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Abstract

Copositivity of tensors plays an important role in vacuum stability of a general scalar potential,

polynomial optimization, tensor complementarity problem and tensor generalized eigenvalue comple-

mentarity problem. In this paper, we propose a new algorithm for testing copositivity of high order

tensors, and then present applications of the algorithm in physics and hypergraphs. For this purpose,

we first give several new conditions for copositivity of tensors based on the representative matrix of a

simplex. Then a new algorithm is proposed with the help of a proper convex subcone of the copos-

itive tensor cone, which is defined via the copositivity of Z-tensors. Furthermore, by considering a

sum-of-squares program problem, we define two new subsets of the copositive tensor cone and discuss

their convexity. As an application of the proposed algorithm, we prove that the coclique number of a

uniform hypergraph is equivalent to an optimization problem over the completely positive tensor cone,

which implies that the proposed algorithm can be applied to compute an upper bound of the coclique

number of a uniform hypergraph. Then we study another application of the proposed algorithm on

particle physics in testing copositivity of some potential fields. At last, various numerical examples

are given to show the performance of the algorithm.
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1 Introduction

Copositivity of high order tensors has received a growing amount of interest in vacuum stability of a

general scalar potential [14], tensor complementarity problem [1, 3, 32, 33, 38], tensor generalized eigenvalue

complementarity problem [19] and polynomial optimization problems [24, 34]. A symmetric tensor is called

copositive if it generates a multivariate form taking nonnegative values over the nonnegative orthant [26].

In the literature, copositive tensors constitute a large class of tensors that contain nonnegative tensors

and several kinds of structured tensors in the even order symmetric case such as M -tensors, diagonally

dominant tensors and so on [4, 7, 10, 13, 16–18, 27, 28, 41].

Recently, Kannike [14] studied the vacuum stability of a general scalar potential of a few fields. With

the help of copositive tensors and its relationship to orbit space variables, Kannike showed that how to find

positivity conditions for more complicated potentials. Then, he discussed the vacuum stability conditions

of the general potential of two real scalars, without and with the Higgs boson included in the potential

[14]. Furthermore, explicit vacuum stability conditions for the two Higgs doublet model were given, and

a short overview of positivity conditions for tensors of quadratic couplings were established via tensor

eigenvalues.

In [24], Pena et al. provided a general characterization of polynomial optimization problems that can

be formulated as a conic program over the cone of completely positive tensors. It is known that the cone

of completely positive tensors has a natural associated dual cone of copositive tensors [29]. In light of

this relationship, any completely positive program stated in [24] has a natural dual conic program over

the cone of copositive tensors. As a consequence of this characterization, it follows that recent related

results for quadratic problems can be further strengthened and generalized to higher order polynomial

optimization problems. For completely positive tensors and their applications, also see [15, 22, 29]. In

[34], Song and Qi gave the concepts of Pareto H-eigenvalue (Pareto Z-eigenvalue) for symmetric tensors

and proved that the minimum Pareto H-eigenvalue (Pareto Z-eigenvalue) is equivalent to the optimal

value of a polynomial optimization problem. It is proved that a symmetric tensor A is strictly copositive

if and only if every Pareto H-eigenvalue (Z-eigenvalue) of A is positive, and A is copositive if and only

if every Pareto H-eigenvalue (Z-eigenvalue) of A is nonnegative [34]. Unfortunately, it is NP-hard to

compute the minimum Pareto H-eigenvalue or Pareto Z-eigenvalue of a general symmetric tensor.

On the other hand, Che, Qi and Wei [3] showed that the tensor complementarity problem with a

strictly copositive tensor has a nonempty and compact solution set. Song and Qi [33] proved that a real

symmetric tensor is a (strictly) semi-positive if and only if it is (strictly) copositive. Song and Qi [32, 33]

obtained several results for the tensor complementarity problem with a (strictly) semi-positive tensor.

Huang and Qi [12] formulated an n-person noncooperative game as a tensor complementarity problem
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with the involved tensor being nonnegative. Thus, copositive tensors play an important role in the tensor

complementarity problem. Besides, Ling et al. [19] gave an affirmative result that the tensor generalized

eigenvalue complementarity problem is solvable and has at least one solution under assumptions that the

related tensor is strictly copositive.

Thus, a challenging problem is how to check the copositivity of a given symmetric tensor efficiently?

Several sufficient conditions or necessary and sufficient conditions for copositive tensors have been

presented in [26, 31]. However, it is hard to verify numerically whether a tensor is copositive or not from

these conditions. Actually, the problem to judge whether a symmetric tensor is copositive or not is NP-

complete, even for the matrix case [9, 23]. Very recently, Chen et al. [5] gave some theoretical studies on

various conditions for (strictly) copositive tensors; and based on some of the theoretical findings, several

new criteria for copositive tensors are proposed based on the representation of the multivariate form in

barycentric coordinates with respect to the standard simplex and simplicial partitions. It is verified that,

as the partition gets finer and finer, the concerned conditions eventually capture all strictly copositive

tensors. It should be pointed out that the algorithm investigated in [5] can be viewed as an extension of

some branch-and-bound type algorithms for testing copositivity of symmetric matrices [2, 35, 39].

In this paper, with the help of sum-of-square polynomial technique, an alternative numerical algorithm

for copositivity of tensors is proposed, which is established via a kind of structured tensors and on the

choice of a suitable convex subcone of copositive tensor cone. It is proved that the coclique number of a

uniform hypergraph is equivalent with an optimization problem over the completely positive tensor cone,

which is the dual cone of copositive tensors. Using this, the proposed algorithm can be applied to compute

the upper bound of the coclique number of a uniform hypergraph. Furthermore, the proposed algorithm

is applied to test the copositivity of some potential fields on particle physics. The rest of this paper is

organized as follows.

In Section 2, we recall some notions and basic facts about tensors and the corresponding homogeneous

polynomials. In Section 3, based on the corresponding matrix of a simplex, several new criteria for

(strictly) copositive tensors based on the simplicial subdivision are presented. In Section 4, we propose

the main numerical detection algorithm for copositive tensors based on a subcone of the copositive tensor

cone. The relationship between the iteration number of the algorithm and the number of all sub-simplex

is established. Furthermore, different candidates for the subcone are discussed. An upper bound for the

coclique number of a uniform hypergraph is given in Section 5. In Section 6, some numerical results are

reported to verify the performance of the algorithms. In Section 7, a particle physical example on vacuum

stability is presented, and its copositivity of coupling tensors is tested by the proposed algorithm. Some

final remarks are given in Section 8.
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To move on, we briefly mention the notation that will be used in the sequel. Let Rn be the n dimensional

real Euclidean space and the set of all nonnegative vectors in Rn be denoted by Rn
+. The set of all positive

integers is denoted by N. Suppose m,n ∈ N are two natural numbers. Denote [n] = {1, 2, · · · , n}. Vectors

are denoted by bold lowercase letters such as x, y, · · · , matrices are denoted by capital letters such as

A,B, · · · , and tensors are written as calligraphic capitals such as A, T , · · · . The i-th unit coordinate vector

in Rn is denoted by ei. All one tensor and all one vector are denoted by E and e respectively. If the symbol

| · | is used on a tensor A = (ai1···im)1≤ij≤n, j = 1, · · · ,m, it denotes another tensor |A| = (|ai1···im |)1≤ij≤n,

j ∈ [m]. If B = (bi1···im)1≤ij≤n, j ∈ [m] is another tensor, then A ≤ B means ai1···im ≤ bi1···im for all

i1, · · · , im ∈ [n].

2 Preliminaries

A real m-th order n-dimensional tensor A = (ai1i2···im) is a multi-array of real entries ai1i2···im , where

ij ∈ [n] for j ∈ [m]. In this paper, we always assume that m ≥ 3 and n ≥ 2. A tensor is said to be

nonnegative if all its entries are nonnegative. If the entries ai1i2···im are invariant under any permutation

of their indices, then tensorA is called a symmetric tensor. In this paper, we always consider real symmetric

tensors. The identity tensor I with order m and dimension n is given by Ii1···im = 1 if i1 = · · · = im and

Ii1···im = 0 otherwise. All one tensor E (all one vector e) is a tensor (vector) with all entries equal one.

We denote

Sm,n := {A : A is an m-th order n-dimensional symmetric tensor}.

Clearly, Sm,n is a vector space under the addition and multiplication defined as below: for any t ∈ R,

A = (ai1···im)1≤i1,··· ,im≤n and B = (bi1···im)1≤i1,··· ,im≤n,

A+ B = (ai1···im + bi1···im)1≤i1,··· ,im≤n and tA = (tai1···im)1≤i1,··· ,im≤n.

In addition, there are some more tensor cones that will be used in the following analysis such as copositive

tensor cone (COPm,n), completely positive tensor cone (CPm,n), nonnegative tensor cone (N+
m,n) and

positive semi-definite tensor cone (PSD).

For any A,B ∈ Sm,n, we define the inner product by ⟨A,B⟩ :=
∑n

i1,··· ,im=1 ai1···imbi1···im , and the

corresponding norm by

∥A∥ = (⟨A,A⟩)1/2 =

 n∑
i1,··· ,im=1

(ai1···im)2

1/2

.

For any x ∈ Rn, we use xi to denote its ith component; and use ∥x∥m = (
∑n

i=1 |xi|m)
1
m to denote the

m-norm of x. In the following analysis, we only use the m-norm of vector x where m is even or x ≥ 0,

which implies that ∥x∥m = (
∑n

i=1 x
m
i )

1
m .
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For m vectors x,y, · · · , z ∈ Rn, we use x ◦ y ◦ · · · ◦ z to denote the m-th order n-dimensional rank one

tensor with

(x ◦ y ◦ · · · ◦ z)i1i2···im = xi1yi2 · · · zim , ∀ i1, · · · , im ∈ [n].

And the inner product of a symmetric tensor and the rank one tensor is given by

⟨A,x ◦ y ◦ · · · ◦ z⟩ :=
n∑

i1,··· ,im=1

ai1···imxi1yi2 · · · zim .

Particularly, when x = y = · · · = z, xm is a symmetric rank one tensor. For m ∈ N and k ∈ [m], we

denote

Axkym−k = ⟨A,x ◦ · · ·x︸ ︷︷ ︸
k

◦y ◦ · · · ◦ y︸ ︷︷ ︸
m−k

⟩ and Axm = ⟨A,x ◦ · · ·x︸ ︷︷ ︸
m

⟩,

then

Axkym−k =
n∑

i1,··· ,im=1

ai1···imxi1 · · ·xikyik+1
· · · yim and Axm =

n∑
i1,··· ,im=1

ai1···imxi1 · · ·xim . (2.1)

For any A = (ai1i2···im) ∈ Sm,n and x ∈ Rn, we have Axm−1 ∈ Rn with

(Axm−1)i =
∑

i2,i3,··· ,im∈[n]

aii2···imxi2 · · ·xim , ∀ i ∈ [n].

It is known that an m-th order n-dimensional symmetric tensor defines uniquely an m-th degree

homogeneous polynomial fA(x) on Rn: for all x = (x1, · · · , xn)
T ∈ Rn,

fA(x) = Axm =
∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1xi2 · · ·xim ;

and conversely, any m-th degree homogeneous polynomial function f(x) on Rn also corresponds uniquely a

symmetric tensor. Furthermore, an even order symmetric tensor A is called positive semi-definite (positive

definite) if fA(x) ≥ 0 (fA(x) > 0) for all x ∈ Rn (x ∈ Rn\{0}).

To end this section, we introduce the notion of tensor product, which will be used in the following

analysis.

Definition 2.1 [30] Let A (B) be an order m ≥ 2 (an order k ≥ 1) dimension n tensor. The product AB

is the following tensor C of order (m− 1)(k − 1) + 1 with entries:

ciα1α2···αm−1 =
∑

i2,··· ,im∈[n2]

aii2···imbi2α1 · · · bimαm−1 ,

where i ∈ [n], α1, α2, · · · , αm−1 ∈ [n]k−1.
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Here, when tensor B reduces to a 1st order tensor, i.e., vector of Rn, the production

Ax =
∑

i1,i2,··· ,im∈[n]

ai1i2···imxi1xi2 · · ·xim ,

which coincides with the usual notation Axm discussed above. Moreover, when k = 2, tensor B reduces

to a matrix B = (bij), and by Definition 2.1, it follows that

(B⊤AB)i1i2···im =
∑

j1,··· ,jm∈[n]

bj1i1aj1j2···jmbj2i2 · · · bjmim .

3 Several conditions of copositive tensors

In this section, we will give several new sufficient conditions or necessary conditions with the help of a

proper subcone of the cone of copositive tensors. As a simplex S is determined by its vertices, it also

can be represented by a matrix VS whose columns are these vertices. VS is nonsingular and unique up

to a permutation of its columns. In the following analysis, we always assume that M is a subcone of the

copositive tensor cone COPm,n.

Before we move on, we first list the definition of copositive tensors and some notions about simplex.

Definition 3.1 [26] Let A ∈ Sm,n be given. If Axm ≥ 0 (Axm > 0) for any x ∈ Rn
+ (x ∈ Rn

+\{0}), then

A is called a copositive (strictly copositive) tensor.

The standard simplex with vertices e1, e2, · · · , en is denoted by S0 = {x ∈ Rn
+ | ∥x∥1 = 1}, which is

equivalent with S0 = conv{e1, e2, · · · , en}, where conv denotes the convex hull. Generally, the convex hull

conv{u1,u2, · · · ,un} can be defined by

conv{u1,u2, · · · ,un} =

{
x =

n∑
i=1

λiui | λi ≥ 0, i ∈ [n] and
n∑

i=1

λi = 1

}
.

Let S, S1, S2, · · · , Sr be finite simplices in Rn. The set S̃ = {S1, S2, · · · , Sr} is called a simplicial partition

of S if it satisfies that

S =
r∪

i=1

Si and intSi

∩
intSj = ∅ for any i, j ∈ [r] with i ̸= j,

where intSi denotes the interior of Si for any i ∈ [r]. Let d(S̃) denote the maximum diameter of a simplex

in S̃, which is given by

d(S̃) = max
k∈[r]

max
i,j∈[n]

∥uk
i − uk

j ∥2.

Theorem 3.1 Suppose A ∈ Sm,n. Let S1 = conv{u1,u2, · · · ,un} be a simplex, where ui ∈ Rn, i ∈ [n]

are vertices of the simplex S1. Let V = (u1,u2, · · · ,un) be the square matrix corresponding to S1. If

V TAV ∈ M, then Axm ≥ 0 for all x ∈ S1.
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Proof. It is apparent that V TAV is an m-th order n-dimensional tensor with entries

(V TAV )i1i2···im =
∑

j1,j2,··· ,jm∈[n]

(V T )i1j1aj1j2···jmVj2i2 · · ·Vjmim

=
∑

j1,j2,··· ,jm∈[n]

Vj1i1aj1j2···jmVj2i2 · · ·Vjmim

=
∑

j1,j2,··· ,jm∈[n]

aj1j2···jm(ui1)j1(ui2)j2 · · · (uim)jm

=⟨A,ui1 ◦ ui2 ◦ · · · ◦ uim⟩,

for all i1, i2, · · · , im ∈ [n]. For any x ∈ S1, for some k ∈ [r], it follows that,

x = x1u1 + x2u2 + · · ·+ xnun,
n∑

i=1

xi = 1, xi ≥ 0, ∀ i ∈ [n].

Thus,

Axm =⟨A, (x1u1 + x2u2 + · · ·+ xnun)
m⟩

=
∑

i1,i2,··· ,im∈[n]

xi1xi2 · · ·xim⟨A,ui1 ◦ ui2 ◦ · · · ◦ uim⟩

=
∑

i1,i2,··· ,im∈[n]

(V TAV )i1i2···imxi1xi2 · · ·xim

=(V TAV )x̄m

≥0,

since x̄T = (x1, x2, · · · , xn) ∈ Rn
+ and V TAV is copositive, and hence, the desired result follows. �

Corollary 3.1 Let A ∈ Sm,n be given. Suppose S̃ = {S1, S2, · · · , Sr} is a simplicial partition of simplex

S0 = {x ∈ Rn
+ | ∥x∥1 = 1}; and the vertices of simplex Sk are denoted by uk

1 ,u
k
2 , · · · ,uk

n for any k ∈ [r].

Let VSk
= (uk

1 ,u
k
2 , · · · ,uk

n) be the matrix corresponding to simplex Sk for any k ∈ [r]. Then A is copositive

if V T
Sk
AVSk

∈ M for all k ∈ [r].

In fact, Corollary 3.1 is a generalization of the sufficient condition proposed in [5]. In order to give a

necessary condition for the strictly copositive tensor, we cite a useful result below.

Lemma 3.1 [5] Let A ∈ Sm,n be a strictly copositive tensor. Then, there exists ε > 0 such that for all

finite simplicial partitions S̃ = {S1, S2, · · · , Sr} of S0 with d(S̃) < ε, it follows that

⟨A, uk
i1 ◦ u

k
i2 ◦ · · · ◦ u

k
im⟩ > 0

for all k ∈ [r], ij ∈ [n], j ∈ [m], where uk
1 ,u

k
2 , · · · ,uk

n are vertices of the simplex Sk.

From Lemma 3.1, the following result is easy to get.
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Theorem 3.2 Let A ∈ Sm,n be a strictly copositive tensor. Suppose M ⊇ N+
m,n. Then, there exists ε > 0

such that for all finite simplicial partitions S̃ = {S1, S2, · · · , Sr} of S0 with d(S̃) < ε, it follows that

V T
Sk
AVSk

∈ M for all k ∈ [r], where VSk
= (uk

1 ,u
k
2 , · · · ,uk

n) ∈ Rn×n and uk
1 ,u

k
2 , · · · ,uk

n are vertices of the

simplex Sk.

Theorem 3.3 Suppose A ∈ Sm,n is copositive. Let S = conv{u1,u2, · · · ,un} be a simplex with vertices

u1,u2, · · · ,un. Let V = (u1,u2, · · · ,un) ∈ Rn×n. If there exists x̃ ∈ S\{u1,u2, · · · ,un} such that

Ax̃m = 0, then V TAV is not strictly copositive.

Proof. We will prove the conclusion by contradiction. Assume V TAV is strictly copositive, which means

(V TAV )xm > 0, ∀ x ≥ 0, x ̸= 0. (3.1)

By the condition x̃ ∈ S\{u1,u2, · · · ,un}, it follows that x̃ =
∑n

i=1 x̃iui with
∑n

i=1 x̃i = 1 and all x̃i ≥ 0.

Furthermore, it hods that

0 =Ax̃m

=⟨A, (x̃1u1 + x̃2u2 + · · ·+ x̃nun)
m⟩

=
∑

i1,i2,··· ,im∈[n]

x̃i1 x̃i2 · · · x̃im⟨A,ui1 ◦ ui2 ◦ · · · ◦ uim⟩

=
∑

i1,i2,··· ,im∈[n]

(V TAV )i1i2···im x̃i1 x̃i2 · · · x̃im

=(V TAV )x̃m

>0, (by (3.1))

which yields a contradiction; and hence, the desired result holds. �

4 Algorithms

The results of the preceding section naturally yield an algorithm to test whether a tensor is copositive

or not. Similar to the algorithm given in [5], we will present an algorithm by starting with the standard

simplex in Rn
+, and check whether there is a vertex v with Avm < 0, or whether the copositivity criterion

of Theorem 3.1 is satisfied. First of all, we list the algorithm proposed in [5] in the below, and then, discuss

the relationship between iteration number and the number of all sub-simplices when the algorithm stops

in finitely many iterations.
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Algorithm 1

Input: A ∈ Sm,n

Set S̃ := {S1}, where S1 = conv{e1, e2, · · · , en} is the standard simplex

Set k := 1

while k ̸= 0 do

set S := Sk = conv{u1,u2, · · · ,un} ∈ S̃

if there exists i ∈ [n] such that Aum
i < 0, then

return “A is not copositive”

else if ⟨A,ui1 ◦ ui2 ◦ · · · ◦ uim⟩ ≥ 0 for all i1, i2, · · · , im ∈ [n], then

set S̃ := S̃\{Sk} and k := k − 1

else

set

Sk := conv{u1, · · · ,up−1,v,up+1, · · · ,un};

Sk+1 := conv{u1, · · · ,uq−1,v,uq+1, · · · ,un},

where v =
up+uq

2 , [p, q] = argmaxi,j∈[n] ∥ui − uj∥2 and p < q.

set S̃ := S̃\{S}
∪
{Sk, Sk+1} and k := k + 1

end if

end while

return “ A is copositive.”

Output: “A is copositive” or “A is not copositive”.

For the standard simplex S = conv{e1, e2, · · · , en} and its simplicial partition S̃ = {S1, S2, · · · , Sr},

any simplex Si, i ∈ [r] is called a sub-simplex of S.

Proposition 4.1 For a given tensor A ∈ Sm,n, if Algorithm 1 stops in the k-th iteration, k ≥ 2, then the

number of all sub-simplices need to be checked during the whole running process is d = k+1
2 . Furthermore,

if A is nonnegative or A has negative diagonal entries, then k = 1.

Proof. By conditions, the algorithm stops in k-th iteration. Assume the original standard simplex is cut

t times from beginning to the end, by the fact that the number of simplices will increase 1 when it is cut

one time, so we have

d = t+ 1 and t+ t+ 1 = k,

which implies that d = k+1
2 . When A is nonnegative or A has negative diagonal entries, it means that

⟨A, ei1 ◦ ei2 ◦ · · · ◦ eim⟩ = ai1i2···im ≥ 0, ∀ i1, i2, · · · , im ∈ [n],
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or Aemi < 0 for some i ∈ [n]. Thus, this algorithm will stop in one iteration, i.e., k = 1, and hence, the

desired result holds. �

We now list the main algorithm related to a convex cone M, which is a subcone of the copositive tensor

cone. Then, different choice for the subcone M are discussed in detail.

Algorithm 2

Input: A ∈ Sm,n

Set S̃ := {S1}, where S1 = conv{e1, e2, · · · , en} is the standard simplex

Set k := 1

while k ̸= 0 do

set S := Sk = conv{u1,u2, · · · ,un} ∈ S̃

let V = (u1,u2, · · · ,un) be the square matrix corresponding to S

if there exists i ∈ [n] such that Aum
i < 0, then

return “A is not copositive”

else if V TAV ∈ M, then S̃ = S̃\{Sk} and k := k − 1

else

set

Sk := conv{u1, · · · ,up−1,v,up+1, · · · ,un};

Sk+1 := conv{u1, · · · ,uq−1,v,uq+1, · · · ,un},

where v =
up+uq

2 , [p, q] = argmaxi,j∈[n] ∥ui − uj∥2 and p < q.

set S̃ := S̃\{S}
∪
{Sk, Sk+1} and k := k + 1

end if

end while

return “ A is copositive.”

Output: “A is copositive” or “A is not copositive”.

Remark 4.1 By the analysis in Section 4, whether or not the algorithm does terminate depends on the

input tensor A.

(i) If the input tensor A is not copositive, then the algorithm terminates. In this case, it does not

matter which set M is used.

(ii) If the input tensor A is strictly copositive and M ⊇ N+
m,n, then the algorithm terminates in finitely

many iterations.

(iii) If the input tensor A is copositive but not strictly copositive, then the algorithm may or may not

terminate.
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An important issue which influences the number of iterations and the runtime of Algorithm 2 is the

choice of the set M. The desirable properties of the set M used here can be summarized such that, for

any given symmetric tensor A, we can easily check whether A ∈ M; and M is a subcone of the copostive

tensor cone that is as large as possible.

4.1 The choice that M = N+
m,n

The first choice one may consider easily is M = N+
m,n. However, this is not always desirable. To check

whether a symmetric tensor belongs to N+
m,n does not take much effort, but the nonnegative tensor cone

is a quite bad approximation of the copositive tensor cone. So each iteration of the algorithm is cheap but

the number of iterations may tend to be large. On the other side, it should be noted that, in Algorithm

1, the following inequality

⟨A,ui1 ◦ ui2 ◦ · · · ◦ uim⟩ ≥ 0, ∀ i1, i2, · · · , im ∈ [n],

exactly imply V TAV ∈ M = N+
m,n and the converse may not be true in general.

4.2 An alternative choice that M is related with Z-tensors

In order to choose a good approximation of the copositive tensor cone, we first recall the matrix case. It

is obvious that PSD + N+
2,n is a good approximation of copositive matrix cone [35, 37]. The problem of

testing a given matrix whether or not belongs to PSD+N+
m,n can be solved by solving the following doubly

nonnegative program

Minimize ⟨A,X⟩

subject to ⟨In, X⟩ = 1, X ∈ PSD ∩ N+
m,n,

which can be expressed as a semidefinite program. Thus, the set PSD+N+
m,n is a rather large and tractable

convex subcone of COPm,n. However, solving the doubly nonnegative problem takes an awful lot of time

[35, 40] and does not make for a practical implementation. To overcome the drawback, in [35], more easily

tractable subcones of the copostive matrix cone are proposed such that

H = {A ∈ Sn | A−N(A) ∈ PSD},

where N(A) is a square matrix such that

N(A)ij =

 Aij Aij > 0 and i ̸= j,

0 otherwise.

Here, A−N(A) is a Z-matrix. Stimulated by this method and the notion of Z-tensors [41], we now extend

this subcone to the high order tensor case.
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As we all know that checking the positive semi-definiteness of a general symmetric tensor is NP-hard

[11]. But for some symmetric tensors with special structure, it may not be NP-hard. Polynomial time

algorithm for checking the positive semi-definiteness of Z-tensors was established in [6]. Now, for a given

tensor A = (ai1i2···im) with order m and dimension n, let

N(A)i1i2···im =

 ai1i2···im ai1i2···im > 0 and δi1i2···im = 0,

0 otherwise,

where δi1i2···im = 1 if and only if i1 = i2 = · · · = im, otherwise δi1i2···im = 0. Next, we will consider a new

subcone of copositive tensor cone from two cases.

(I) When m is even, we define the set H1 such that

H1 = {A ∈ Sm,n | A −N(A) ∈ PSD}.

Here A−N(A) is an even order symmetric Z-tensor. For any x ∈ Rn, suppose f1(x) = (A−N(A))xm and

the minimum H-eigenvalue of A−N(A) is denoted by λmin(A−N(A)). Since an even order symmetric

tensor is positive semi-definite if and only if its minimum H-eigenvalue is nonnegative [25], by Theorem

5.1 in [6], we know that A ∈ H1 if and only if

λmin(A−N(A)) = max
µ,r∈R

{µ : f1(x)− r(∥x∥mm − 1)− µ ∈ Σ2
m[x]} ≥ 0, (4.1)

where Σ2
m[x] is the set of all SOS polynomials with degree at most m. It is easy to know that the sums-

of-squares problem (4.1) can be equivalently rewritten as a semi-definite programming problem (SDP),

and so, can be solved efficiently. Indeed, this conversion can be done by using the commonly used Matlab

Toolbox YALMIP [20, 21]. The simple code using YALMIP is appended as follows

sdpvar x1 x2 ... xn r mu

f=f1(x);

g = [(x1^m+x2^m+...+xn^m)-1];

F = [sos(f1-mu-r*g)];

solvesos(F,-mu,[],[r;mu]).

(II) When m is odd, it is well known that there is not any nontrivial odd order positive semi-definite

tensors. Thus, the subcone H2 can be changed to another subcone of COPm,n such that

H2 = {A ∈ Sm,n | A −N(A) ∈ COPm,n}.

Now, let Ā be a symmetric tensor with order 2m and dimension n with entries such that

f2(x) = Āx2m =
∑

i1,i2,··· ,im∈[n]

(ai1i2···im −N(A)i1i2···im)x2
i1x

2
i2 · · ·x

2
im , ∀ x ∈ Rn. (4.2)

12



Since A−N(A) is a Z-tensor, it is not difficult to check that Ā is a Z-tensor. By (4.1) and (4.2), we know

that

A−N(A) ∈ COPm,n ⇔ Ā ∈ PSD,

which implies that

A−N(A) ∈ COPm,n ⇔ max
µ,r∈R

{µ : f2(x)− r(∥x∥2m2m − 1)− µ ∈ Σ2
2m[x]} ≥ 0. (4.3)

Thus, for a given odd order symmetric tensor A, the matlab code using YALMIP to check whether A ∈ H2

is listed below:

sdpvar x1 x2 ... xn r mu

f=f2(x);

g = [(x1^2m+x2^2m+...+xn^2m)-1];

F = [sos(f2-mu-r*g)];

solvesos(F,-mu,[],[r;mu]).

To end this section, we show the convexity of H1,H2. Before that, we first cite a useful lemma.

Lemma 4.1 [27] Suppose C, B are two nonnegative tensors with order m and dimension n. If it satisfies

that |B| ≤ C, then ρ(B) ≤ ρ(C), where ρ(B), ρ(C) are spectral radius of C and B respectively.

Lemma 4.2 Let m ∈ N be even number. Suppose A, B are symmetric Z-tensors with order m and

dimension n. If A ≤ B and A is positive semi-definite, then B is positive semi-definite.

Proof. Since A,B are Z-tensors, we can find t ∈ R, t > 0 such that

A = tI − A′, B = tI − B′,

where A′,B′ are nonnegative tensors. It is easy to know that A′ ≥ B′ since A ≤ B. By Lemma 4.1 and

Corollary 3 in [25], it follows that ρ(A′) ≥ ρ(B′) and

λmin(B) = t− ρ(B′) ≥ t− ρ(A′) = λmin(A).

Here, λmin(A), λmin(B) denote the minimum H-eigenvalues of A and B respectively. By conditions that

A is positive semi-definite, we obtain that

λmin(B) ≥ λmin(A) ≥ 0,

which implies that B is positive semi-definite, and hence, the desired results hold. �
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Theorem 4.1 Let m ∈ N be even. Then H1 is convex and it satisfies N+
m,n ⊆ H1 ⊆ COPm,n.

Proof. The second statement is obvious by their definitions respectively, so we only need to prove the

convexity of H1 i.e., A+ B ∈ H1 for any A,B ∈ H1. Suppose A,B ∈ H1, by the definition of H1, we have

that

A−N(A) ∈ PSD, B −N(B) ∈ PSD. (4.4)

By the fact that N(A+ B) ≤ N(A) +N(B), we obtain that

A+ B −N(A+ B) ≥ A+ B −N(A)−N(B).

By (4.4) and Lemma 4.2, we know that A+ B − N(A+ B) ∈ PSD, which implies that A+ B ∈ H1. So,

the desired result holds. �

For any Z-tensor ηI − B, from Theorem 3.12 of [41], it follows that ηI − B is copositive if and only if

η ≥ ρ(B). Similar to the proof of Theorem 4.1, we know the following conclusion holds and the proof is

omitted.

Theorem 4.2 Let m ∈ N be odd. Then H2 is convex and it satisfies N+
m,n ⊆ H2 ⊆ COPm,n.

By the analysis above, in Algorithm 2, we can choose M = H1 in the even order case and M = H2 in

the odd order case.

5 An upper bound for the coclique number of an uniform hy-

pergraph

In this section, we show that computing the coclique number of a uniform hypergraph can be reformulated

as a linear program over the cone of completely positive tensors. By the dual property of copositive tensor

cone and completely positive tensor cone, we present an upper bound for the coclique number, which can

be computed by the previous algorithm.

We first recall some notions of hypergraph [8, 27]. A hypergraph means an undirected simplem-uniform

hypergraph G = (V,E) with vertex set V = {1, 2, · · · , n}, and edge set E = {e1, e2, · · · , ek} with ep ⊆ V

for p ∈ [k]. By m-uniformity, we mean that for every edge e ∈ E, the cardinality |e| of e is equal to m. A

2-uniform hypergraph is typically called graph. Throughout this paper, we focus on m ≥ 3 and n ≥ m.

Moreover, since the trivial hypergraph (i.e., E = ∅) is of less interest, we consider only hypergraphs having

at least one edge (i.e., nontrivial) in this section.
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Definition 5.1 (Coclique number of a hypergraph) The coclique of an m-uniform hypergraph G is

a set of vertices such that any of its m vertex subset is not an edge of G, and the largest cardinality of a

coclique of G is called the coclique number of G, denoted by ω(G).

By Definition 5.1, we can easily get the following results.

Proposition 5.1 Suppose G = (V,E) is a nontrivial m-uniform hypergraph. Let |V | = n. Then, the

coclique number ω(G) of G satisfies that m− 1 ≤ ω(G) ≤ n− 1.

The following definition for the adjacency tensor was proposed by Cooper and Dutle [8], which is

important in the following analysis.

Definition 5.2 (Adjacency tensor of a hypergraph) Let G = (V,E) be an m-uniform hypergraph

where V = {1, 2, · · · , n}. The adjacency tensor of G is defined as the m-th order n-dimensional tensor A

with

ai1i2···im =

 1
(m−1)! {i1, i2, · · · , im} ∈ E,

0 otherwise.

Theorem 5.1 Let G = (V,E) be an m-uniform hypergraph. Suppose |V | = n and G is nontrivial. Let

ω(G) denote the coclique number of G. Then ω(G)m−1 is equal to the optimal value of the following

problem:

(P) max ⟨X , E⟩

s.t. Xi1i2···im = 0, {i1, i2, · · · , im} ∈ E,

⟨X , I⟩ = 1,

X ∈ CPm,n,

where E is a all one tensor with order m and dimension n, and X is a completely positive tensor such as

X =

s∑
i=1

vm
i , for some vi ∈ Rn,vi ≥ 0, i ∈ [s] and s ∈ N.

Proof. By [29], we know that CPm,n is a convex cone, it is apparent that the feasible set of problem (P)

is also convex. Combining this with the fact that the objective function is a linear function, it is easy to

know that the optimal value of the optimization problem (P) will be attained at an extreme point, i.e.,

there is X ∗ = (x∗)m with x∗ ∈ Rn
+ such that f∗ = ⟨(x∗)m, E⟩, where f∗ is the optimal value of (P).

On the other hand, by Definition 5.2, we have that the problem (P) is equivalent to the following

problem

max ⟨X , E⟩

s.t. ⟨X ,A⟩ = 0,

⟨X , I⟩ = 1,

X ∈ CPm,n.
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Since its optimal solution is (x∗)m, by KKT conditions of the optimization problem, there are λ, µ ∈ R

and Y ∈ COPm,n such that

−E(x∗)m−1 + λA(x∗)m−1 + µ(x∗)[m−1] − Y(x∗)m−1 = 0, (5.1)

⟨(x∗)m,A⟩ = 0, (5.2)

⟨(x∗)m, I⟩ = 1, (5.3)

⟨(x∗)m,Y⟩ = 0. (5.4)

By (5.2)-(5.3) and Definition 5.1, it is not difficult to see that the support set S∗ of x∗ is a coclique

of G, and ∥x∗∥m = 1. From (5.2), (5.4) and Proposition 12 in [26], it holds that A(x∗)m−1 = 0 and

Y(x∗)m−1 = 0. Combining this with (5.1) we can easily get that all nonzero entries of x∗ are equal, which

means that for any i ∈ [n],

x∗
i =


1

m
√

|S∗|
i ∈ S∗,

0 otherwise.

Thus, the optimal value f∗ = ⟨(x∗)m, E⟩ = (eTx∗)m = |S∗|m−1, which implies that S∗ must be the

maximum coclique and the desired result holds. �

Theorem 5.2 Assume G and ω(G) are defined as in Theorem 5.1. Let A be the adjacency tensor of

hypergraph G. Then, it holds that

ω(G)m−1 ≤ min
λ∈N

{λ | λ(A+ I)− E ∈ COPm,n}.

Proof. Since X ∈ CPm,n is nonnegative, by the proof of Theorem 5.1, we know that problem (P) is

equivalent to

max ⟨X , E⟩

s.t. ⟨X ,A⟩ = 0,

⟨X , I⟩ = 1,

X ∈ CPm,n,

which can be relaxed to the problem such that

(P′) max ⟨X , E⟩

s.t. ⟨X ,A+ I⟩ = 1,

X ∈ CPm,n.

Then, the dual problem of (P′) is that

min
λ∈N

{λ | λ(A+ I)− E ∈ COPm,n}.
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From the well known weak duality theorem, we have

ω(G)m−1 ≤max{⟨X , E⟩ | ⟨X ,A+ I⟩ = 1,X ∈ CPm,n}

≤min
λ∈N

{λ | λ(A+ I)− E ∈ COPm,n},

which implies the desired results hold. �

By Proposition 5.1 and Theorem 5.2, we can try finitely many iterations to get an upper bound for

the coclique number of a given uniform hypergraph by Algorithms 2. For example, for an m-uniform

hypergraph G = (V,E) with V = [n], if there is k ∈ [n] such that

km−1(A+ I)− E ∈ COPm,n, (k − 1)m−1(A+ I)− E /∈ COPm,n,

then we know that the coclique number of G satisfies ω(G) ≤ k.

6 Numerical results

In this section, we report some preliminary numerical results of Algorithm 2, where the subconeM is chosen

according to Section 4.2; and we use YALMIP [20, 21] and Sedumi [36] to solve the resulted semidefinite

programs. All experiments are finished in Matlab2014a on a HP Z800 Workstation with Intel(R) Xeno(R)

CPU X5680 @ 3.33GHz 3.33 GHz and 48 GB of RAM. All experiments are divided into the following two

parts.

Part 1 (Copositivity detection). In this part, we implement Algorithm 5.2 to detect whether a

tensor is copositive or not by using several examples tested in [5].

Example 6.1 We test the tensor A in the following form:

A = ηI − B, (6.1)

(i) Suppose that A ∈ S3,3 (or A ∈ S4,4) is given by (6.1), where B ∈ S3,3 (or B ∈ S4,4) is a tensor of ones

and η is specified in the table of our numerical results.

(ii) Suppose that A ∈ Sm,n is given by (6.1), where B ∈ Sm,n is randomly generated with all its elements

are in the interval (0, 1).

The numerical results of testing the tensor A defined by Example 6.1(i) are given in Table 1, where “ρ”

denotes the spectral radius of the tensor B, “IT” denotes the number of iterations, “CPU(s)” denotes the

CPU time in seconds, and “Result” denotes the output result in which “No” denotes the output result that

the tested tensor is not copositive and “Yes” denotes the output result that the tested tensor is copositive.
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Table 1: The numerical results of the problem in Example 6.1(i)

m n ρ η IT CPU(s) Result

1 2 3.37 No

8.99 20 81.2 No

3 3 9 9 > 100

9.01 1 0.92 Yes

19 1 0.967 Yes

10 8 32.6 No

4 4 64 64 > 100

74 1 1.33 Yes

The numerical results of testing the tensor A defined by Example 6.1(ii) are given in Table 2, where

the spectral radius ρ of every tensor B is computed by the higher order power method. In our experiments,

for the same m and n, we generate randomly every tested problem 10 times. In Table 2, “MinIT” and

“MaxIT” denote the minimal number and the maximal number of iterations among ten times experiments

for every tested problem, respectively, “MinCPU(s)” and “MaxCPU(s)” denote the smallest and the largest

CPU times in second among ten times experiments for every tested problem, respectively, “Nyes” denotes

the number of the output results that the tested tensors are copositive, and “Nno” denotes the number of

the output results that the tested tensors are not copositive.

From Tables 1 and 2, it is easy to see that the concerned tensors can be correctly tested with few

number of iterations. In particular, for every strictly copositive tensor we tested, only one step iteration

reaches the right conclusion.

Example 6.2 We test the following three tensors:

(i) Suppose that A ∈ S6,3 is given by

∑
i1i2i3i4i5i6∈Sπ(111122)

ai1i2i3i4i5i6 = 1,∑
i1i2i3i4i5i6∈Sπ(112222)

ai1i2i3i4i5i6 = 1,

a333333 = 1,∑
i1i2i3i4i5i6∈Sπ(112233)

ai1i2i3i4i5i6 = −3;
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Table 2: The numerical results of the problem in Example 6.1(ii)

m n η MinIT MaxIT MinCPU(s) MaxCPU(s) Nyes Nno

3 3 ρ− 1 8 8 18.7825 30.9506 10

ρ+ 1 1 1 0.98 2.96 10

ρ+ 10 1 1 1.02 3.27 10

3 4 ρ− 1 16 16 70.9337 82.2125 10

ρ+ 1 1 1 1.95 3.8844 10

ρ+ 10 1 1 2.184 4.1808 10

4 3 ρ− 1 16 22 72.5249 106.3147 10

ρ+ 1 1 1 1.5912 3.2916 10

ρ+ 10 1 1 1.7472 3.354 10

4 4 ρ− 1 11 11 47.2683 52.3695 10

ρ+ 1 1 1 1.7628 3.8688 10

ρ+ 10 1 1 1.8252 3.978 10

6 3 ρ− 1 17 27 97.6254 157.3114 10

ρ+ 1 1 1 2.574 2.9016 10

ρ+ 10 1 1 2.5116 2.6676 10

(ii) Suppose that A ∈ S6,3 is given by

a111111 = 1, a222222 = 1, a333333 = 1,∑
i1i2i3i4i5i6∈Sπ(111122)

ai1i2i3i4i5i6 = −1,∑
i1i2i3i4i5i6∈Sπ(112222)

ai1i2i3i4i5i6 = −1,∑
i1i2i3i4i5i6∈Sπ(111133)

ai1i2i3i4i5i6 = −1,∑
i1i2i3i4i5i6∈Sπ(113333)

ai1i2i3i4i5i6 = −1,∑
i1i2i3i4i5i6∈Sπ(222233)

ai1i2i3i4i5i6 = −1,∑
i1i2i3i4i5i6∈Sπ(223333)

ai1i2i3i4i5i6 = −1,∑
i1i2i3i4i5i6∈Sπ(112233)

ai1i2i3i4i5i6 = 3;
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(iii) Suppose that A ∈ S6,3 is given by

∑
i1i2i3i4i5i6∈Sπ(111122)

ai1i2i3i4i5i6 = 1,∑
i1i2i3i4i5i6∈Sπ(222233)

ai1i2i3i4i5i6 = 1,∑
i1i2i3i4i5i6∈Sπ(333311)

ai1i2i3i4i5i6 = 1,∑
i1i2i3i4i5i6∈Sπ(112233)

ai1i2i3i4i5i6 = −3.

The corresponding polynomials of the above tensors are famous Motzkin polynomial, Robinson polyno-

mial and Choi-Lam polynomial, respectively. It is easy to see that the above three tensors are copositive,

but not strictly copositive. We use Algorithm 5.2 to test the tensor A+σE with σ > 0, and the numerical

results are listed in Table 3.

Table 3: The numerical results of the problem in Example 6.2

Example 6.3(i) Example 6.3(ii) Example 6.3(iii)

σ IT/CPU(s) IT/CPU(s) IT/CPU(s)

0.01 3/14.3 11/60 5/27.4

0.001 19/92.8 27/152 17/99.5

0.0001 55/291 67/379 35/209

All tensors tested in Examples 6.1 and 6.2 were tested in [5]. Compared the numerical results shown

in Tables 1-3 with those given in [5], choosing M = H requires the least number of iterations but each

iteration is so costly that the overall runtime is in most cases still higher than M = N+
m,n.

Part 2 (Illustration of Theorem 5.2). As said in the last section, for an m-uniform hypergraph

G = (V,E) with V = [n], if there is k ∈ [n] such that

km−1(A+ I)− E ∈ COPm,n or (k − 1)m−1(A+ I)− E /∈ COPm,n,

then we know that the coclique number of G satisfies ω(G) ≤ k. By this way, we can compute the coclique

number of an m-uniform hypergraph. Conversely, if the coclique number of an m-uniform hypergraph is

known, we can also check the main result obtained in Section 5. In this part, we illustrate Theorem 5.2

by constructing two examples.

Example 6.3 Let V = {1, 2, 3} and E be a set of subsets of V . Let G = (V,E) be a 3-uniform hypergraph.

If V0 = {1}, V1 = {2, 3} and E = {1, 2, 3}, then G is a hyper-star.
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The adjacency tensor of G is as follows:

A(:, :, 1) =


0 0 0

0 0 1
2

0 1
2 0

 , A(:, :, 2) =


0 0 1

2

0 0 0

1
2 0 0

 , A(:, :, 3) =


0 1

2 0

1
2 0 0

0 0 0

 .

By Algorithm 2, we can obtain that 4(A + I) − E /∈ COPm,n (This can be also seen by f(x) = 4(A +

I)x3 − Ex3 = −3 < 0 when x = (1, 1, 1) ∈ R3). So, from the monotonicity of λ(A+ I)− E , we know that

minλ∈N{λ | λ(A+ I)− E ∈ COPm,n} > 4. By the fact that ω(G) = n− 1 = 2, we have

ω(G)m−1 ≤ min
λ∈N

{λ | λ(A+ I)− E ∈ COPm,n},

which verifies Theorem 5.2.

Example 6.4 Let V = {1, 2, 3, 4} and E be a set of subsets of V . Let G = (V,E) be a 4-uniform

hypergraph. If V0 = {1}, V1 = {2, 3, 4} and E = {{1, 2, 3, 4}}, then G is a hyper-star.
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The coefficients of the adjacency tensor A of G are as follows:

A(:, :, 1, 1) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , A(:, :, 2, 1) =


0 0 0 0

0 0 0 0

0 0 0 1
6

0 0 1
6 0

 , A(:, :, 3, 1) =


0 0 0 0

0 0 0 1
6

0 0 0 0

0 1
6 0 0

 ,

A(:, :, 4, 1) =


0 0 0 0

0 0 1
6 0

0 1
6 0 0

0 0 0 0

 , A(:, :, 1, 2) =


0 0 0 0

0 0 0 0

0 0 0 1
6

0 0 1
6 0

 , A(:, :, 2, 2) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

A(:, :, 3, 2) =


0 0 0 1

6

0 0 0 0

0 0 0 0

1
6 0 0 0

 , A(:, :, 4, 2) =


0 0 1

6 0

0 0 0 0

1
6 0 0 0

0 0 0 0

 , A(:, :, 1, 3) =


0 0 0 0

0 0 0 1
6

0 0 0 0

0 1
6 0 0

 ,

A(:, :, 2, 3) =


0 0 0 1

6

0 0 0 0

0 0 0 0

1
6 0 0 0

 , A(:, :, 3, 3) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , A(:, :, 4, 3) =


0 1

6 0 0

1
6 0 0 0

0 0 0 0

0 0 0 0

 ,

A(:, :, 1, 4) =


0 0 0 0

0 0 1
6 0

0 1
6 0 0

0 0 0 0

 , A(:, :, 2, 4) =


0 0 1

6 0

0 0 0 0

1
6 0 0 0

0 0 0 0

 , A(:, :, 3, 4) =


0 1

6 0 0

1
6 0 0 0

0 0 0 0

0 0 0 0

 ,

A(:, :, 4, 4) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

By running program of Algorithm 2, we obtain 8(A+ I)− E /∈ COPm,n, which implies that

min
λ∈N

{λ | λ(A+ I)− E ∈ COPm,n} ≥ 27.

Since ω(G) = 3, it holds that

ω(G)m−1 ≤ min
λ∈N

{λ | λ(A+ I)− E ∈ COPm,n},

and hence, Theorem 5.2 is true.
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7 Checking vacuum stability for Z3 scalar dark matter

Kannike [14] studied the vacuum stability of a general scalar potential of a few fields, and explicit vacuum

stability conditions for more complicated potentials are given. In [14], one important physical example

is given by scalar dark matter stable under Z3 discrete group. The most general scalar quartic potential

of the standard model(SM) Higgs H1, an inert doublet H2 and a complex singlet S which is symmetric

under a Z3 group is

V (h1, h2, S) =λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4(H
†
1H2)(H

†
2H1) + λS |S|4 + λS1|S|2|H1|2

+ λS2|S|2|H2|2 +
1

2
(λS12S

2H†
1H2 + λ∗

S12S
†2H†

2H1)

=λ1h
4
1 + λ2h

4
2 + λ3h

2
1h

2
2 + λ4ρ

2h2
1h

2
2 + λSs

4 + λS1s
2h2

1 + λS2s
2h2

2 − |λS12|ρs2h1h2

≡λSs
4 +M2(h1, h2)s

2 + V (h1, h2),

(7.1)

where M2(h1, h2) := λS1s
2h2

1 + λS2s
2h2

2 − |λS12|ρs2h1h2 and V (h1, h2) := V (h1, h2, 0). Here, in physical

sense, the variables h1, h2 and s are nonnegative since they are magnitudes of scalar fields, so the coupling

tensor V of coefficients of (7.1) has to be copositive. This has to hold for all values of the extra parameter

ρ ranges from 0 to 1, so the potential has to be minimized or scanned over it. Now, we give the explicit

form for the coupling tensor of (7.1) as V = (Vi1i2i3i4), which is an order 4 dimension 3 real symmetric

tensor:

V1111 = λ1, V2222 = λ2, V3333 = λS

V1122 =
1

6
(λ3 + λ4ρ

2), V1133 =
1

6
λS1, V2233 =

1

6
λS2, V1233 = − 1

12
|λS12|

and Vi1i2i3i4 = 0 for the others. Then, by Algorithm 2, we give a series of explicit coefficients and check

the vacuum stability of the potential (7.1).

As to λ’s in the entries of V, in particle physics all calculated quantities are expanded in series of

λi/(4π). Due to the perturbativity requirement of these series, the absolute values of the λ coefficients

must be no larger than 4π. On the other hand, for the coupling tensor to be copositive, the diagonal

entries have to be nonnegative. Hence, we can take from the beginning that 0 ≤ V1111, V2222, V3333 ≤ 4π.

Then, because the rest of the entries of V are a λ paremeter times some coefficients, their lower and

upper bounds should be accordingly changed. So −2 × 4π/6 ≤ V1122 ≤ 2 × 4π/6 (with an extra factor 2

because it is the sum of two λ’s), −4π/6 ≤ V1133 ≤ 4π/6, −4π/6 ≤ V1133 ≤ 4π/6, −4π/6 ≤ V2233 ≤ 4π/6,

and −4π/12 ≤ V1233 ≤ 0.

When ρ ̸= 0, Kannike [14] obtained that the conditions for the potential (7.1) symmetric under a Z3

23



to be bounded from below are
λS > 0,

V (h1, h2) > 0,

0 < h2
1 < 1, 0 < h2

2 < 1, 0 < s2 < 1, and 0 < ρ2 < 1 =⇒ Vmin > 0,

(7.2)

where

ρ =
(
|λS12|s2

)
/ (2λ4h1h2) ,

h2
1 = 1

2

{
(2λ2 − λ3)(4λSλ4 − |λS12|2) + 2λ4

[
(λ3 + λS1)λS2 − 2λ2λS1 − λ2

S2

]}
/t,

h2
2 = 1

2

{
(2λ1 − λ3)(4λSλ4 − |λS12|2) + 2λ4

[
(λ3 + λS2)λS1 − 2λ1λS2 − λ2

S1

]}
/t,

s2 = λ4

(
4λ1λ2 − λ2

3 − 2λ1λS2 − 2λ2λS1 + λ3(λS1 + λS2)
)
/t,

Vmin = 1
4

[
(4λ1λ2 − λ2

3)(4λSλ4 − |λS12|2)− 4λ4(λ1λ
2
S2 + λ2λ

2
S1 − λ3λS1λS2)

]
/t

(7.3)

with

t := (λ1 + λ2 − λ3)× (4λSλ4 − |λS12|2)

+λ4

[
4λ1λ2 − λ2

3 − 4λ1λS2 − 4λ2λS1 + 2λ3(λS1 + λS2)− (λS1 − λS2)
2
]
.

And the third formula in (7.2) is replaced by Vρ=0 > 0 when ρ = 0; and by Vρ=1 > 0 when ρ = 1.

Now, we implement Algorithm 2 to test the copositivity of the tensor defined by the potential (7.1),

and the numerical results are listed in Table 4, where the values of h2
1, h

2
2, s

2, ρ and Vmin are computed by

(7.3), “IT” denotes the number of iteration, “CPU(s)” denotes the CPU time in seconds, “Yes” denotes

the output result that the tested tensor is copositive and “No” denotes the output result that the tested

tensor is not copositive.

It should be noted that it is easy to check that the parameters are satisfied with the conditions (7.2)

when our tested results are “Yes”, while the parameters are not satisfied with the conditions (7.2) when

our tested results are “No”. We also tested other cases, the computation effect is similar. These imply

that our algorithm is efficient and applicable to such physical problems.

8 Conclusions

In this paper, an alternative form of a previously given algorithm for copositivity of high order tensors is

given, and applications of the proposed algorithm to test copositivity of the coupling tensor in a vacuum

stability model in particle physics, and to compute the coclique number of a uniform hypergraph are

presented. Several new conditions for copositivity of tensors based on the representative matrix of a

simplex are proved. We see that for the performance of this algorithm the choice of the set M is crucial,

and it is observed that verifying copositivity of tensors is much harder than verifying non-copositivity.
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Table 4: The numerical results for the stability of the potential (7.1)

λ1 λ2 λS λ3 λ4 λS1 λS2 λS12 h2
1 h2

2 s2 ρ Vmin IT CPU(s) Result

π π π π π π π π 0.25 0.25 0.5 1 1.96 3 0.09 Yes

π π π π π -π -π 0 0.27 0.27 0.45 0 0.57 19 0.37 Yes

π/4 π/4 π/4 π π 0 0 4π 0.56 0.56 -0.11 0.4 1.31 9 0.17 No

π π π/2 π π 0 0 4π 0.64 0.64 -0.27 0.86 3.00 5 0.08 No

π π -π π π π π 4π 0.52 0.52 -0.05 0.18 2.39 1 0.02 No

−π π π π π π π 4π -0.64 1.91 -0.27 0.49i 4.57 1 0.02 No

π −π π π π π π 4π 1.91 -0.64 -0.27 0.49i 4.57 1 0.02 No

π π -π π π π π 3π 0.54 0.54 -0.07 0.2 2.41 1 0.02 No

−π π π π π π π 3π -0.88 2.63 -0.75 0.74i 5.69 1 0.02 No

π −π π π π π π 3π 2.63 -0.88 -0.75 0.74i 5.69 1 0.02 No

π/4 π/4 π/4 π/4 π/4 π/2 π/2 4π 0.50 0.50 0.004 0.06 0.59 3 0.05 No

π π π π π π π π/2 0.32 0.32 0.36 0.29 2.07 3 0.06 Yes

2π π 2π π π π π π/2 0.20 0.59 0.21 0.15 2.51 3 0.06 Yes

π π 2π π π π 0 π/2 0.24 0.50 0.26 0.19 1.95 7 0.13 Yes

π π 2π π π 0 π π/2 0.50 0.24 0.26 0.19 1.95 7 0.14 Yes

2π π 2π π π 0 π π/2 0.25 0.49 0.26 0.18 2.34 7 0.14 Yes

π 2π 2π π π 0 π π/2 0.60 0.10 0.31 0.32 2.02 7 0.14 Yes

2π 2π π π π 0 π π/2 0.29 0.08 0.62 0.99 1.97 7 0.14 Yes

π π 2π 0 π π 0 2π 0.29 0.43 0.29 0.82 1.35 11 0.20 Yes

π/4 π/4 π 0 π π 0 2π 0.29 0.57 0.14 0.35 0.45 7 0.14 Yes

π π π 0 π -π 0 π/2 0.40 0.19 0.41 0.38 0.60 19 0.36 Yes

π π π 0 π -π -π 2π 0.17 0.17 0.67 4 -0.52 17 0.31 No

π π π π π -π -π 2π 0.14 0.14 0.71 5 -0.45 17 0.31 No
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However, some interesting questions still need to study in the future:

1. Are there any better choices for the set M in Algorithm 2?

2. How to update the proposed method to make it available for copositive tensors but not strictly

copositive?
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