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A promising research that has drawn considerable attentions is exploiting the inherent structures in the 
sparse signal. In this work, we apply the property to the multiple measurement vector (MMV) problem, 
in which a group of collected sparse signals that share an identical sparsity support are recovered from 
undersampled measurements. The main objective of this paper is to introduce a Bayesian model with 
taking both spatial and temporal dependencies into account and show how this model can be used for 
MMV with spatial structured sparsity patterns. Due to the property of the beta process that the sparse 
representation can be decomposed to values and sparsity indicators, the proposed algorithm ingeniously 
captures the temporal correlation structure by the learning of amplitudes and the spatial correlation 
structure by the estimation of clustered sparsity patterns. Detailed numerical experiments including 
synthetic and real data demonstrate the effectiveness of the proposed algorithm.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

There has been a recently emerged technique of signal sam-
pling and reconstruction, known as compressive sensing (CS) [1–3]
that recovers high dimensional signals from far less linear mea-
surements with minimum loss of information. The measurement 
system is expressed as follows

y = �x + e, (1)

where y ∈ R
M×1 is the measurement vector, x ∈ R

N×1 denotes the 
underlying signal vector of interest, � ∈ R

M×N represents the ran-
dom projection matrix (M � N), and e is the additive noise. Since 
most of natural signals are sparse or highly compressible under 
a basis, CS has a wide range of applications including image pro-
cessing [4], sensor network [5], biological application [6], signal 
reconstruction [7], etc. CS algorithms can be broadly classified into 
three strategies. The large majority of algorithms are based on con-
vex relation. A well-known instance based on such an approach is 
the Basis Pursuit (BP) [8], which replaces the �0-norm with the 
�1-norm. Another common used category for CS is greedy iterative 
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algorithms, such as matching pursuit (MP) [9] and its derivative or-
thogonal matching pursuits (OMP) [10]. One advantage of greedy 
algorithms is the low computational cost and the high recovered 
speed. The sparse signal recovery can also be formulated in a 
Bayesian framework, where the sparsity is described by a priori 
distribution such as Laplace.

The system in (1) is a typical CS model with a signal measure-
ment vector (SMV). When the measurement procedure occurs at L
time instances, the basic model (1) can be extended to the multi-
ple measurement vector (MMV) model, given by

Y = �X + E, (2)

where Y ∈ R
M×L is the measurement matrix containing L mea-

surement vectors, X ∈ R
N×L represents the underlying source ma-

trix, and E ∈ R
M×L is the additive noise matrix. In general, the L

measurements in X are statistically related, particularly when re-
peated measurements are the same type of data that taken from 
similar scenes (e.g., repeated magnetic resonance imaging in a di-
agnostic task). In this case, different signals share an identical 
support, i.e., the locations of the nonzero elements of every col-
umn in X are identical. Specifically, if the L measurements with M
samples are recovered independently, with desired accuracy, then 
ideally less than M samples would be required by exploiting statis-
tical correlations among L measurements. In [11–14], authors have 
shown that compared to the SMV model, the accuracy of sparse 
signal recovery can be improved dramatically by performing MMV 
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Fig. 1. (a) A record of the channel impulse response of underwater acoustic channels measured off the coast of Martha‘s Vinyard, MA, USA. (b) The image of matrix Q .
process. MMV is closely related to other fields, such as cognitive 
radio networks [15], dynamic compressive sensing [16], multi-task 
sparse learning [17], and source localization in electroencephalog-
raphy (EEG) and magnetoencephalography (MEG) [18], etc.

The goal of MMV is to recover the underlying signal matrix 
X by solving the linear equation (2), in which X is row-wise 
sparse (i.e., only a few rows of X are nonzero). As an extension 
of SMV algorithms, greedy algorithms such as [19–21] have been 
developed to solve the model (2). Inspired by the fact that X is 
row-wise sparse, mixed norm regularizations [11,20,22] have been 
induced to obtain good performances. Among the MMV algorithms, 
Bayesian algorithms express the MMV as the solution of a Bayesian 
inference problem and apply statistical tools to solve it. In [23], 
the authors used the sparse Bayesian learning (SBL) to MMV and 
derived the MSBL algorithm. The multi-task compressive sensing 
algorithm [24] provided solutions to MMV where a shared prior 
was placed across all of the L signals.

While most of the existing works concern on the row-wise 
sparsity of X , temporal structures within the nonzero rows of X
have been largely ignored. It contradicts the real scenarios, since 
the coefficients in a source may be strongly correlated. For exam-
ple, in the electroencephalography (EEG) magnetoencephalography 
(MEG) source localization problem, each row of X is a temporally 
smooth signal reflecting the activity of a set of neurons, as it re-
sponses to the time course of stimulus caused by an equivalent 
electrical current. Recent contributions have suggested that the 
statistical relationship can potentially lead to the improved perfor-
mance. Zhang et al. [25] presented a block sparse Bayesian learning 
framework where the correlation structure of each row of X was 
captured by a positive definite matrix. The positive definite matrix 
was adaptively learned from the measurements, and the resulted 
matrix was then used to estimate the underlying signals. The au-
thors in [26] established a hierarchical Bayesian framework to 
model the temporally smooth signals. The matrix used to capture 
the temporal correlation was not restricted to be full rank by using 
a singular multinomial distribution instead of a multivariate Gaus-
sian distribution. In [27], a Bayesian approximate message passing 
(AMP) was proposed for solving the MMV. The temporal correla-
tion of signal amplitudes was modeled by the stationary first-order 
Gauss–Markov random process and the expectation–maximization 
(EM) algorithm that coupled with the message passing procedure 
was employed to learn the model parameters. Noted that outliers 
might be presented in the measurements, an unconstrained opti-
mization problem [28] sought to research both temporally smooth 
and row-wise sparse in X , which fitted the measurements well.

In practice, besides the temporal correlation structure, the dis-
tribution of elements in each sparse measurement is not truly 
pixel-wised sparsity but structured sparsity. For instance, most of 
the wavelet coefficients of a natural image are small, and however 
the large coefficients usually have group sparsity structures that 
can be utilized to enhance the image recovery [29]. The sparse 
outliers in background subtraction are also typically spatially con-
tinuous. Numerous works [30–33] prove that imposing structured 
sparsity on the support of the signal (the sparsity pattern) that 
goes beyond simple sparsity can boost the performance of sparse 
signal recovery. In order to take aim at the trajectory, we address 
the problem where each measurement of MMV is structured spar-
sity in this paper. Such problem can be seen as the combination of 
the traditional MMV and the canonical block-sparse pattern. The 
real signals often exhibit the two sparsity patterns, i.e., nonzero 
elements in each column of X are existed in clusters (spatial cor-
relation) and entries in each nonzero row of X are correlated (tem-
poral correlation). Fig. 1(a) shows a record of the channel impulse 
responses (CIR) of underwater acoustic channels (represented over 
the propagation delay and time domain) measured from the exper-
iments conducted in Atlantic Ocean in USA [34]. We can observe 
that the sparsity structure of the CIR is varying slowly and the 
nonzero coefficients of each channel impulse response occur in 
clusters.

Two key points herein are to capture the temporal correlation 
within the nonzero rows of X and to exploit clustered sparsity 
structures within each column of X . In this context, we employ 
a hierarchical sparse Bayesian framework to solve the problem. 
Taking advantage of the beta process factor analysis [35], the es-
timation of MMV can be decomposed to the magnitudes and the 
latent variables indicating sparsity patterns. According to the clus-
tered pattern of structured sparsity signal, the current element and 
its neighbors are strongly correlated. To model the clustered prior 
of each measurement, we assume that the sparsity patterns satisfy 
a Markov property. Specifically, if an element is nonzero, it is very 
likely that its neighbors are nonzero. As done in [25], we employ a 
block-sparse Bayesian learning framework where the temporal cor-
relation of X is captured by a positive definite matrix. Moreover, 
the parametric computation is cast within a Bayesian inference 
procedure and based on variational Bayes (VB) [36] approximation.

This paper makes several contributions. First and foremost, the 
proposed work not only exploits temporal correlation within each 
source of the signal (i.e., the temporal correlation existing in each 
nonzero row of X ), but also exploits spatial correlation among 
different sources of the signal (i.e., clustered sparsity structures 
existing in each column of X ). Almost all the existing MMV al-
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gorithms only consider the temporal correlation, while the spatial 
correlation is rarely utilized. In fact, taking advantage of the spatial 
correlation for the signal recovery has been a promising research. 
Based on the property of the beta process that the sparse repre-
sentation can be decomposed to values and sparsity indicators, our 
work ingeniously captures the temporal correlation structure by 
the learning of amplitudes and the spatial correlation structure by 
the estimation of clustered sparsity patterns. Second, we propose 
a variational Bayesian algorithm to automatically estimate the pa-
rameters of the proposed model. For the proposed Bayesian model, 
as done in [25], a positive definite matrix B is used to capture the 
temporal correlation structure. We would like to point out, how-
ever, the significant difference in estimating B of our method from 
[25]. Our approach incorporate the conjugate Wishart hyperprior 
on the positive definite matrix B

B ∼ W(B|V 0, v0) = 1

C
|B|(v0−L−1)/2 exp(−1

2
T r(V −1

0 B)),

as defined in (6). The posterior estimation of B is inferred by VB 
algorithm, while [25] makes no prior about B and approximates 
it by expectation–maximization (EM) method. Besides, an indicator 
matrix is introduced to capture the spatial correlation and enhance 
the recovery. Specifically, the spatial correlation is described by 
the Markov dependency between the element and its neighbors, 
as shown in model (10).

Next, we introduce some notations used in this paper. Boldfaced 
upper-case letters, e.g., A, denote matrices, while boldfaced lower-
case letters, e.g., a, denote column vectors. diag(a) denotes a di-
agonal matrix with principal diagonal elements being a. If A1, A2, 
. . ., An is a series of square matrices, then diag(A1, A2, . . . , An) is 
a block diagonal matrix with principal diagonal blocks being A1, 
A2, . . ., An in turn. For a vector a, ai is the ith element of a and 
a[i] is the ith block of a. For a matrix A, Ai· denotes the ith row, 
A·i denotes the ith column, and A i, j denotes the element that lies 
in the ith row and the jth column. An m by m identity matrix is 
denoted by Im . J m denotes the m by m matrix in which all ele-
ments are equal to 1 and lm is a m-dimension column vector of 
ones. AT and T r(A) denote the transpose and trace of A, respec-
tively.

2. Bayesian modeling

Structured sparsity is an expansion of standard sparsity pattern, 
in which variables in the same group tend to be zero or nonzero 
simultaneously. Thus the spatial correlation structure mainly de-
pends on the clustered sparsity pattern. Under this structured 
setup, we use latent variables indicating sparsity patterns to cap-
ture the spatial correlations of MMV. In fact, MMV is a special 
structured sparse signal. If we stack X into a column vector, the 
vector is a structured sparse signal with the known clustered pat-
tern. However, different from general structured sparse signals, the 
correlations in MMV embody not just in the fixed sparsity profile 
of all measurements but also in the temporal correlations among 
different measurements. Further exploring the temporal correla-
tions is of high importance towards more effective recovery. To 
address the issue, the temporal correlations about magnitudes are 
modeled by a positive definite matrix.

As a result, it is believable that a Bayesian model can capture 
the temporal correlation within each source, as well as the spa-
tial correlation among different sources. In this paper, we integrate 
the temporal correlation and the spatial correlation into a unified 
Bayesian framework. Concretely, we separate the learning of am-
plitude and support, in which the amplitude prior and the latent 
variable are employed to capture the temporal correlation and the 
spatial correlation, respectively.

In this section, we elaborate on the Bayesian model. As dis-
cussed above, we separate the learning of sparsity from the learn-
ing of amplitude. The proposed Bayesian model is

Y = �(W ◦ Z) + E, (3)

where W ∈ R
N×L is the weight matrix representing magnitudes, 

Z ∈ R
N×L is the indicator matrix and ◦ denotes the Hadamard 

product. Since each row of W shares a fixed sparsity profile, 
each column of Z is identical, i.e., Z ·i = s (∀i = 1, . . . , L), where 
s ∈ {0, 1}N is a binary vector. E is additive noise, which is drawn 
from a Gaussian distribution.

Bayesian algorithms express the sparse signal recovery problem 
as the solution of a Bayesian inference procedure and apply sta-
tistical tools to solve it. Regarding the choice of the prior, one can 
model the sparse signal as a continuous random variable whose 
distribution have a sharp peak at zero and heavy tails. For the sig-
nal measurement vector model (1), a widely used sparseness prior 
is the Laplace density function [37],

x ∼ (
λ

2
)N exp(−λ

N∑
i=1

|xi|).

The Laplace sparseness prior is not conjugate to the Gaussian 
likelihood and hence the connected Bayesian inference may not 
be performed exactly. This issue has been addressed in sparse 
Bayesian learning with automatic relevance determination (ARD) 
[38]. Rather than imposing a Laplace prior on x, a hierarchical 
prior has similar properties as the Laplace prior but allows conve-
nient conjugate-exponential analysis. To this end, the first choice 
is a zero-mean Gaussian prior on each element of x,

x ∼
N∏

i=1

N (xi|0,α−1
i ),

where αi is the inverse-variance of a Gaussian density function. 
Motivated by applications of sparse Bayesian learning in the sig-
nal measurement model (SMV), Wife et al. [23] extended it to 
the MMV model, i.e., X i· ∼ N (0, γ −1

i I). Many of the precisions γi

will assume very large values during inference, which encourage 
the sparsity of X . To model the temporal correlation, the Bayesian 
MMV model was extended to X i· ∼ N (X i·|0, γ −1

i B) [25]. As done 
in [25], the distribution of W i·(i = 1, . . . , N) is given by

W i· ∼ N (W i·|0, (γi B)−1), (4)

where γi is a nonnegative hyperparameter controlling the sparsity. 
Following the conventional sparse Bayesian learning principle, we 
use Gamma distributions as hyperpriors over the precisions γi

γi ∼ Gamma(γi|a,b) = �(a)−1baγ a−1
i exp(−bγi), (5)

where �(a) = ∫ ∞
0 ta−1e−tdt . In sparse Bayesian framework, very 

small values (e.g., 10−6) are assigned to the parameters a and b. 
Such small values can lead to broad hyperpriors.

To avoid the overfitting and improve the adaptivity, we assign 
a positive definite B ∈ R

L×L to model all the source covariance 
matrices. In addition to (5), we incorporate the conjugate Wishart 
hyperprior on the positive definite B , that is

B ∼ W(B|V 0, v0) = 1

C
|B|(v0−L−1)/2 exp(−1

2
T r(V −1

0 B)), (6)

where C is the normalizing constant, v0 is the number of degrees 
of freedom and V 0 is the scale matrix.

Here, we are interested in the Bayesian model that emphasizes 
not only the value but also its sparse pattern. Thus a binary vector 
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s is introduced to enhance the recovery and capture the spatial 
correlation. A standard choice for modeling the binary vector s is 
Bernoulli distribution,

s ∼
N∏

i=1

Bernoulli(si|πi). (7)

With this model, we know that the standard sparsity only captures 
simple primary data structure. With more data structure priors, 
we focus on the Markov dependency between the element and its 
neighbors. For an element, if its neighbors are nonzero (zero), then 
with a high probability the element is also nonzero (zero).

To illustrate the Markov property and the structured sparsity 
pattern, we carry out experiments on real audio signals, which 
have clustered sparsity patterns under a certain basis, such as dis-
crete cosine transform (DCT) basis. The audio signals including pi-
ano, bird calls, jazz, jazz-trio, strings, glockenspiel, voicefemale and 
voicemale are available.1 We choose a short-time segment with 
consisting of m (m = {100, 200, . . . , 1000}) samples for each signal. 
By varying m, 10 different dimensional samples can be obtained 
for each audio signal. The sparse representations can be computed 
under the DCT basis � ∈ R

m×m . For a sparse representation t , we 
find all elements of t whose neighbors are nonzero. The depen-
dency implies that these elements tend to be nonzero. To examine 
the validity of the above mentioned Markov property, we compute 
the ratio denoted as q/p, where p is the total number of these ele-
ments and q is the number of nonzero ones. Turning to the Markov 
property, the ratio should be near 1. Consequently, we compute the 
variable matrix Q ∈R

8×10, where Q i j denotes the ratio of ith au-
dio signal with jth ( j ∈ {100, 200, . . . , 1000}) dimensional sample. 
The matrix Q is displayed in Fig. 1(b). The white color, which cor-
responds to near-one, is dominant. This illustrates that the Markov 
dependent property between the individual element and its neigh-
bors characterizing the structured sparsity is desirable.

Beta distribution is a distribution over a continuous variable 
ρ ∈ [0, 1], which is often used to represent the probabilities for 
some binary events. The prior on parameter πi (i = 1, . . . , N) is 
expressed as

πi ∼ Beta(πi |p,q). (8)

The expectation of πi (the probability of si = 1) is

E[πi] = p/(p + q). (9)

As discussed, if the neighbors of an element are non-zero, it is very 
likely that the element is non-zero. Assume that the neighbors of 
an element are zero, with a high probability the element is zero. 
The Markov dependency is then described as the Beta process:

πi ∼

⎧⎪⎨⎪⎩
Beta(πi |ph,qh) i f si−1 = 1 and si+1 = 1,

Beta(πi |pl,ql) i f si−1 = 0 and si+1 = 0,

Beta(πi |pu,qu) i f si−1 = 0, si+1 = 1 or si−1 = 1,si+1 = 0,

i = 1, . . . , N,

(10)

where ph , qh , pl , and ql are the fixed hyperparameters and 
ph/(ph + qh) → 1 and pl/(pl + ql) → 0, e.g., ph = N−1

N , qh = 1
N and 

ql = N−1
N , pl = 1

N . Let pu = 1/2 and qu = 1/2, i.e., pu/(pu + qu) =
1/2.

1 homepage.univie.ac.at/monika.doerfler/StrucAudio.html.

3. Bayesian inference

For ease of inference, we transform (3) to the single measure-
ment model. Let y = vec(Y T ) ∈ R

ML×1, D = � ⊗ I L ∈ R
ML×N L , 

w = vec(W T ) ∈ R
N L×1, z = vec(Z T ) ∈ R

N L×1 and e = vec(E T ), 
where ⊗ denotes the Kronecker product. The model is developed 
to

y = D(w ◦ z) + e, (11)

where ◦ denotes the Hadamard product, w[i] = W T
i· and z[i] =

silL(i = 1, . . . , N). Correspondingly, z can be constructed as z = �s, 
where � ∈R

N L×N with

�i j =
{

1, i f i ∈ [( j − 1)L + 1, jL].
0, else.

We assume that noise obey Gaussian distribution with zero 
mean and unknown precision β . Formally, the noise is modeled 
as

e ∼ N (e|0, β−1 J ML),

β ∼ Gamma(β|c,d).
(12)

As in (5), we set hyperparameters c = d = 10−6. If necessary, one 
can learn different noise precisions for different parts of e. But it 
will result in overfitting because of limited observations and too 
many parameters. To avoid the overfitting, we use one precision 
β to model all noise as the way of choosing B . The conditional 
distribution of the observation is expressed as

y|D, w, z ∼ N (y|D(w ◦ z),β−1 J ML) (13)

To facilitate the illustration of the proposed Bayesian model, Fig. 2
shows the simplified graphical model. In the figure, the circles 
represent the variables with prior distributions, while the squares 
denote the constants with fixed values.

We first let 
 = {w, γi, B, s, πi, β} denote all hidden variables. 
Bayesian inference is evaluating the posterior distributions of un-
knowns. However, the posterior distributions are computationally 
intractable since the marginal distribution p(y) is not calculated 
analytically. In this paper, we use the VB [36] to deal with the 
tractable joint posterior distribution problem. The approximate 
posterior distribution is denoted by q(
). The underlying idea 
is to posit a parameterized family of distributions over the hid-
den variables and then optimize the parameters to minimize the 
Kullback–Leibler (KL) divergence between q(
) and true posterior 
distribution p(
|y), given by

min
q(
)

K L(q(
)‖p(
)) =
∫

q(
) ln
q(
)

p(
|y)
d
.

Equivalently, it corresponds to the following problem

max
q(
)

−K L(q(
)‖p(
)) =
∫

q(
) ln
p(
, y)

q(
)p(y)
d
.

Since K L(q(
)‖p(
)) ≥ 0 and 
∫

q(
)d
 = 1, it refers to the esti-
mation of the marginal likelihood p(y) with maximal lower bound, 
i.e.,

ln p(y) ≥ L(θ) =
∫

q(
) ln
p(
, y)

q(
)
d
.

It is assumed that q(
) factorizes with respect to these partitions 
as

q(
) =
∏

k

qk(
k).

http://homepage.univie.ac.at/monika.doerfler/StrucAudio.html


188 N. Han, Z. Song / Digital Signal Processing 75 (2018) 184–201
Fig. 2. Bayesian model for MMV with structured sparse signals.
Let qk(
k) = qk for simplicity. We aim to maximize the lower 
bound L(θ).

L(θ) =
∫ ∏

k

qk[ln p(
, y) −
∑

k

ln qk]d


=
∫ ∏

k

qk ln p(
, y)
∏

k

d
k −
∑

k

∫ ∏
j

q j ln qk

∏
j

d
 j

=
∫

qk[ln p(
, y)
∏
j 
=k

(q jd
 j)]d
k −
∑

k

∫
qk ln qkd
k

=
∫

qk[ln p(
, y)
∏
j 
=k

(q jd
 j)]d
k −
∫

qk ln qkd
k

−
∑
j 
=k

∫
q j ln q jd
 j

=
∫

qk ln p(
k, y)d
k −
∫

qk ln qkd
k −
∑
j 
=k

∫
q j ln q jd
 j

= −K L(qk‖p) −
∑
j 
=k

∫
q j ln q jd
 j,

(14)

where ln p(
k, y) = E
\
k [ln p(
, y)] = ∫
ln p(
, y) 

∏
j 
=k

(q jd
 j)

and 
∫

q jd
 j = 1 ( j = 1, · · · ). The expectation E
\
k is taken 
about the set 
 with 
k removed. Clearly the bound in (14) is 
maximized when the KL distance is zero, which is the case for 
qk(
k) = p(
k, y). Consequently, the expression of the optimal 
posterior approximation qk(
k) with other variables fixed is

ln qk(
k) = E
\
k [ln p(y,
)] + C, (15)

where C denotes a constant that does not depend on the current 
variable and can be obtained through normalization. We present 

the update rules involved in the inference scheme (15) for all un-
known variables.

In the next subsections, we update each parameter in its turn 
holding others fixed. For notational simplicity, the expectation over 
the approximate posterior q(·) is denoted by 〈·〉. For more details, 
please refer to the Appendix.

3.1. Estimation of magnitudes

The estimation of magnitudes can be naturally implemented by 
inferring w , γ i , and B . Invoking the prior model in (4), the obser-
vation model in (13), and update rule in (15), one can obtain the 
posterior distribution of w [i] (W i·),

q(w [i]) = N (w [i]|〈w[i]〉,�w [i]), (16)

the posterior of w [i] can be shown to be normal with mean, 〈w [i]〉, 
and covariance, �w[i] , equal to

〈w [i]〉 = 〈β〉〈si〉�w[i] DT
[·i] y−i,

�w[i] = (〈γi〉〈B〉 + 〈s2
i 〉〈β〉DT

[·i] D[·i])−1,
(17)

where D[·k] = D(1 : ML, (k − 1)L + 1 : kL), k = 1, . . . , N and y−i =
y −

N∑
j 
=i

〈s j〉D[· j]〈w [ j]〉.

By combining (4) and (5), we find that q(γi ) follows a Gamma 
distribution, where

q(γi) = Gamma(γi|a + L

2
,

2b + T r((�w[i] + 〈w [i]〉〈w [i]〉T )〈B〉)
2

).

(18)

It is easy to get the mean of q(γi),

〈γi〉 = 2a + L

2b + T r((�w [i] + 〈w [i]〉〈w [i]〉T )〈B〉) . (19)
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Similarly, the posterior approximation of B is Wishart distribution

q(B) = W(B|(V −1
0 +

N∑
i=1

〈γi〉(�w[i] + 〈w [i]〉))−1, v0 + N). (20)

The posterior expectation of B can be calculated as

〈B〉 = (v0 + N)(V −1
0 +

N∑
i=1

〈γi〉(�w[i] + 〈w [i]〉〈w [i]〉T )−1 (21)

3.2. Estimation of sparsity patterns

The parameters involved in the sparsity pattern are s and πi .
With the Bernoulli prior (7) and the Gaussian observation like-

lihood (13), q(si) follows a Bernoulli distribution,

q(si) = Bernoulli(si |ξ si , ζ 1−si ), (22)

where

ξ = exp(〈lnπi〉 − 〈β〉
2

T r((�w [i]

+ 〈w [i]〉〈w [i]〉T )DT
[·i] D[·i]) + 〈β〉(y−i)

T D[·i]〈w [i]〉),
ζ = exp(〈ln(1 − πi)〉).

(23)

Similarly, the approximate posterior of πi can be shown to be

q(πi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Beta(πi |ph + 〈si〉,qh + 1 − 〈si〉)
i f si−1 = 1 and si+1 = 1,

Beta(πi |pl + 〈si〉,ql + 1 − 〈si〉)
i f si−1 = 0 and si+1 = 0,

Beta(πi |pu + 〈si〉,qu + 1 − 〈si〉)
i f si−1 = 0, si+1 = 1 or si−1 = 1, si+1 = 0,

(24)

therefore,

〈lnπi〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(ph + 〈si〉) − ψ(ph + qh + 1)

i f si−1 = 1 and si+1 = 1,

ψ(pl + 〈si〉) − ψ(pl + ql + 1)

i f si−1 = 0 and si+1 = 0,

ψ(pu + 〈si〉) − ψ(pu + qu + 1)

i f si−1 = 0, si+1 = 1 or si−1 = 1, si+1 = 0,

〈ln(1 − πi)〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(qh + 1 − 〈si〉) − ψ(ph + qh + 1)

i f si−1 = 1 and si+1 = 1,

ψ(ql + 1 − 〈si〉) − ψ(pl + ql + 1)

i f si−1 = 0 and si+1 = 0,

ψ(qu + 1 − 〈si〉) − ψ(pu + qu + 1)

i f si−1 = 0, si+1 = 1 or si−1 = 1, si+1 = 0,

(25)

where ψ(x) = dln�(x)
dx is a digamma function.

3.3. Estimation of noise precision

Finally, the variational distribution of β is a Gamma distribu-
tion,

q(β) = Gamma(β|c + ML

2
,
〈‖y − D(w ◦ z)‖2

2〉
2

+ d), (26)

with expectation

Algorithm 1 VB for MMV with structured sparsity patterns.
Input: multiple measurement vectors Y , the dictionary matrix �
Output: source signals X
Initialize: a = b = c = d = 10−6, ph = ql = N L−1

N L , pl = qh = 1
N L , v0 = L, 

V 0 = I L , W = 0, γi = 1 (i = 1, . . . N), Z = 0,.
1: While not converged do.
2: Update B using (21).
3: Update γ using (19)
4: Update W using (17).
5: Update 〈lnπi〉 and 〈ln(1 − πi)〉 using (25).
6: Update s (Z ) using (23).
7: Update β using (27).
8: end while.
9: Set X = W ◦ Z

〈β〉 = 2c + ML

2d + 〈‖y − D(w ◦ z)‖2
2〉

, (27)

where

〈‖y − D(w ◦ z)‖2
2〉

= yT y − 2 yT D(〈w〉 ◦ (�〈s〉)) + T r([(�w + 〈w〉〈w〉T )

◦ (�(Z + 〈s〉〈s〉T )�T )]DT D),

(28)

Z = diag(〈s〉 ◦ (1 − 〈s〉)) and �w = diag(�w1 , . . . , �w N ).
In summary, the variational Bayesian procedure infers the pos-

terior distributions of the unknowns iteratively, where in each iter-
ation the method first computes w , γ , B using (17), (19) and (21), 
followed by the estimation of sparsity patterns s, π according to 
(23), (25), and finally the estimation of noise β obtained from (27). 
The whole algorithm is outlined in Algorithm 1.

4. Discussions

4.1. Analysis of variational Bayesian inference

The ways to approximate the posterior density functions in-
clude maximum a posterior (MAP) estimation, Markov chain 
Monte Carlo (MCMC) analysis using a Gibbs sampler and varia-
tional Bayesian (VB) approximation. Although all of these methods 
may provide local minima, the full Bayesian inference including 
MCMC and VB is generally more effective in avoiding undesired lo-
cal minima compared to deterministic methods such as MAP, since 
the full Bayesian inference approximates the full posterior distribu-
tions instead of point estimations. In addition, the MCMC method 
requires a large number of burn-in iterations, followed by a suffi-
cient number of iterations to collect samples. As a result, the com-
putational complexity of MCMC is significantly higher than ones of 
other algorithms. To simplify the computation and the inference, 
we propose using VB approximation. As a family of probability 
distribution approximation procedures, VB offers appealing advan-
tages. First, VB algorithm directly updates the hyperparameters of 
q(
), and the latest update of q(
) approximate the distribution 
of 
. After several iterations, VB usually converges, making the 
procedure computationally efficient. On the other hand, VB ap-
proximation allows us to make the assumption on the factorization 
of posterior distributions so that we can determine the function 
form of the posterior distribution of each unknown. Since all dis-
tributions in the Bayesian model are in the conjugate exponential 
family, it is easy to calculate all posterior distributions. Finally, 
VB approximates the unknown posterior distributions with simple, 
analytically tractable distributions, which can compute the needed 
expectations, and therefore extend the applicability and the adapt-
ability of Bayesian inference to a wide range of modeling options. 
More complicated priors that are needed in some typical problems 
can be utilized, resulting in the improved estimation accuracy.
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In the above iterations, the dominant computational process is 
(17) and (21). For convenience, we attempt to simplify the B learn-
ing rule (21) using the Woodbury identity,

〈B〉 = (v0 + N)(V 0 − V 0�(I L + V 0�)−1V 0), (29)

where � =
N∑

i=1
〈γi〉(�w[i] + 〈w [i]〉〈w [i]〉T ). Consequently, the dom-

inant complexity of the algorithm is O((N + 1)L3). Most of pre-
cisions γi assume very large values and most of sparsity labels si
become numerically equal to zero in the very first iterations, so 
that the actual complexity of (17) reduces rapidly with the itera-
tions.

We now draw connections of the proposed Bayesian model to 
optimization-based methods. To see the connection more clearly, 
the negative logarithm of the full posterior density function of our 
Bayesian model is

− log p(
|y,H)

= β

2
‖y − D(w ◦ z)‖2

2 +
N∑

i=1

γi

2
w T

[i] B w [i] − log[
N∏

i=1

f (si,πi;H)]

− log[
N∏

i=1

Gamma(γi|H)Gamma(β|H)] + const,

(30)

where 
 represents all model parameters, H = {a, b, c, d, ph, qh,

pl, ql} is hyperparameters and f (; ) represents the Bernoulli-beta 
prior in (7) and (10). The error term ‖Y − �X‖2

F in determinis-
tic optimization-based approaches such as [23], [28] corresponds 
to the Gaussian prior associated with the measurement noise in 
(12). In the deterministic optimization-based approaches, there is 
a perennial challenge about tuning the parameter to balance the 
error term and the regularization term. However, in the proposed 
Bayesian model, the prior about noise variance is not required. The 
model can learn the variance when performing inference. Zhang et 
al. [39,40] demonstrated that the operation w T

[i] B w[i] functioned 
as a row regularization, which can replace the row-norms (such 
as the �2 norm and the �∞ norm) in iterative reweighted algo-
rithms for the MMV model. In [28], a pseudo norm ‖W ‖1,2 =

N∑
i=1

(W i· P W T
i·)1/2 is related to this operation. The Bernoulli-beta 

distribution (like an �0 prior) is employed to impose the sparsity 
and capture the spatial temporal correlation, which is connected to 
the row support R(W ) = {1 ≤ i ≤ N|W i· 
= 0} defined in [19,21]. 
Thus, we can note that there exist strong connections between 
the Bayesian formulation and the deterministic optimization-based 
approaches. Apart from the differences in the form of expres-
sions between the Bayesian model and the related determinis-
tic optimization-based approaches, the main difference is that 
Bayesian inference estimates the distribution of the unknown pa-
rameters, while one effectively seeks a single solution that mini-
mizes the objective function analogous to − log p(
|y, H) in the 
deterministic optimization-based approaches.

4.2. Convergence analysis

Since the proposed algorithm is derived based on the vari-
ational Bayes algorithm, we can study the convergence of the 
variational Bayes algorithm to understand the convergence of the 
proposed algorithm. The expression (15) for the optimal solution 
q(
k) depends on calculating the expectations with respect to the 
other factors q(
 j) for j 
= k. One needs to cycle through all the 
factors for obtaining the maximum of the lower bound (14). To 

conduct the variational inference, all the factors q(
 j) need to be 
initialized. Then, each factor is estimated in turn with a updated 
value obtained by (15) using the current solutions for all of the 
other factors. Convergence is guaranteed since the bound is con-
vex with respect to each of the factors q(
 j) [36,41]. The detailed 
inference process of updating factors is provided in the Appendix.

5. Simulation experiments

In this section, we illustrate the performance of the proposed 
model using an evaluation with simulated data. The simulations 
are conducted with two types of signals, which are generated by 
a first-order autoregressive (AR) process and a Hanning-window 
tapered sinusoid, respectively. The performance is examined and 
compared with those obtained from state-of-the-art algorithms.

For the synthetic data, we consider two scenarios: MMV with 
spatial unstructured and structured cases. The unstructured case 
without the spatial correlation structure corresponds to the data 
with the temporal correlation structure, which ignores the possible 
structures existing among different elements in each measurement 
so that the nonzero rows of MMV are distributed randomly. MMV 
with structured case assumes that the nonzero entries in each 
measurement are clustered. The structured case corresponds to the 
data with both the temporal correlation structure and the spatial 
correlation structure. For block-sparse signal, the N dimensional 
sparse signal contains K nonzero elements (K is also called spar-
sity level), which are partitioned into g blocks with random sizes 
and random locations. Since all measurements of MMV share the 
same sparse support, the K nonzero rows are actually divided into 
g blocks with random sizes and random locations.

All the experiments consist of 1000 independent runs. The ran-
dom measurement matrix � corresponds to a uniform spherical 
ensemble, so each column of � is drawn from a uniform distribu-
tion on the M-sphere with radius 1. Independent and identically 
distributed Gaussian noise is used with a desired value of SNR, 
which is defined as SNR(db) = 10 log10(‖�X‖2

F /‖E‖2
F ). Two per-

formance metrics are used throughout the experiments. The first 
metric, which refers to the mean square error (MSE), is quantified 
as MSE = ‖X̂ − X‖2

F /‖X‖2
F , where X and X̂ denote the ground 

truth and the reconstructed signal, respectively. Normalized mean 
squared error (NMSE) is calculated by averaging MSE of 1000 in-
dependent trials. The second metric, used to gauge the accuracy of 
the sparse support, is the support failure rate (SFR), which is the 
number of indices in which the estimated and true support differ, 
normalized by the cardinality of the original support K . Normal-
ized support failure rate (NSFR) is defined as averaged SFR over 
1000 independent trials.

The following methods are included in the experiment: M-
FOCUSS [11], M-SBL [23], TMSBL [25], and AMP-MMV [27]. For 
M-SBL, TMSBL and AMP-MMV, MATLAB implementations are ob-
tained from the authors’ websites while MATLAB implementation 
from the Multiple-Spars Toolbox2 is used for M-FOCUSS. Among 
these algorithms, TMSBL, and AMP-MMV are the ones that take 
temporal correlation into account, while M-FOCUSS and M-SBL are 
effective techniques that do not consider the temporal correlation. 
The proposed algorithm, termed BMMV, exploits both temporal 
and spatial correlations by (4) and (10), respectively. In the ex-
periments, the proposed iteration algorithm is repeated until a 
convergence criterion, e.g., ‖X̂k − X̂k−1‖ ≤ 10−6, where X̂k and 
X̂k−1 are estimates of X in the kth and (k − 1)th iterations, re-
spectively or when the number of iterations k attains a specified 
maximum number of iterations kmax.

2 http :/ /asi .insa-rouen .fr /enseignants /arakotom /code /SSAindex .html.

http://asi.insa-rouen.fr/enseignants/arakotom/code/SSAindex.html
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Fig. 3. Performance versus N/M . (a) NMSE of unstructured case, (b) NMSE of structured case, (c) NFSR of unstructured case, (d) NFSR of structured case, (e) Running time of 
unstructured case, (f) Running time of structured case.
5.1. Signals generated by an AR(1) process

In this experiment, nonzero rows (sources) are generated by the 
AR(1) model. Higher order process can be readily manipulated, and 
however it increases the complexity of the experiment. In fact, 
AR(1) process can assure the intra-row correlation structure and 
make a good compromise between performance and complexity. 
The i-th source that satisfies an AR(1) process is generated accord-
ing to

X i, j = aX i, j−1 +
√

1 − a2εi, j, i = 1, . . . , N; j = 1, . . . , L, (31)

where a is the AR model parameter controlling the temporal corre-
lation and εi, j ∼ N (0, σ 2

i ). To generate K -sparsity signals, most of 
σ 2

i are set to zero, except for K rows where the σ 2
i are drawn uni-

form in the range [1, 2]. As discussed, the K nonzero rows of MMV 
with spatial unstructured measurements are distributed randomly, 
while the K nonzero rows are divided into g blocks for MMV with 
spatial structured measurements.

(1) Performance versus underdetermined level N/M: The high-
lighted principle of CS theory is to derive better recovery per-
formance, in terms of the minimum number of measurements 
necessary to obtain perfect or nearly perfect reconstruction. Conse-
quently, experiments are first manipulated by varying the sampling 
rate. To this end, we first study the performance of the considered 
algorithms across the undersampling level N/M . In the experi-
ment, N/M varies from 5 to 25 together with N = 500, L = 10, 
SNR = 25, a = 0.9 and K = M/2. For the structured case, the num-
ber of nonzero blocks g is M/5. It is seen that the methods with 
temporal correlation i.e. TMSBL, AMP-MMV, BMMV, are uniformly 
better than the methods without temporal priors both in terms of 
NMSE and NSFR. As shown in Fig. 3, the probability of false recov-
ery increases as the underdetermined level N/M becomes larger. 
Although the performance of M-FOCUSS is stable, it offers worse 
result than other methods. Fig. 3(a) and (c) manifest that the per-
formance of TMSBL, AMP-MMV, and BMMV are in the same level. 
In the structured case, BMMV achieves lowest NMSE and NSFR 
among all algorithms. It demonstrates the ability of our method 
in capturing both temporal and spatial correlation structures.
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Fig. 4. Performance versus L. (a) NMSE of unstructured case, (b) NMSE of structured case, (c) NFSR of unstructured case, (d) NFSR of structured case, (e) Running time of 
unstructured case, (f) Running time of structured case.
(2) Performance versus the number of measurement vectors L: 
In this experiment, we study the effects of the number of measure-
ments on the recovery accuracy of MMV. The parametric setting is 
N = 500, M = 100, SNR = 25, a = 0.9, K = 50 and g = 10. L varies 
from 2 to 10. Fig. 4 shows the NMSE and NSFR as functions of the 
number of measurements L. As shown, all algorithms have better 
performance with increasing L . It verifies the theory that the re-
covery accuracy can be improved using multiple measurement vec-
tors compared to SMV case. In fact, these approaches achieve the 
performance of the support-aware oracle estimator around L = 8
in terms of NSFR. The unstructured results in Fig. 4(a) and (c) 
show that TMSBL, AMP-MMV BMMV and M-SBL are significantly 
better than ones of M-FOCUSS. Beyond this observation, TMSBL 
achieves the lowest NMSE, while AMP-MMV outperforms M-SBL, 
TMSBL, and BMMV in NSFR. Fig. 4(b) and (d) depict the perfor-
mance of the structured data. Although TMSBL and AMP-MMV 
present similar performance as BMMV in unstructured case, they 
make no improvement in structured case. In contrast, BMMV pro-
vides a modest improvement compared to the unstructured case, 

reflecting the fact that it is necessary to exploit the spatial corre-
lations of the structured signal.

(3) Performance versus sparsity K : This experiment tests how 
the performance changes as a function of the sparsity. The dimen-
sion is also fixed at N = 500 with M = 100, SNR = 25, a = 0.9, 
L = 10 and g = 10. The sparsity K changes from 10 to 80, im-
plying that the ratio of measurements-to-active-elements, M/K , 
ranges from 1.25 to 10. We can see in Fig. 5 that the perfor-
mances of all algorithms degrade with increasing the number of 
nonzero elements. For unstructured case, all algorithms except M-
FOCUSS appear to stall at around the same sparsity and BMMV 
remains competitive with other algorithms, in particular for low 
sparsity. However, BMMV provides the most accurate recovery of 
the structured data, including the reconstructed magnitude and the 
recovered support.

(4) Performance versus signal scale N: The MMV technique 
relies on the fact that the acquired high-dimensional signals re-
side in a low-dimensional structure and intends to recover high-
dimensional signals from a small number of samples. Therefore, 
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Fig. 5. Performance versus sparsity K . (a) NMSE of unstructured case, (b) NMSE of structured case, (c) NFSR of unstructured case, (d) NFSR of structured case, (e) Running 
time of unstructured case, (f) Running time of structured case.
we execute the experiment, in which the signal dimension N is in 
the range [100, 1000]. For each scale, we set M = N/2, K = M/2, 
a = 0.9, L = 10, and g = 10. Fig. 6 sums up the performance ob-
tained by different algorithms under the two scenarios. As the 
signal scale increases the reconstructed errors of algorithms be-
come more and more smooth and eventually give rise to fixed 
precisions. In the unstructured case, all algorithms enjoy signifi-
cant performance in identifying the true support, while algorithms 
except M-FOCUSS deliver superior NMSE. It can be observed that 
BMMV succeeds in keeping both the lowest NMSE and NSFR on 
a large range of signal scales when embarking on structured data. 
BMMV nicely takes benefit from the additional constraint on the 
support and thus exhibits appealing results. Experiments confirm 
the advantages of taking the spatial structures of MMV into ac-
count.

(5) Performance versus SNR: The SNR can be used to quantify 
the robustness of MMV recovery. To sufficiently analyze the ro-
bustness of considered approaches, the range of SNR values varies 
from 5 db to 30 db. We choose the parameters: N = 500, M = 100, 

a = 0.9, K = 50 , L = 10 and g = 10. Fig. 7 plots the reconstructed 
results as a function of the noise level. As shown, all algorithms 
present acceptable robustness. When S N R ≥ 15, the performances 
of TMSBL, AMP-MMV, and BMMV are significantly better than one 
of M-FOCUSS. However, one should roughly know or estimate the 
noise level when using some methods such as the TMSBL. It is 
practical prohibitive for real data. BMMV regards the noise as a 
variable, which can be endowed with a prior and updated adap-
tively at each iteration. Referring to the structured case, BMMV 
perform consistently better compared with the other methods. 
Therefore, BMMV gives relatively effective recovery at different 
level of noise, which verifies its robustness.

(6) The running time: It is instructive to examine the compu-
tational complexity of different approaches at each iteration. Due 
to M-FOCUSS and M-SBL ignore all correlation structures in MMV, 
we mainly focus on TMSBL, AMP-MMV and BMMV. AMP-MMV ex-
ploits a Bayesian approximate message passing algorithm to solve 
MMV problem, it follows that the overall complexity of AMP-
MMV is O(LMN). The dominant computational process of TMSBL 
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Fig. 6. Performance versus N . (a) NMSE of unstructured case, (b) NMSE of structured case, (c) NFSR of unstructured case, (d) NFSR of structured case, (e) Running time of 
unstructured case, (f) Running time of structured case.
and BMMV is calculating the matrix inversion. The complexity 
of TMSBL is O((M3 + 1)L3), while the complexity of BMMV is 
O((N + 1)L3). In addition, most of precisions γi assume very large 
values and most of sparsity labels si become numerically equal 
to zero in the very first iterations, so that the actual complex-
ity of BMMV reduces rapidly with the iterations. Referring to the 
computational complexity, AMP-MMV is computationally consider-
ably more efficient compared to other methods and our algorithm 
has a similar time performance with TMSBL. We show the running 
times versus different variables in above experiments. In summary, 
M-FOCUSS and AMP-MMV deliver good time performances, which 
is slightly better than ones of M-SBL, TMSBL, BMMV. However, 
as discussed, the effectiveness of M-FOCUSS is limited because of 
ignoring the correlation structure in MMV problem, while AMP-
MMV fails to capture the spatial correlation structure. The correla-
tion structure including the temporal correlation structure and the 
spatial correlation structure is fully considered in the proposed al-
gorithm. It can be noticed that our method, although not as good 
as AMP-MMV in terms of time performance, still delivers accept-
able performance.

5.2. Signals generated by a Hanning window tapered sinusoid

In this part, each active signal with L measurements is gener-
ated by a Hanning window tapered sinusoid, where the number of 
periods is uniformly distributed between 1 and 3 and the phase of 
the sine wave is uniformly drawn between 0 and π . As in the pre-
vious section, we carry out five experiments with setting the same 
parameters and assess the performance of the proposed algorithm 
in both unstructured and structured cases. For each experiment, 
only a primary variable is varied, while the others are fixed. For 
each experiment, the results including NMSE and NSFR averaged 
over all scales are shown in Table 1 and 2.

In the unstructured case, AMP-MMV achieves the better per-
formance than other methods in most cases, and TMSBL presents 
a lower NMSE than other methods for signals generated by an 
AR(1) process as indicated in the previous experiment. The merit 
of incorporating smoothness into MMV is even compelling when 
comparing M-FOCUSS, M-SBL with TMSBL, AMP-MMV and BMMV. 
Although BMMV is slightly inferior to AMP-MMV in the unstruc-
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Fig. 7. Performance versus noise SNR. (a) NMSE of unstructured case, (b) NMSE of structured case, (c) NFSR of unstructured case, (d) NFSR of structured case, (e) Running 
time of unstructured case, (f) Running time of structured case.
tured case, it obtains the best results in both NMSE and NSFR for 
structured case.

6. Application to EEG data

Electroencephalogram (EEG) can record brain waves of electric-
ity, which is a commonly used brain imaging way and play an 
important part in psychology and neurology. In a practical clinical 
setting, the same stimulus may be repeated many times to ob-
tain high SNR estimation of the evoked response so that the EEG 
signals are recorded over multiple channels with multiple trials. 
The major challenge for the collection and analysis of EEG data 
is the storage and the processing of the huge amount of data. 
EEG activity of a single subject can correspond to a lot of the 
data. Therefore, there is a need for compression or data reduc-
tion processes that can reduce the number of samples and also 
recover the most important features. An effective compression of 
the EEG data should not only reduce the number of sampled data 
and allow for a fast wireless transmission in a clinical diagno-
sis.

A potential application of MMV is source location in EEG data. 
In the formulation of the source location problem, Y represents 
the recordings from L channels and X denotes the unknown 
sources of N current dipoles distributed over the cortical sur-
face. The measurements correspond to a small number of cur-
rent dipoles that represent the active brain regions. The algorithm 
with exploiting the temporal correlation can obtain continuous es-
timation resulting in accurate estimation. Turning to the sparse 
recovery problem, we represent the signals in the transformed 
domain under the DCT dictionary. The model (2) can be written 
as

Y = ��X̃ + E, (32)

� is a DCT dictionary under which X has a sparse representation. 
In this experiment, the model (32) will be adapted. The nonzero 
elements of the DCT coefficients X̃ ·i are distributed as concatena-
tion of a number of nonzero blocks. The block-sparse structures in 
which the nonzero elements occur in clusters result in the spatial 
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Table 1
The reconstructed results (NMSE(NSFR)) for the unstructured case.

Method/variable N/M L K N SNR

M-FOCUSS 1.2 × 10−1 6.0 × 10−4 2.7 × 10−3 2.3 × 10−3 1.2 × 10−2

(6.6 × 10−2) (3.9 × 10−2) (1.1 × 10−1) (1.4 × 10−1) (6.2 × 10−1)

M-SBL 5.4 × 10−2 2.6 × 10−4 7.0 × 10−4 8.4 × 10−4 8.3 × 10−3

(1.2 × 10−2) (2.1 × 10−2) (3.8 × 10−2) (9.1 × 10−2) (5.4 × 10−1)

TMSBL 9.8 × 10−4 2.1 × 10−4 4.8 × 10−4 6.6 × 10−4 3.7 × 10−3

(1.2 × 10−2) (6.7 × 10−3) (1.6 × 10−2) (2.9 × 10−2) (1.1 × 10−1)

AMP-MMV 2.2 × 10−4 1.6 × 10−4 1.3 × 10−3 3.8 × 10−4 2.1 × 10−3

(8.2 × 10−3) (4.7 × 10−3) (7.0 × 10−3) (1.4 × 10−2) (5.7 × 10−2)

BMMV 7.2 × 10−3 1.8 × 10−4 9.4 × 10−4 6.1 × 10−4 1.9 × 10−3

(1.1 × 10−2) (5.6 × 10−3) (9.0 × 10−3) (1.9 × 10−2) (8.1 × 10−2)

Table 2
The reconstructed results (NMSE(NSFR)) for the structured case.

Method/variable N/M L K N SNR

M-FOCUSS 5.3 × 10−1 1.4 × 10−3 6.5 × 10−3 7.6 × 10−3 5.6 × 10−2

(1.0 × 10−1) (8.6 × 10−2) (5.1 × 10−1) (4.4 × 10−1) (8.7 × 10−1)

M-SBL 8.4 × 10−2 7.6 × 10−4 4.0 × 10−3 3.6 × 10−3 2.0 × 10−2

(6.2 × 10−2) (5.9 × 10−2) (6.2 × 10−2) (2.5 × 10−1) (6.9 × 10−1)

TMSBL 1.9 × 10−3 4.2 × 10−4 1.2 × 10−3 1.3 × 10−3 6.4 × 10−3

(3.7 × 10−2) (8.2 × 10−3) (4.5 × 10−2) (5.4 × 10−2) (4.8 × 10−1)

AMP-MMV 2.6 × 10−3 4.6 × 10−4 4.1 × 10−3 8.7 × 10−4 4.5 × 10−3

(1.2 × 10−2) (6.3 × 10−3) (1.3 × 10−2) (5.2 × 10−2) (9.7 × 10−2)

BMMV 3.0 × 10−4 1.2 × 10−4 1.2 × 10−3 3.4 × 10−4 1.3 × 10−3

(8.4 × 10−3) (3.5 × 10−4) (8.3 × 10−3) (7.3 × 10−3) (3.4 × 10−2)

Fig. 8. Reconstructions of EEG signals. (a) Original signals, (b) Noisy observations, (c) Reconstruction by M-FOCUSS, (d) Reconstruction by M-SBL. (For interpretation of the 
references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 9. Reconstructions of EEG signals. (a) Reconstruction by TMSBL, (b) Reconstruction by AMP-MMV, (c) Reconstruction by BMMV. (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)
Table 3
The reconstructed results for the EEG data.

Method NMSE NSFR

M-FOCUSS 3.1 × 10−1 5.9 × 10−1

M-SBL 1.4 × 10−1 4.7 × 10−1

TMSBL 4.9 × 10−2 2.8 × 10−1

AMP-MMV 5.7 × 10−2 2.4 × 10−1

BMMV 2.5 × 10−2 1.1 × 10−1

correlation structure. According to the model (3), the model (32)
can be developed to

Y = ��(W̃ ◦ Z̃) + E.

A set of EEG data from [42] are used in the experiment. The 
data is divided into a number of short time segments, with each 
consisting of 250 data samples. Fig. 8 and Fig. 9 show the recon-
structed results of arbitrarily selected six channels (represented by 
different colors). It is clear that AMP-MMV and BMMV deliver the 
better vision effect and results of other methods contain false vari-
ations. Although the gap between AMP-MMV and BMMV are small, 
the reconstructed signals by BMMV are much closer and smoother 
to the original signals. One can focus on the channel represented 
by black color (especially the tail of the channel). It can be ob-
served that the reconstructed signals by BMMV (Fig. 9(c)) are much 
closer and smoother to the original signals. The quantitative com-
pared results are shown in Table 3. It can be seen that BMMV 
achieves smallest error among all algorithms and shows perfect 
performance for real data. The recovery of EEG data confirms that 
BMMV is highly effective in recovering MMV with spatial struc-
tured sparsity.

7. Conclusions

To solve the MMV with spatial structured sparsity patterns en-
countered in the signal processing, we point out a Bayesian model 
with considering both spatial and temporal dependencies. By re-
sorting to the beta process that separates the learning of sparse-
ness from the learning of magnitudes, the proposed algorithm can 
exploit such multi-task dependencies. The spatial contiguity prior 
that corresponds to the spatial correlation structure is assumed to 
satisfy a Markov property. Moreover, the row smoothness priors 
are incorporated into the sparse Bayesian model, which charac-
ter the temporal correlation structure. The model assumptions in 
our approach are flexible and thus cover broad class of real sig-
nals to be reconstructed from undersampled measurements. For 
the fully Bayesian estimation of the model parameters, the ef-
ficient variational Bayesian inference is employed. We provide a 
comprehensive comparison between the suggested method and 
the state-of-the-art algorithms. Experimental evaluations with sim-
ulated data and real EEG data demonstrate the power of our 
method. Future work will concern on the use of the proposed algo-
rithm in practical applications, in particular in compressed audio 
signal where the temporal correlation and the spatial structured 
sparsity are favorably developed for efficient reconstruction.
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Appendix

In this appendix, we give the detailed VB inference.

Estimation of magnitudes

Infer w [i](W i·), (i = 1, · · · , N):
By combining the related terms (4) and (13), we have

p(y,
) ∝ N (y|D(w ◦ z),β−1 I ML)N (w[i]|0, (γi B)−1)

∝ exp(−γi

2
w T

[i] B w [i])exp[−β

2
(y − D[·i]w [i]si −

N∑
j 
=i

D[· j]w[ j]s j)
T (y − D[·i]w[i]si −

N∑
j 
=i

D[· j]w [ j]s j)]

∝ exp(−1

2
w T

[i](γi B + βs2
i DT

[·i] D[·i])w [i] + βsi w T
[i] DT

[·i](y −
N∑

j 
=i

s j D[· j][ j])),

ln p(y,
) ∝ (−1

2
w T

[i](γi B + βs2
i DT

[·i] D[·i])w [i] + βsi w T
[i] DT

[·i](y −
N∑

j 
=i

s j D[· j]w [ j])),

E
\w[·i] [ln p(y,
)] ∝ (−1

2
w T

[i](〈γi〉〈B〉 + 〈β〉〈s2
i 〉DT

[·i] D[·i])w [i] + 〈β〉〈si〉w T
[i] DT

[·i](y −
N∑

j 
=i

〈s j〉D[· j]〈w [ j]〉)),

q(w [i]) ∝ exp((−1

2
w T

[i](〈γi〉〈B〉 + 〈β〉〈s2
i 〉DT

[·i] D[·i])w [i] + 〈β〉〈si〉w T
[i] DT

[·i](y −
N∑

j 
=i

〈s j〉D[· j]〈w [ j]〉))),

where D[·i] = D(1 : ML, (i − 1)L + 1 : iL).
Therefore,

q(w [i]) = N (w [i]|〈w [i]〉,�w [i]),

where

〈w [i]〉 = �w[i] 〈β〉〈si〉DT
[·i](y −

N∑
j 
=i

〈s j〉D[· j]〈w [ j]〉),

�w[i] = (〈γi〉〈B〉 + 〈β〉〈s2
i 〉DT

[·i] D[·i])−1.

Infer γi , (i = 1, · · · , N):
By combining the related terms (4) and (5), we have

p(y,
) ∝ N (w [i]|0, (γi B)−1)Gamma(γi|a,b)

∝ |γi B| 1
2 exp(−γi

2
w T

[i] B w[i])�(a)−1baγ a−1
i exp(−bγi),

ln p(y,
) ∝ ln(γ
L
2

i ) + (−γi

2
w T

[i] B w [i]) + ln(γ a−1
i ) + (−bγi),

E
\γi [ln p(y,
)] ∝ ln(γ
L
2 +a−1

i ) + (−γi

2
〈w T

[i] B w [i]〉) + (−bγi),

where

〈w T
[i] B w[i]〉 = 〈T r(w T

[i] B w [i])〉
= 〈T r(w [i]w T

[i] B)〉
= T r(〈w [i]w T

[i]〉〈B〉)
= T r(〈(w [i] − 〈w [i]〉 + 〈w [i]〉)(w [i] − 〈w [i]〉 + 〈w [i]〉)T 〉〈B〉)
= T r[(�w [i] + 〈w [i]〉〈w [i]〉T )〈B〉].

Therefore,

q(γi) ∝ γ
L
2 +a−1

i exp[−(
1

2
T r[(�w[i] + 〈w [i]〉〈w [i]〉T )〈B〉] + b)γi].

Furthermore,

q(γi) = Gamma(γi| L

2
+ a, (

1

2
T r[(�w[i] + 〈w [i]〉〈w [i]〉T )〈B〉] + b)),
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〈γi〉 = L + 2a

T r[(�w [i] + 〈w [i]〉〈w [i]〉T )〈B〉] + 2b
.

Infer B:
By combining the related terms (4) and (6), we have

p(y,
) ∝
N∏

i=1

N (w [i]|0, (γi B)−1)W(B|V 0, v0)

∝
N∏

i=1

(|B| 1
2 exp(−γi

2
w T

[i] B w [i]))
1

C
|B|(v0−L−1)/2 exp(−1

2
T r(V −1

0 B)),

ln p(y,
) ∝ ln |B| N
2 +

N∑
i=1

(−γi

2
w T

[i] B w [i]) + ln |B|(v0−L−1)/2 + (−1

2
T r(V −1

0 B)),

E
\B [ln p(y,
)] ∝ ln |B| N+v0−L−1
2 − 1

2
(�N

i=1〈γi〉〈w T
[i] B w[i]〉 + T r(V −1

0 B)),

q(B) ∝ |B| N+v0−L−1
2 + exp(−1

2
T r(

N∑
i=1

〈γi〉(�w[i] + 〈w [i]〉〈w [i]〉T ) + V −1
0 )B).

Therefore,

q(B) = W(B|(
N∑

i=1

〈γi〉(�w[i] + 〈w [i]〉〈w [i]〉T ) + V −1
0 )−1, N + v0).

Furthermore,

〈B〉 = (N + v0)(

N∑
i=1

〈γi〉(�w[i] + 〈w [i]〉〈w [i]〉T ) + V −1
0 )−1.

Estimation of sparsity patterns

Infer si(i = 1, · · · , N):
By combining the related terms (7) and (13), we have

p(y,
) ∝ N (y|D(w ◦ z),β−1 I ML)Bernoulli(si |πi)

∝ exp[−β

2
(y − si D[·i]w [i] −

N∑
j 
=i

D[· j]w[ j])T (y − si D[·i]w[i] −
N∑

j 
=i

D[· j]w [ j])]

π
si
i (1 − πi)

1−si ,

ln p(y,
) ∝ −β

2
(y − si D[·i]w[i] −

N∑
j 
=i

D[· j]w [ j])T (y − si D[·i]w [i] −
N∑

j 
=i

D[· j]w[ j]) + si ln(πi)

+ (1 − si) ln(1 − πi),

E
\si [ln p(y,
)] ∝ −〈β〉
2

si〈w T
[i] DT

[·i] D[·i]w [i]〉 + 〈β〉si〈w [i]〉T D T
[·i](y −

N∑
j 
=i

D[· j]〈w [ j]〉) + si〈ln(πi)〉

+ (1 − si)〈ln(1 − πi)〉

∝ si[−〈β〉
2

T r((�w [i] + 〈w [i]〉〈w [i]〉T )DT
[·i] D[·i]) + 〈β〉〈w [i]〉T DT

[·i](y −
N∑

j 
=i

D[· j]〈w[ j]〉)

+ 〈ln(πi)〉] + (1 − si)〈ln(1 − πi)〉,

q(si) ∝ exp(si[−〈β〉
2

T r((�w[i] + 〈w [i]〉〈w [i]〉T )DT
[·i] D[·i]) + 〈β〉〈w [i]〉T DT

[·i](y −
N∑

j 
=i

D[· j]〈w [ j]〉) + 〈ln(πi)〉])

exp((1 − si)〈ln(1 − πi)〉).
Therefore,

q(si) = Bernoulli(si |ξ si , ζ 1−si ).

where,
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ξ = exp(〈lnπi〉 − 〈β〉
2

T r((�w [i] + 〈w [i]〉〈w [i]〉T )D T
[·i] D[·i]) + 〈β〉(y−i)T D[·i]〈w [i]〉),

ζ = exp(〈ln(1 − πi)〉).
Furthermore,

〈si〉 = ξ

ξ + ζ
.

Infer πi(i = 1, · · · , N):
By combining the related terms (7) and (10), we have

p(y,
) ∝ Bernoulli(si |πi)Beta(πi |p,q)

∝ π
si
i (1 − πi)

1−si π
p−1
i (1 − πi)

q−1,

ln p(y,
) ∝ (si + p − 1) ln(πi) + (q − si) ln(1 − πi),

E
\πi [ln p(y,
)] ∝ (〈si〉 + p − 1) ln(πi) + (q − 〈si〉) ln(1 − πi),

q(πi) ∝π
〈si〉+p−1
i (1 − πi)

q−〈si〉.
Therefore,

q(πi) = Beta(πi |〈si〉 + p,q − 〈si〉 + 1).

Furthermore,

q(πi) =

⎧⎪⎨⎪⎩
Beta(πi |ph + 〈si〉,qh + 1 − 〈si〉) i f si−1 = 1 and si+1 = 1,

Beta(πi |pl + 〈si〉,ql + 1 − 〈si〉) i f si−1 = 0 and si+1 = 0,

Beta(πi |pu + 〈si〉,qu + 1 − 〈si〉) i f si−1 = 0, si+1 = 1 or si−1 = 1, si+1 = 0.

If p(x) = Beta(x|α, β), then 〈ln x〉 = ψ(α) − ψ(α + β) and 〈ln(1 − x)〉 = ψ(β) − ψ(α + β), where ψ(x) = d ln �(x)
dx is a digamma function.

It then follows by

〈ln(πi)〉 =

⎧⎪⎨⎪⎩
ψ(ph + 〈si〉) − ψ(ph + qh + 1) i f si−1 = 1 and si+1 = 1,

ψ(pl + 〈si〉) − ψ(pl + ql + 1) i f si−1 = 0 and si+1 = 0,

ψ(pu + 〈si〉) − ψ(pu + qu + 1) i f si−1 = 0, si+1 = 1 or si−1 = 1, si+1 = 0,

〈ln(1 − πi)〉 =

⎧⎪⎨⎪⎩
ψ(qh + 1 − 〈si〉) − ψ(ph + qh + 1) i f si−1 = 1 and si+1 = 1,

ψ(ql + 1 − 〈si〉) − ψ(pl + ql + 1) i f si−1 = 0 and si+1 = 0,

ψ(qu + 1 − 〈si〉) − ψ(pu + qu + 1) i f si−1 = 0, si+1 = 1 or si−1 = 1, si+1 = 0.

Estimation of noise precision

Infer β:
By combining the related terms (12) and (13), we have

p(y,
) ∝ N (y|D(w ◦ z),β−1 I ML)Gamma(β|c,d)

∝ β
ML
2 exp[−β

2
(y − D(w ◦ z))T (y − D(w ◦ z))]βc−1 exp(−dβ)

∝ β
ML
2 +c−1 exp[−(

1

2
(y − D(w ◦ z))T (y − D(w ◦ z)) + d)β],

ln p(y,
) ∝ (
ML

2
+ c − 1) ln(β) − [1

2
(y − D(w ◦ z))T (y − D(w ◦ z)) + d]β,

E
\β [ln p(y,
)] ∝ (
ML

2
+ c − 1) ln(β) − [1

2
〈‖(y − D(w ◦ z))‖2〉 + d]β,

q(β) ∝β
ML
2 +c−1 exp(−[1

2
〈‖(y − D(w ◦ z))‖2〉 + d]β).

Therefore,

q(β) = Gamma(β| ML

2
+ c, (

〈‖(y − D(w ◦ z))‖2〉
2

+ d).

Furthermore,

〈β〉 = ML + 2c

〈‖(y − D(w ◦ z))‖2〉 + 2d
,

where
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〈‖y − D(w ◦ z)‖2
2〉

= yT y − 2 yT D(〈w〉 ◦ (�〈s〉)) + T r([(�w + 〈w〉〈w〉T )

◦ (�(Z + 〈s〉〈s〉T )�T )]DT D),

Z = diag(〈s〉 ◦ (1 − 〈s〉)) and �w = diag(�w1 , . . . , �w N ).
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