫
Sn−1

ψφ.

By (6.3) and (6.4), E is continuous and weakly coercive in H1(Sn+, θ
1−2s
n+1 ). For all

ψ ∈ H1(Sn+, θ
1−2s
n+1 ), E(ψ) := E(ψ,ψ) is the corresponding quadratic form.

Consider the following minimization problem

µ1(λ) = inf
ψ∈H1(Sn+,θ

1−2s
n+1 )\{0}

E(ψ)

κs
∫
Sn−1 ψ2

.

By the proof of (6.4), the constant Λn,s is sharp (see [20, Lemma 2.2]). Moreover,
from the compactness of Sn+ and [44, Theorem 6.16], we deduce that µ1(λ) = Λs−λ
is achieved at some positive function ψ1 in H1(Sn+, θ

1−2s
n+1 ). Therefore,{

divSn(θ1−2s
n+1 ∇Snψ1) =

(
2s−n

2

)2
θ1−2s
n+1 ψ1 in Sn+,

− lim
θn+1→0

θ1−2s
n+1 ∇Snψ1 · en+1 = Λn,sκsψ1, on ∂Sn+.

(6.6)

We now prove

Proposition 6.1. For all λ ∈ R, we have

µ1(λ) = ν1(λ).

Proof. The idea of the proof is a combination of the method in [48] and Caffarelli-
Silvestre extension of fractional Laplacian.

Firstly, we prove µ1(λ) ≥ ν1(λ). Let η : R+ → [0, 1] be a smooth cut-off function
such that η(l) = 0, for l ∈ [0, 1

2 ], and η(l) = 1, for l ∈ [1,+∞). For ε ∈ (0, 1), define

ηε(l) =

{
η(l/ε), l ≤ 1,
η(1/(εl)), l ≥ 1.

Notice that ηε(l) = ηε(1/l), ∀ l > 0. Let ψ1 ∈ H1(Sn+, θ
1−2s
n+1 ) be a positive eigen-

function associated to µ1(λ). Define

Wε(X) = |X|(2s−n)/2ηε(|X|)ψ1(X/|X|).

Obviously, Wε belongs to Ḣ1(Rn+1
+ , t1−2s). Moreover, Wε(X) = ε

2s−n
2 W1(Xε ) when

|X| ≤ ε, and, Wε(X) = ε
n−2s

2 W1(εX) when |X| ≥ ε−1. Then we have∫
B+
ε (0)∪[Rn+1

+ \B+
1/ε

(0)]

t1−2s|∇Wε|2 +

∫
Bε(0)∪[Rn\B1/ε(0)]

W 2
ε

|X|2s

=

∫
Rn+1

+

t1−2s|∇W1|2 +

∫
Rn

W 2
1

|X|2s
≤ C,
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where C is a positive constant independent on ε. Therefore,

ν1(λ) ≤

∫
Rn+1

+
t1−2s|∇Wε|2 − κsλ

∫
Rn

W 2
ε

|x|2s

κs
∫
Rn

W 2
ε

|x|2s

≤
C +

∫
B+

1/ε
(0)\B+

ε (0)
t1−2s|∇Wε|2 − κsλ

∫
B1/ε(0)\Bε(0)

W 2
ε

|x|2s

κs
∫
B1/ε(0)\Bε(0)

W 2
ε

|x|2s
.

In polar coordinates, we have∫
B+

1/ε
(0)\B+

ε (0)

t1−2s|∇Wε|2

=

∫ 1/ε

ε

r−1

∫
Sn+1

+

θ1−2s
n+1

[(
2s− n

2

)2

ψ1(θ)2 + |∇Snψ1(θ)|2
]
dSdr

= 2 log ε−1

∫
Sn+1

+

θ1−2s
n+1

[(
2s− n

2

)2

ψ1(θ)2 + |∇Snψ1(θ)|2
]
dS

and∫
B1/ε(0)\Bε(0)

W 2
ε

|x|2s
=

∫ 1/ε

ε

∫
Sn−1

r−1ψ1(θ)2dS′dr = 2 log ε−1

∫
Sn−1

ψ1(θ)2dS′.

Then

ν1(λ) ≤
C + 2 log ε−1

[∫
Sn+1

+
θ1−2s
n+1

((
2s−n

2

)2
ψ2

1 + |∇Snψ1|2
)
− κ2λ

∫
Sn−1 ψ

2
1

]
2κs log ε−1

∫
Sn−1 ψ

2
1

.

Therefore, letting ε→ 0, we obtain that ν1(λ) ≤ µ1(λ).
Secondly, we prove the reverse inequality. Let W ∈ C∞0 (Rn+1

+ \ {0}), define

W̃ (X) =

(∫ ∞
0

1

rn+1−2s
W 2

(
X

r

)
dr

) 1
2

, (6.7)

which is a homogeneous function of degree (2s−n)/2. A standard calculation yields
that on ∂Rn+1

+ = Rn,∫
Sn−1

W̃ 2(θ′, 0)dS′ =

∫
Rn

W 2(x, 0)

|x|2s
dx. (6.8)

In polar coordinates, we have

|∇W̃ (X)|2 =
∣∣∣∇(r 2s−n

2 W̃ (θ)
)∣∣∣2 (6.9)

=

(
2s− n

2

)2

r2s−2−nW̃ 2(θ) + r2s−2−n|∇SnW̃ (θ)|2.

Therefore, choosing r = 1 in (6.9), we get∫
Sn+

θ1−2s
n+1 |∇W̃ (θ)|2dS =

∫
Sn+

θ1−2s
n+1

[(
2s− n

2

)2

W̃ 2(θ) + |∇SnW̃ (θ)|2
]
dS. (6.10)
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On the other hand, differentiating both sides of (6.7) and using Hölder inequality,
we have that

|∇W̃ (X)| ≤
(∫ ∞

0

1

rn+3−2s
|∇W |2

(
X

r

)
dr

) 1
2

.

Then it holds that∫
Sn+

θ1−2s
n+1 |∇W̃ (θ)|2dS ≤

∫
Sn+

θ1−2s
n+1

(∫ ∞
0

1

rn+3−2s
|∇W |2

(
θ

r

)
dr

)
dS

= −
∫
Sn+

∫ ∞
0

(
θn+1

r

)1−2s

|∇W |2
(
θ

r

)(
1

r

)n
d

(
1

r

)
dS

=

∫
Rn+1

+

t1−2s|∇W |2(X)dX. (6.11)

Therefore, by (6.8), (6.10), (6.11) and the definition of µ1(λ), we obtain that

µ1(λ) ≤

∫
Sn+
θ1−2s
n+1

(
|∇SnW̃ (θ)|2 +

(
n−2s

2

)2
W̃ 2(θ)

)
dS − λκs

∫
Sn−1 W̃

2(θ′, 0)

κs
∫
Sn−1 W̃ 2(θ′, 0)dS′

≤

∫
Rn+1

+
t1−2s|∇W |2(X)dX − λκs

∫
Rn

W 2(x,0)dS′

|x|2s dx

κs
∫
Rn

W 2(x,0)
|x|2s dx

.

Note that C∞0 (Rn+1
+ \ {0}) is dense in H1(Rn+1

+ , t1−2s), thus µ1(λ) ≤ ν1(λ). This
completes the proof. �

Proof of Theorem 1.3. We argue by contradiction. Suppose there exists a nonneg-
ative solution U ∈ Ḣ1(Rn+1

+ , t1−2s) of (1.8). Then from Proposition 4.1, U is
positive. Define

W1(X) = |X|
2s−n

2 ψ1

(
X

|X|

)
.

By (6.6) we have

div(t1−2s∇W1) = 0, in Rn+1
+ . (6.12)

A direct calculus yields

∂tW1(x, t) =

(
2s− n

2

)
t|X|

2s−n−4
2 ψ1

(
X

|X|

)
− t|X|

2s−n−6
2

n+1∑
j=1

[∂jψ1]

(
X

|X|

)

+|X|
2s−n−2

2 [∂tψ1]

(
X

|X|

)
.

It follows that for x ∈ Rn \ {0},

− lim
t→0

t1−2s∂tW1(x, t) = Λn,sκs
W1(x, 0)

|x|2s
. (6.13)

Let A+
r,R := {X ∈ Rn+1

+ | r ≤ |X| ≤ R} and Ar,R = {x ∈ Rn | r ≤ |x| ≤ R}.
Multiplying the first equation of (1.8) by W1, integrating the terms in A+

r,R and by
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the divergence theorem, we obtain that∫
A+
r,R

t1−2s∇U · ∇W1 =

∫
SnR,+

W1t
1−2s∂rU −

∫
Snr,+

W1t
1−2s∂rU (6.14)

+κs

∫
Ar,R

λ

|x|2s
W1(x, 0)U(x, 0) +W1(x, 0)U

n+2s
n−2s (x, 0).

Similarly, multiplying (6.12) by U and using (6.13) yield that∫
A+
r,R

t1−2s∇W1 · ∇U =

∫
SnR,+

Ut1−2s∂rW1 −
∫
Snr,+

Ut1−2s∂rW1 (6.15)

+κs

∫
Ar,R

Λn,s
|x|2s

U(x, 0)W1(x, 0).

Therefore, by (6.14) and (6.15), it holds that

κs

∫
Ar,R

λ− Λn,s
|x|

W1(x, 0)U(x, 0) +W1(x, 0)U
n+2s
n−2s (x, 0) (6.16)

=

∫
SnR,+

(
t1−2sU∂rW1 − t1−2sW1∂rU

)
−
∫
Snr,+

(
t1−2sU∂rW1 − t1−2sW1∂rU

)
.

Since λ ≥ Λn,s and both W1 and U are positive, the left side of (6.16) is positive
for all r,R.

On the other hand, by Hölder inequality, the right side of (6.16) becomes∣∣∣∣∣
∫
SnR,+

(
t1−2sU∂rW1 − t1−2sW1∂rU

)∣∣∣∣∣
≤

(∫
SnR,+

t1−2s|U |2γ
) 1

2γ
(∫

SnR,+

t1−2s|∂rW1|(2γ)′

) 1
(2γ)′

+

(∫
SnR,+

t1−2s|∂rU |2
) 1

2
(∫

SnR,+

t1−2s|W1|2
) 1

2

,

where γ is the constant given by Lemma 2.2 and 1/(2γ) + 1/(2γ)′ = 1. Direct
computations yield that(∫

SnR,+

t1−2s|∂rW1|(2γ)′

) 1
(2γ)′

=

(
n− 2s

2

)(∫
SnR,+

t1−2sR
2s−n−2

2 (2γ)′ |ψ1|(2γ)′

) 1
(2γ)′

=

(
n− 2s

2

)
R

1
2γ

(∫
Sn1,+

θ1−2s
n+1 |ψ1(θ)|(2γ)′

) 1
(2γ)′

and (∫
SnR,+

t1−2s|W1|2
) 1

2

= R
1
2

(∫
Sn1,+

θ1−2s
n+1 ψ

2
1(θ)dθ

) 1
2

.

Since 1 ≤ (2γ)′ < 2, it holds that(∫
Sn1,+

θ1−2s
n+1 |ψ1(θ)|(2γ)′

) 1
(2γ)′

<∞.
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Then we have∣∣∣∣∣
∫
SnR,+

(
t1−2sU∂rW1 − t1−2sW1∂rU

)∣∣∣∣∣
≤
(
n− 2s

2

)(∫
Sn1,+

θ1−2s
n+1 |ψ1(θ)|(2γ)′

) 1
(2γ)′

(
R

∫
SnR,+

t1−2s|U |2γ
) 1

2γ

+

(∫
Sn1,+

θ1−2s
n+1 ψ

2
1(θ)dθ

) 1
2
(
R

∫
SnR,+

t1−2s|∂rU |2
) 1

2

.

Note that U ∈ Ḣ1(Rn+1
+ , t1−2s), by Lemma 2.2, U ∈ L2γ(Rn+1

+ , t1−2s). Therefore,
there exists a sequence Rk →∞ (k →∞) such that(

Rk

∫
SnRk,+

t1−2s|U |2γ
) 1

2γ

+

(
Rk

∫
SnRk,+

t1−2s|∂rU |2
) 1

2

→ 0. (6.17)

Indeed, if otherwise, there is a constant C > 0 such that

R

∫
SnR,+

t1−2s|U |2γ ≥ C and R

∫
SnR,+

t1−2s|∂rU |2 ≥ C.

Then ∫
SnR,+

t1−2s|U |
2(n+1)
n−1 ≥ C

R
and

∫
SnR,+

t1−2s|∂rU |2 ≥
C

R
.

It is impossible since R−1 is not integrable at ∞. So we have (6.17).
Similarly, there exists a sequence rk → 0 (k →∞) such that(

rk

∫
Snrk,+

t1−2s|U |2γ
) 1

2γ

+

(
rk

∫
Snrk,+

t1−2s|∂rU |2
) 1

2

→ 0.

Thus we have∫
SnRk,+

(
t1−2sU∂rW1 − t1−2sW1∂rU

)
−
∫
Snrk,+

(
t1−2sU∂rW1 − t1−2sW1∂rU

)
→ 0.

This is in contradiction with (6.16). This completes the proof. �

7. Proof of Theorem 1.4

In this section, we prove Theorem 1.4.
Let

β(λ) = inf
U∈Ḣ(Rn+1

+ ,t1−2s)

Q(U)

‖U(·, 0)‖22∗(s)
, (7.1)

where Q(U) is given by (6.1). By Sobolev inequality and trace inequality, we have

κsSn,s‖U(·, 0)‖2∗(s) ≤
∫
Rn+1

+

t1−2s|∇U |2, ∀U ∈ Ḣ1(Rn+1
+ , t1−2s).

So β(λ) is well-defined. Recall that if λ < Λn,s, then Q(U) ≥ 0. Thus β(λ) > 0.

Lemma 7.1. If {Uk} ⊂ Ḣ1(Rn+1
+ , t1−2s) weakly converges to V ∈ Ḣ1(Rn+1

+ , t1−2s),
then

Q(Uk) = Q(V ) +Q(Uk − V ) + o(1). (7.2)
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Proof. A direct computation yields

Q(Uk) = Q(V + Uk − V ) = Q(V ) +Q(Uk − V ) + 2Q(V,Uk − V ).

Note that

Q(V,Uk − V ) = 〈LQV,Uk − V 〉Ḣ1(Rn+1
+ ,t1−2s) → 0,

then (7.2) follows. �

Firstly, we consider a minimization sequence of (7.1) with nontrivial weak limit.

Lemma 7.2. Let 0 ≤ λ < Λn,s. Suppose that {Uk} ⊂ Ḣ1(Rn+1
+ , t1−2s) is a mini-

mization sequence for (7.1) and weakly converges to V 6≡ 0, then V is a minimum

and Uk → V with respect to the norm topology in Ḣ1(Rn+1
+ , t1−2s).

Proof. By trace inequality and compactness of the imbedding Ḣs(Rn) ↪→ Lploc(Rn),
1 ≤ p < 2∗(s), Uk(·, 0) converges to V (·, 0) almost everywhere. From Brezis-Lieb’s
result in [5], it holds that

‖Uk(·, 0)‖2
∗(s)

2∗(s) = ‖V (·, 0)‖2
∗(s)

2∗(s) + ‖Uk(·, 0)− V (·, 0)‖2
∗(s)

2∗(s) + o(1).

SinceQ(Uk) = β(λ)‖Uk(·, 0)‖22∗(s)+o(1) andQ(Uk−V ) ≥ β(λ)‖Uk(·, 0)−V (·, 0)‖22∗(s),
we obtain that

Q(V )

‖V (·, 0)‖22∗(s)
=

Q(Uk)−Q(Uk − V ) + o(1)(
‖Uk(·, 0)‖2

∗(s)
2∗(s) − ‖Uk(·, 0)− V (·, 0)‖2

∗(s)
2∗(s) + o(1)

) 2
2∗(s)

≤ β(λ)
Q(Uk)−Q(Uk − V ) + o(1)(

Q
2∗(s)

2 (Uk)−Q
2∗(s)

2 (Uk − V ) + o(1)
) 2

2∗(s)
. (7.3)

From Lemma 7.1 and positivity of Q(V ), we get

0 ≤ lim sup
k

Q(Uk − V ) = lim sup
k

Q(Uk)−Q(V ) < lim sup
k

Q(Uk).

We now argue by contradiction. If there exists a subsequence of {Uki} such that
lim
i→∞

Q(Uki − V ) > 0, then

lim
i

Q(Uki)−Q(Uki − V ) + o(1)(
Q

2∗(s)
2 (Uki)−Q

2∗(s)
2 (Uki − V ) + o(1)

) 2
2∗(s)

< 1.

This is impossible because of the definition of β(λ) and (7.3). Therefore, lim
k→∞

Q(Uk−
V ) = 0. Furthermore, recalling that λ < Λn,s and (6.2), we have

Q(Uk − V ) =

∫
Rn+1

+

t1−2s|∇(Uk − V )|2 − κsλ
∫
Rn

(Uk(x, 0)− V (x, 0))2

|x|2s

≥ Λn,s − λ
Λn,s

∫
Rn+1

+

t1−2s|∇(Uk − V )|2 ≥ 0.

That is, Uk converges to V in norm topology of Ḣ1(Rn+1
+ , t1−2s). This completes

the proof. �

Secondly, we investigate a minimization sequence of (7.1) with trivial weak limit.
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Lemma 7.3. Let U ∈ Ḣ1(Rn+1
+ , t1−2s),

R(U)(z) = R−
n−2s

2 U
( z
R

)
, R > 0.

Then

Q(R(U)) = Q(U),

‖R(U)(·, 0)‖2∗(s) = ‖U(·, 0)‖2∗(s)
and

‖R(U)(·, 0)‖Ḣs(Rn) = ‖U(·, 0)‖Ḣs(Rn).

Proof. The conclusions follow from some direct computations. �

By this lemma, we see that if U is a minimization of (7.1), then so is R(U).

Lemma 7.4. Let 0 ≤ λ < Λn,s. Suppose that {Uk} ⊂ Ḣ1(Rn+1
+ , t1−2s) is a

minimization sequence for (7.1) and weakly converges to 0, then there is a sequence

{Ûk} associated with {Uk} such that {Ûk} is also a minimization sequence and

Ûk → V 6≡ 0 in Ḣ1(Rn+1
+ , t1−2s).

Proof. From the homogeneity of (7.1), we may assume that Q(Uk) → β(λ) and
‖Uk(·, 0)‖2∗(s) = 1. Define

Q(u, v) := Cn,s

∫
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy − λ

∫
Rn

uv

|x|2s
(7.4)

=

∫
Rn

|ξ|2sF(u)(ξ)F(v)(ξ)dξ − λ
∫
Rn

uv

|x|2s

= 〈u, v〉Ḣs(Rn) − λ
∫
Rn

uv

|x|2s
.

Where Cn,s = 22s−1π−
n
2 Γ(n+2s

2 )/|Γ(−s)| (see e.g. [23]). By Hardy-type inequality

(1.6), Q( · , · ) are continuous in Ḣs(Rn)× Ḣs(Rn). For simplicity, we also denote

Q(u) := Q(u, u) = 〈u, u〉Ḣs(Rn) − λ
∫
Rn

u2

|x|2s
, u ∈ Ḣs(Rn).

Let uk(x) = Uk(·, 0) and

β̃(λ) := inf
u∈Ḣs(Rn)\{0}

Q(u)

‖u‖22∗(s)
. (7.5)

By a similar argument as in the proof of [16, Theorem 1.5], we find a minimization
sequence (by a decreasing rearrangement, using an improved Sobolev embedding
inequality proved in [40, Theorem 1.1] and some proper rescaling of uk as in Lemma
7.3) ũk of (7.5) such that

ũk → ṽ 6≡ 0 in Ḣs(Rn).

Let Ũk(x, t) = (Ps ∗ ũk)(x, t) and Ṽ (x, t) = (Ps ∗ ṽ)(x, t) 6≡ 0. By (2.4), Lemma

2.3 and Lemma 7.3, we have Ũk → Ṽ in Ḣ1(Rn+1
+ , t1−2s) and Ṽ is a minimizer of

(7.1). This completes the proof. �

Proof of Theorem 1.4. The result of Theorem 1.4 follows from Lemma 7.2 and Lem-
ma 7.4. �
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Appendix A. Kelvin transformation

The Kelvin transformation of U is given by

UX,ρ(ξ) :=

(
ρ

|ξ −X|

)n−2s

U

(
X +

ρ2(ξ −X)

|ξ −X|2

)
, ξ ∈ Rn+1

+ \ {X}.

Lemma A.1. If U satisfies (1.3), then UX,ρ is a solution of the following problem

div(t1−2s∇UX0,ρ)(ξ) = 0, in Rn+1
+ ,

− lim
t→0+

t1−2s∂tUX0,ρ(ξ) = κs

[(
ρ

|x− x0|

)4s
λ

|xρ,x0
|α
UX0,ρ(xρ,x0 , 0)

+

(
ρ

|x− x0|

)n+2s−p(n−2s)

(|UX0,ρ|p−1UX0,ρ)(xρ,x0 , 0)

]
, on Rn,

(A.1)
where ξ = (x, t), X0 = (x0, 0) and

xρ,x0 := x0 +
ρ2(x− x0)

|x− x0|2
. (A.2)

Proof. The first equation of (A.1) is a well-known fact. So we only give a detailed
computation of the second equation of (A.1).

Firstly, we compute ∂tUX0,ρ(x, t) as follows:

∂

∂t
UX0,ρ(x, t)

=
∂

∂t

(
ρn−2s

|ξ −X0|n−2s

)
U

(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
+

ρn−2s

|ξ −X0|n−2s

∂

∂t
U

(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
:= T9 + T10.

A direct calculation yields that

T9 = t
(2s− n)ρn−2s

|ξ −X0|n+2−2s
U

(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
.

As for Q2, we have

∂

∂t
U

(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
=

(
ρ2

|ξ −X0|2

)(
∂U

∂t

)(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
−2tρ2

n+1∑
k=1

(
∂U

∂ξk

)(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)(
ξk − (X0)k
|ξ −X0|4

)
.

Hence

T10 =

(
ρn+2−2s

|ξ −X0|n+2−2s

)(
∂U

∂t

)(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
−t
(

2ρn+2−2s

|ξ −X0|n+4−2s

) n+1∑
k=1

(
∂U

∂ξk

)(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
(ξk − (X0)k) .
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Therefore, since s ∈ (0, 1),

− lim
t→0+

t1−2s ∂

∂t
UX0,ρ(x, t) (A.3)

= − lim
t→0+

(
ρn+2−2s

|ξ −X0|n+2−2s

)
t1−2s

(
∂U

∂t

)(
X0 +

ρ2(ξ −X0)

|ξ −X0|2

)
= −

(
ρn+2−2s

|x− x0|n+2−2s

)
lim
t→0+

t1−2s

(
∂U

∂t

)(
x0 +

ρ2(x− x0)

|ξ −X0|2
,

ρ2t

|ξ −X0|2

)
= −

(
ρn+2s

|x− x0|n+2s

)
lim
t→0+

(
ρ2t

|ξ −X0|2

)1−2s(
∂U

∂t

)(
x0 +

ρ2(x− x0)

|ξ −X0|2
,

ρ2t

|ξ −X0|2

)
.

From (1.3), (A.3) and the definition (A.2) of xρ,x0
, it holds that

− lim
t→0+

t1−2s ∂

∂t
UX0,ρ(x, t)

= κs

(
ρn+2s

|x− x0|n+2s

)(
λ

|xρ,x0
|α
U(xρ,x0

, 0) + (|U |p−1U)(xρ,x0
, 0)

)
= κs

[(
ρ

|x− x0|

)4s(
λ

|xρ,x0
|α

)
UX0,ρ(xρ,x0

, 0)

+

(
ρ

|x− x0|

)n+2s−p(n−2s)

(|UX0,ρ|p−1UX0,ρ)(xρ,x0 , 0)

]
.

Thus we have the second equation of (A.1). �
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