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Abstract

Recently, Hu, Huang and Chen [Properties of a family of generalized NCP-functions

and a derivative free algorithm for complementarity problems, J. Comput. Appl.

Math. 230 (2009): 69-82] introduced a family of generalized NCP-functions, which

include many existing NCP-functions as special cases. They obtained several favorite

properties of the functions; and by which, they showed that a derivative-free descent

method is globally convergent under suitable assumptions. However, no result on

convergent rate of the method was reported. In this paper, we further investigate

some properties of this family of generalized NCP-functions. In particular, we show

that, under suitable assumptions, the iterative sequence generated by the descent

method discussed in their paper converges globally at a linear rate to a solution of the

nonlinear complementarity problem. Some preliminary numerical results are reported,

which verify the theoretical results obtained.
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1 Introduction

The nonlinear complementarity problem (NCP for short) is to find a vector x ∈ <n such

that

x ≥ 0, F (x) ≥ 0, and xTF (x) = 0,

where F : <n → <n is a given function. The NCP has been studied extensively due to

its various applications in many fields. Such as mathematical programming, economics,

engineering and mechanics (see, for example, [7, 9, 11]). We refer the interested readers to

see the excellent monograph by Facchinei and Pang [7]. Various methods for solving the

NCP have been proposed in the literature (see, for example, [2, 3, 4, 5, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 23, 24]). Among which, one of the most popular and powerful approaches

is to reformulate the NCP as an unconstrained minimization problem [2, 4, 5, 7, 8, 9, 18, 19,

20, 24]. This kind of methods is called the merit function method, where the merit function

is generally constructed by some NCP-function.

Definition 1.1 A function φ : <2 → < is called an NCP-function [17], if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Furthermore, if φ(a, b) ≥ 0, then the NCP-function φ is called a nonnegative NCP-function.

In addition, if a function Ψ : <n → < is nonnegative and Ψ(x) = 0 if and only if x solves

the NCP, then Ψ is called a merit function for the NCP.

If the NCP-function φ is nonnegative on <2, then it is easy to see that the function

Ψ : <n → < defined by Ψ(x) =
∑n

i=1 φ(xi, Fi(x)) is a merit function for the NCP. Thus,

finding a solution of the NCP is equivalent to finding a global minimum of the unconstrained

minimization minx∈<nΨ(x) with the objective function value being zero.

Recently, Hu, Huang, and Chen [12] proposed the merit function

Ψθp(x) =
n∑
i=1

ψθp(xi, Fi(x)) =
1

2

n∑
i=1

φ2
θp(xi, Fi(x)), ∀x ∈ <n, (1.1)

where φθp : <2 → < is defined by

φθp(a, b) = p
√
θ (|a|p + |b|p) + (1− θ)|a− b|p − (a+ b), ∀(a, b) ∈ <2, (1.2)
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with p > 1 and θ ∈ (0, 1]. It is easy to show that φθp(·, ·) is an NCP-function. Thus, finding

a solution of the NCP is equivalent to finding a global minimum of the unconstrained

minimization

min
x∈<n

Ψθp(x)

with the objective function value being zero. It is easy to see that if θ = 0 and p = 2, the

function Ψθp(·) defined by (1.1) reduces to the natural residual merit function ΨNR : <n → <
given by

ΨNR(x) =
1

2

n∑
i=1

φ2
NR(xi, Fi(x)), (1.3)

where φNR : <2 → < is an NCP-function given by φNR(a, b) = −2 min{a, b}. If θ = 1, the

function Ψθp(·) defined by (1.1) reduces to the merit function Ψp : <n → < given by

Ψp(x) =
1

2

n∑
i=1

φ2
p(xi, Fi(x)), (1.4)

where φp : <2 → < is an NCP-function given by φp(a, b) = ‖(a, b)‖p − (a + b). The NCP-

function φp was introduced by Luo and Tseng [19], and further studied by Chen [2] and Chen

and Pan [4, 5]. Obviously, when p = 2, the NCP-function φp reduces the Fischer-Burmeister

NCP-function φFB(a, b) =
√
a2 + b2 − (a+ b).

Recently, the so-called derivative-free methods have attracted much attention, which do

not require computation of derivatives of F [12]. Derivative-free methods are particularly

suitable for problems where the derivatives of F are not available or are extremely expensive

to compute. For the NCP, the authors in [12] investigated a derivative-free descent method

based on the merit function Ψθp and the method is showed to be globally convergent under

the assumption that F is strongly monotone. In this paper, our object is to discuss the rate

of convergence for the derivative-free descent method discussed by [12] based on the merit

function Ψθp(x) defined by (1.1).

The paper is organized as follows. In Section 2, we review some definitions and pre-

liminary results that will be used in the sequent analysis. In Section 3, we first discuss some

properties of the merit function Ψθp, including the growth behavior of the merit function

Ψθp, the estimation on the upper bound of Ψθp, and the Lipschitz continuity of the gradient

function ∇Ψθp; and then, we establish the linear rate of convergence of the derivative-free

descent method discussed in [12]. Some final remarks are given in Section 4.

Throughout this paper, <n denotes the space of n-dimensional real column vectors and

AT denotes the transpose of the real-valued matrix A. For any differentiable function F :

<n → <, 5F (x) denotes the gradient of F at x. For any differentiable mapping F =

(F1, . . . , Fm)T : <n → <m, 5F (x) = [5F1(x), · · · ,5Fm(x)]T denotes the Jacobian of F at
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x. The norm ‖ · ‖ denotes the Euclidean norm. dze denotes the smallest integer no less than

z, for any z ∈ <. The level set of a function Ψ : <n → < is denoted by L(Ψ, γ) = {x ∈ <n |
Ψ(x) ≤ γ}. We denote the set of positive integers by N+.

2 Preliminaries

In this section, we recall some definitions and preliminary results, which will be used in

the sequent analysis. The derivative-free descent method discussed in [12] is also given in

this section.

Definition 2.1 Given the continuously differentiable function F : <n → <n, we say that

(i) F is monotone if 〈x− y, F (x)− F (y)〉 ≥ 0 for all x, y ∈ <n;

(ii) F is a strongly monotone if, for all x, y ∈ <n, F satisfies that 〈x− y, F (x)− F (y)〉 ≥
λ‖x− y‖2, or, equivalently, 〈∇F (x)y, y〉 ≥ λ‖y‖2, for some λ > 0;

(iii) F is a uniform P -function with modulus κ > 0 if max 1≤i≤n
xi 6=yi

(xi − yi)(Fi(x)− Fi(y)) ≥
κ‖x− y‖2 for all x, y ∈ <n;

(iv) F is a P0-function if max 1≤i≤n
xi 6=yi

(xi − yi)(Fi(x)− Fi(y)) ≥ 0 for all x, y ∈ <n; and

(v) F is Lipschitz continuous if there exists a constant L > 0 such that ‖F (x)− F (y)‖ ≤
L‖x− y‖ for all x, y ∈ <n.

It is well-known that every monotone function is a P0-function and every strongly mono-

tone function is a uniform P -function. For a continuously differentiable function F , if its

(transpose) Jacobian ∇F (x) is a P -matrix then it is a P -function (the converse may not be

true); and the (transpose) Jacobian ∇F (x) is a P0-matrix if and only if F is a P0-function.

For more properties of various monotone and P (P0)-functions, please refer to [7].

Definition 2.2 [22] Let the sequence {xk} converge to x∗.

(i) The sequence {xk} is said to be Q-linearly convergent, if there is a constant β ∈ (0, 1),

which is independent of the iterative number k, such that limk→∞
‖xk+1−x∗‖
‖xk−x∗‖ = β.

(ii) The sequence {xk} is said to be R-linearly convergent, if there is a sequence of non-

negative scalars {qk} such that ‖xk−x∗‖ ≤ qk for all k, and {qk} converges Q-linearly

to zero.

4



Lemma 2.1 ([12, Proposition 2.3(v) and Proposition 2.5 (v)]) Let ψθp(·, ·) and φθp(·, ·) be

defined by (1.1) and (1.2), respectively, with p > 1 and 1 > θ ≥ 0, then we have

(i) φθp is continuously differentiable on <2 \ {(0, 0)} and when (a, b) 6= (0, 0),

∂φθp(a, b)

∂a
=
θsgn(a)|a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ (|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 1,

∂φθp(a, b)

∂b
=
θsgn(b)|b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

[θ (|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 1;

(ii)
∂ψθp
∂a

(a, b)
∂ψθp
∂b

(a, b) ≥ 0 for all (a, b)T ∈ <2, where the equality holds if and only if

φθp(a, b) = 0. And when (a, b) 6= (0, 0),

∂ψθp(a, b)

∂a
=
∂φθp(a, b)

∂a
φθp(a, b),

∂ψθp(a, b)

∂b
=
∂φθp(a, b)

∂b
φθp(a, b).

Algorithm 2.1 ([12])(A Derivative-Free Descent Method).

Step 0 Given p > 1, θ ∈ (0, 1], x0 ∈ <n and any small number ε > 0. Choose σ, γ, η ∈ (0, 1)

with γ < η. Set k := 0.

Step 1 If Ψθp(x
k) ≤ ε, then stop. Otherwise go to Step 2.

Step 2 Let

dk(ηt) := −∇bΨθp(x
k, F (xk))− ηt∇aΨθp(x

k, F (xk)).

Set xk+1 := xk + γtkdk(ηtk), where tk is the smallest nonnegative integer t satisfying

Ψθp(x
k + γtdk(ηt)) ≤ (1− σγ2t)Ψθp(x

k). (2.1)

Step 3 Set k := k + 1 and go to Step 1.

The following error bound result from [21] will be used in our analysis later.

Theorem 2.1 Let F be strongly monotone with modulus with λ and Lipschitz continuous

with L > 0 on <n. Then

‖x− x∗‖ ≤ L+ 1

λ

√√√√ n∑
i=1

|min{xi, Fi(x)}|2 =
L+ 1√

2λ
ΨNR(x)

1
2

holds for all x ∈ <n, where x∗ is the unique solution of the NCP.
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3 The Rate of Convergence

In this section, we first investigate several properties of the merit function Ψθp; and then,

we discuss the linear convergence of Algorithm 2.1.

Firstly, we investigate the growth behavior of the two merit functions: Ψθp and ΨNR.

Lemma 3.1 Let φθp : <2 → < be defined in (1.2). Then, for any p > 1 and θ ∈ (0, 1],(
2− (2θ)

1
p

)
|min{a, b}| ≤ |φθp(a, b)| ≤

(
2 + (2θ)

1
p

)
|min{a, b}|.

Proof: Without loss of generality, we suppose a ≥ b in the following proof. If ab = 0, it

is trivial. We will prove the desired results by considering the following two cases: ab > 0;

and ab < 0.

Case(i): Suppose that ab > 0. In this case, we have the following two subcases:

(a) Suppose that a > 0 and b > 0. Then,

φθp(a, b) = p
√
θ(|a|p + |b|p) + (1− θ)|a− b|p − (a+ b)

≤ p
√
|a|p + |b|p − (a+ b) < 0.

Hence,

|φθp(a, b)| = (a+ b)− p
√
θ(|a|p + |b|p) + (1− θ)|a− b|p

= b

[
a

b
+ 1− p

√
θ(|a

b
|p + 1) + (1− θ)|a

b
− 1|p

]
.

Let

H(t) = t+ 1− p
√
θ(|t|p + 1) + (1− θ)|t− 1|p t ∈ [1,+∞),

then,

H ′(t) = 1− θ|t|p−1 + (1− θ)|t− 1|p−1

[θ(|t|p + 1) + (1− θ)|t− 1|p]
p−1
p

≥ 0.

Denote

H(+∞) := limt→+∞H(t)

= limu→0+
1+u− p
√
θ(1+up)+(1−θ)(1−u)p

u

= limu→0+

(
1− θup−1−(1−θ)(1−u)p−1

[θ(1+up)+(1−θ)(1−u)p]
p−1
p

)
= 2− θ.

Hence, we obtain that(
2− (2θ)

1
p

)
|min{a, b}| = H(1)b ≤ |φθp(a, b)| ≤ H(+∞)b = (2− θ)b ≤ 2 |min{a, b}| .
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(b) Suppose that a < 0 and b < 0. From the definition of φθp in (1.2), we have φθp(a, b) >

0. Thus,

|φθp(a, b)| = p
√
θ(|a|p + |b|p) + (1− θ)|a− b|p − (a+ b)

= −b
[
p

√
θ(|a

b
|p + 1) + (1− θ)|a

b
− 1|p +

a

b
+ 1

]
.

Let

H(t) = p
√
θ(|t|p + 1) + (1− θ)|t− 1|p + t+ 1, t ∈ (0, 1],

then,

H ′(t) =
θ|t|p−1 − (1− θ)|t− 1|p−1

[θ(|t|p + 1) + (1− θ)|t− 1|p]
p−1
p

+ 1 ≥ 0.

Hence, we obtain that

2|min{a, b}| = H(0)(−b) ≤ |φθp(a, b)| ≤ H(1)(−b) =
(

2 + (2θ)
1
p

)
|min{a, b}|.

Case(ii): Suppose that ab < 0. It follows that a > 0 > b. From the definition of φθp in

(1.2), we have φθp(a, b) > 0 in this case. Then,

|φθp(a, b)| = p
√
θ(|a|p + |b|p) + (1− θ)|a− b|p − (a+ b)

= −b
[
p

√
θ(|a

b
|p + 1) + (1− θ)|a

b
− 1|p +

a

b
+ 1

]
.

Let

H(t) = p
√
θ(|t|p + 1) + (1− θ)|t− 1|p + t+ 1, t ∈ (−∞, 0),

then,

H ′(t) =
θ|t|p−1 − (1− θ)|t− 1|p−1

[θ(|t|p + 1) + (1− θ)|t− 1|p]
p−1
p

+ 1 ≥ 0.

Denote

H(−∞) := limt→−∞H(t)

= limu→0−
1+u− p
√
θ(1+(−u)p)+(1−θ)(1−u)p

u

= limu→0−

(
1− −θ(−u)p−1−(1−θ)(1−u)p−1

[θ(1+(−u)p)+(1−θ)(1−u)p]
p−1
p

)
= 2− θ.

Hence, we obtain that(
2− (2θ)

1
p

)
|min{a, b}| ≤ (2− θ)(−b) = H(−∞)(−b) ≤ |φθp(a, b)|

≤ H(0)(−b) = 2|min{a, b}|.

Combining the results of Cases (i)-(ii), we complete the proof. 2

From the definitions of Ψθp ,ΨNR and Lemma 3.1, we immediately get the following

lemma.
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Lemma 3.2 Let Ψθp and ΨNR be defined by (1.1) and (1.3), respectively, with p > 1 and

1 ≥ θ > 0. Then, for any x ∈ <n,(
2− (2θ)

1
p

2

)2

ΨNR(x) ≤ Ψθp(x) ≤

(
2 + (2θ)

1
p

2

)2

ΨNR(x).

Secondly, we give an estimation on the upper bound of Ψθp.

Lemma 3.3 For all (a, b) 6= (0, 0) and p > 1, θ ∈ (0, 1], we have the following inequality:(
θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 2

)2

≥
(

2− (2θ)
1
p

)2

.

Proof: Without loss of generality, we assume a ≥ b. If ab = 0, it is trivial. We will prove

the desired result by considering the following three cases: a > 0 and b > 0; a < 0 and

b < 0; and ab < 0.

Case(a): Suppose that a > 0 and b > 0. Then,

θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

=
θ|a|p−1 + θ|b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

=
θ[1 + ( b

a
)p−1]

[θ(1 + ( b
a
)p) + (1− θ)(1− b

a
)p]

p−1
p

≥ 0.

Let

L(t) =
θ[1 + tp−1]

[θ(1 + tp) + (1− θ)(1− t)p]
p−1
p

, t ∈ (0, 1],

by direct calculation, we get

L′(t) =
θtp−2(1− t) + (1− θ)tp−2(1− t)p + (1− θ)(1− t)p−1 + (1− θ)(1− t)p−1tp−1

[θ(1 + tp) + (1− θ)(1− t)p]
2p−1
p

θ(p−1).

Thus, for all t ∈ (0, 1], we have L′(t) ≥ 0. Furthermore,

L(t) ≤ L(1) = (2θ)
1
p ,

which in turn implies that

2− θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

≥ 2− (2θ)
1
p .

Squaring both sides leads to the desired inequality.
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Case(b): Suppose that a < 0 and b < 0. Then, −a > 0 and −b > 0. From Case(a), we

have

0 ≥ θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

= − θ|a|p−1 + θ|b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

≥ −(2θ)
1
p .

Then, (
θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 2

)2

≥ 22 ≥
(

2− (2θ)
1
p

)2

.

Case(c): Suppose that ab < 0. In this case, we have the following two subcases:

(i) Suppose that |a| ≥ |b|, then

0 ≤ θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

=
θ|a|p−1 − θ|b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

≤ θ|a|p−1 + θ|b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

≤ (2θ)
1
2 .

Hence, (
θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 2

)2

≥
(

2− (2θ)
1
p

)2

.

(ii) Suppose that |a| < |b|, we have

θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

< 0,

then (
θ|a|p−1sgn(a) + θ|b|p−1sgn(b)

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 2

)2

≥ 22 ≥
(

2− (2θ)
1
p

)2

.

Combining cases (a)-(c), we complete the proof. 2

Proposition 3.1 Let Ψθp be defined in (1.1) with p > 1 and 0 < θ ≤ 1. Then, for all

x ∈ <n, we have

‖∇aΨθp(x, F (x)) +∇bΨθp(x, F (x))‖2 ≥ 2
(

2− (2θ)
1
p

)2

Ψθp(x),

where

∇aΨθp(x, F (x)) :=

(
∂ψθp(x1, F1(x))

∂a
, . . . ,

∂ψθp(xn, Fn(x))

∂a

)
,

∇bΨθp(x, F (x)) :=

(
∂ψθp(x1, F1(x))

∂b
, . . . ,

∂ψθp(xn, Fn(x))

∂b

)
.
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Proof: If (a, b) 6= (0, 0), then from Lemma 2.1, we obtain

∂ψθp(a, b)

∂a
=

(
θsgn(a)|a|p−1 + (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 1

)
φθp(a, b),

∂ψθp(a, b)

∂b
=

(
θsgn(b)|b|p−1 − (1− θ)sgn(a− b)|a− b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 1

)
φθp(a, b),

therefore,

∂ψθp(a, b)

∂a
+
∂ψθp(a, b)

∂b
=

(
θsgn(a)|a|p−1 + θsgn(b)|b|p−1

[θ(|a|p + |b|p) + (1− θ)|a− b|p]
p−1
p

− 2

)
φθp(a, b).

From Lemma 3.3, we get

‖∇aΨθp(x, F (x)) +∇bΨθp(x, F (x))‖2 ≥
(

2− (2θ)
1
p

)2
n∑
i=1

φ2
θp(xi, Fi(x))

= 2
(

2− (2θ)
1
p

)2

Ψθp(x),

and hence, we complete the proof. 2

Thirdly, we investigate the Lipschitz continuity of the gradient function ∇Ψθp. To this

end, we need the result on the boundedness of the level set for the function Ψθp.

Lemma 3.4 Let Ψθp be defined by (1.1) with p > 1 and 1 > θ ≥ 0. Suppose that F is either

a strongly monotone function or a uniform P-function. Then the level set

L(Ψθp,Ψθp(x
0)) := {x ∈ <n|Ψθp(x) ≤ Ψθp(x

0)}

is bounded, where x0 is the starting point in Algorithm 2.1.

Proof: This result can be directly obtained from [12, Proposition 3.4]. 2

Since ∇Ψθp and F are continuous on <n, then

D(x0) := sup{‖d(x)‖ | x ∈ L(Ψθp,Ψθp(x
0))}

is finite, where d(x) is the search direction in Algorithm 2.1 computed at the point x.

Therefore, the set

B(x0) := L(Ψθp,Ψθp(x
0)) + {x | ‖x‖ ≤ D(x0)}

is bounded and closed.

Lemma 3.5 ([12, Theorem 2.1]) The gradient function of the function ψθp defined by (1.1)

with p ≥ 2 and 1 > θ ≥ 0 is Lipschitz continuous, that is, there exists a positive constant L1

such that

‖∇ψθp(a, b)−∇ψθp(c, d)‖ ≤ L1‖(a, b)− (c, d)‖

holds for all (a, b), (c, d) ∈ <2.
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Under the assumption that F and∇F are Lipschitz continuous with some constant L > 0

on <n, and from Lemma 3.5, we can further get the next lemma.

Lemma 3.6 Let Ψθp be defined by (1.1) with p ≥ 2 and 1 > θ ≥ 0. Suppose that F and

∇F are Lipschitz continuous with some constant L > 0 on B(x0). Then ∇Ψθp is Lipschitz

continuous on B(x0), i.e., there exists a positive constant L̄ such that

‖∇Ψθp(x)−∇Ψθp(y)‖ ≤ L̄‖x− y‖

holds for all x, y ∈ B(x0).

Proof: Because ∇bΨθp, F and ∇F are continuous on the bounded and closed set B(x0),

then there exist some constants C, ρ > 0 such that

‖∇bΨθp(x, F (x))‖ ≤ C and ‖∇F (x)‖ ≤ ρ, ∀x ∈ L(Ψθp,Ψθp(x
0)).

For all x, y ∈ B(x0), from Lemma 3.5, we have

‖∇aΨθp(x, F (x))−∇aΨθp(y, F (y))‖2

≤ ‖∇aΨθp(x, F (x))−∇aΨθp(y, F (y))‖2 + ‖∇bΨθp(x, F (x))−∇bΨθp(y, F (y))‖2

≤ L2
1(‖x− y‖2 + ‖F (x)− F (y)‖2)

≤ L2
1(1 + L2) ‖x− y‖2 .

Denote L2 := L1

√
1 + L2, then it follows that

‖∇aΨθp(x, F (x))−∇aΨθp(y, F (y))‖ ≤ L2 ‖x− y‖ .

By the same way, we obtain

‖∇bΨθp(x, F (x))−∇bΨθp(y, F (y))‖ ≤ L2 ‖x− y‖ .

Then, we have

‖∇Ψθp(x)−∇Ψθp(y)‖
= ‖∇aΨθp(x, F (x)) +∇F (x)∇bΨθp(x, F (x))−∇aΨθp(y, F (y))−∇F (y)∇bΨθp(y, F (y))‖
≤ ‖∇aΨθp(x, F (x))−∇aΨθp(y, F (y))‖+ ‖∇F (x)∇bΨθp(x, F (x))−∇F (x)∇bΨθp(y, F (y))‖

+ ‖∇F (x)∇bΨθp(y, F (y))−∇F (y)∇bΨθp(y, F (y))‖
≤ ‖∇aΨθp(x, F (x))−∇aΨθp(y, F (y))‖+ ‖∇F (x)‖ ‖∇bΨθp(x, F (x))−∇bΨθp(y, F (y))‖

+ ‖∇bΨθp(y, F (y))‖ ‖∇F (x)−∇F (y)‖
≤ L2 ‖x− y‖+ ρL2 ‖x− y‖+ CL ‖x− y‖
= (L2 + ρL2 + CL) ‖x− y‖ ,

where the second inequality is from the consistency of the matrix norm and vector norm.

Let L̄ := max {L2 + ρL2 + CL, 1/2}. Then, ‖∇Ψθp(x)−∇Ψθp(y)‖ ≤ L̄‖x− y‖. 2

Finally, by using the properties of the function Ψθp, we show the linear convergence of

Algorithm 2.1, for which the following lemma is helpful.

11



Lemma 3.7 Let γ, η ∈ (0, 1) be chosen in Algorithm 2.1 with γ < η. Then there exist

K ∈ N+ and % > 0, such that the inequalities

% ≤ ηK , % ≤ λ, ηKλ− (ηKρ/2)2 ≥ %ηK(ρ+ 1) + λ%, (3.1)

2
(

2− (2θ)
1
p

)2

(%− L̄γK

2
) ≥ σγK (3.2)

hold.

Proof: Let K := max

−
log γ

η

 4σ

2

(
2−(2θ)

1
p

)2 + 2L̄

 , dlogη
2λ
ρ2
e, dlogη

λ
1+ρe, 1

, then

ηK ≤ 2λ

ρ2
, (3.3)

ηK ≤ λ

1 + ρ
, (3.4)(

γ

η

)K
≤ 1

4σ

2

(
2−(2θ)

1
p

)2 + 2L̄
. (3.5)

As L̄ ≥ 1
2

from Lemma 3.6, then we have 4σ

2

(
2−(2θ)

1
p

)2 + 2L̄ > 1. Set % := ηK

4
> 0. We show

that K and % satisfy the inequalities (3.1) and (3.2).

First, we prove (3.1) holds. We have that

% = ηK

4
≤ ηK , % = ηK

4
≤ λ

4(1+ρ)
< λ, (by (3.4));

ηKλ− (ηKρ/2)2 ≥ 1
2
ηKλ, (by (3.3));

%ηK(ρ+ 1) + λ% ≤ 2λ% = 1
2
ηKλ, (by (3.3) and % = ηK

4
),

that is, (3.1) holds.

By a direct calculation and noting that % = ηK

4
, it follows that (3.5) implies (3.2). 2

Theorem 3.1 Let Ψθp be defined by (1.1) with p ≥ 2 and 1 > θ ≥ 0. Suppose F is

continuously differentiable and strongly monotone with modulus λ > 0. Let x0 ∈ <n be

any given starting point, and suppose that F and ∇F are Lipschitz continuous with some

constant L > 0 on B(x0). Then, for the sequence {xk} generated by Algorithm 2.1, it holds

that the sequence {Ψθp(x
k)} converges to zero Q-linearly, and {xk} converges R-linearly to

the solution of NCP.

Proof: For the sequence {xk} generated by Algorithm 2.1, the sequence {Ψθp(x
k)} is non-

increasing from (2.1). Hence {xk} is contained in L(Ψθp,Ψθp(x
0)). For γK ∈ (0, 1), where

12



K is defined in Lemma 3.7, we have that xk, xk + γKdk(ηK) ∈ B(x0), and

Ψθp(x
k + γKdk)−Ψθp(x

k)

=
∫ γK

0

〈
∇Ψθp(x

k + µdk), dk
〉
dµ

= γK
〈
∇Ψθp(x

k), dk
〉

+
∫ γK

0

〈
∇Ψθp(x

k + µdk)−∇Ψθp(x
k), dk

〉
dµ

≤ γK
〈
∇Ψθp(x

k), dk
〉

+
∫ γK

0

〈
L̄µdk, dk

〉
dµ

= γK
〈
∇Ψθp(x

k), dk
〉

+ L̄
∫ γK

0
µ‖dk‖2dµ

= γK
〈
∇Ψθp(x

k), dk
〉

+ L̄γ2K

2
‖dk‖2.

Hence, we have

Ψθp(x
k)−Ψθp(x

k + γKdk) ≥ −γK〈∇Ψθp(x
k), dk〉 − L̄γ2K

2
‖dk‖2. (3.6)

In the following, we give estimations of two items in the right-hand side of (3.6).

Firstly, we estimate the item −γK〈∇Ψθp(x
k), dk〉 in the right-hand side of the inequality

(3.6). It follows that

−
〈
∇Ψθp(x

k), dk
〉

= −
〈
∇aΨθp(x

k, F (xk)) +∇F (xk)∇bΨθp(x
k, F (xk)) ,

−∇bΨθp(x
k, F (xk))− ηK∇aΨθp(x

k, F (xk))
〉

=
〈
∇aΨθp(x

k, F (xk)) +∇F (xk)∇bΨθp(x
k, F (xk)) ,

∇bΨθp(x
k, F (xk)) + ηK∇aΨθp(x

k, F (xk))
〉

=
〈
∇aΨθp(x

k, F (xk)),∇bΨθp(x
k, F (xk))

〉
+ηK

〈
∇aΨθp(x

k, F (xk)),∇aΨθp(x
k, F (xk))

〉
+
〈
∇F (xk)∇bΨθp(x

k, F (xk)),∇bΨθp(x
k, F (xk))

〉
+ηK

〈
∇F (xk)∇bΨθp(x

k, F (xk)),∇aΨθp(x
k, F (xk))

〉
≥ ηK

〈
∇aΨθp(x

k, F (xk)),∇aΨθp(x
k, F (xk))

〉
+
〈
∇F (xk)∇bΨθp(x

k, F (xk)),∇bΨθp(x
k, F (xk))

〉
+ηK

〈
∇F (xk)∇bΨθp(x

k, F (xk)),∇aΨθp(x
k, F (xk))

〉
≥ ηK

∥∥∥∇aΨθp(x
k, F (xk))

∥∥∥2
+ λ

∥∥∥∇bΨθp(x
k, F (xk))

∥∥∥2

−ηKρ
∥∥∥∇aΨθp(x

k, F (xk))
∥∥∥∥∥∥∇bΨθp(x

k, F (xk))
∥∥∥ , (3.7)

where the first inequality follows from
〈
∇aΨθp(x

k, F (xk)),∇bΨθp(x
k, F (xk))

〉
≥ 0 by Lemma

2.1(ii), and the second inequality follows from the strong monotonicity of F by Definition 2.1 (ii)

and Cauchy-Schwarz inequality.
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Below we show that the following inequality

ηK
∥∥∥∇aΨθp(x

k, F (xk))
∥∥∥2

+ λ
∥∥∥∇bΨθp(x

k, F (xk))
∥∥∥2
− ηKρ

∥∥∥∇aΨθp(x
k, F (xk))

∥∥∥∥∥∥∇bΨθp(x
k, F (xk))

∥∥∥
≥ %

∥∥∥∇bΨθp(x
k, F (xk)) +∇aΨθp(x

k, F (xk))
∥∥∥2

(3.8)

holds, where % > 0 set in Lemma 3.7. By the Cauchy-Schwarz inequality, it is sufficient to show

that

(ηK − %)
∥∥∥∇aΨθp(x

k, F (xk))
∥∥∥2

+ (λ− %)
∥∥∥∇bΨθp(x

k, F (xk))
∥∥∥2

−(ηKρ+ 2%)
∥∥∥∇aΨθp(x

k, F (xk))
∥∥∥∥∥∥∇bΨθp(x

k, F (xk))
∥∥∥ ≥ 0.

This above inequality holds if and only if

ηK − % ≥ 0, λ− % ≥ 0, and 4 = (ηKρ+ 2%)2 − 4(ηK − %)(λ− %) ≤ 0,

that is,

% ≤ ηK , % ≤ λ and ηKλ− (ηKρ/2)2 ≥ %ηK(ρ+ 1) + λ%. (3.9)

From Lemma 3.7, we have (3.9) holds, then the inequality (3.8) holds. Combining (3.7) and (3.8),

we obtain

−
〈
∇Ψθp(x

k), dk
〉
≥ %

∥∥∥∇bΨθp(x
k, F (xk)) +∇aΨθp(x

k, F (xk))
∥∥∥2
. (3.10)

Secondly, we estimate the item − L̄γK
2

2 ‖d
k‖2 in the right-hand side of the inequality (3.6). It

follows that

−
∥∥∥dk∥∥∥2

= −
∥∥∥−∇bΨθp(x

k, F (xk))− ηK∇aΨθp(x
k, F (xk))

∥∥∥2

= −
∥∥∥∇bΨθp(x

k, F (xk))
∥∥∥2
− 2ηK

〈
∇aΨθp(x

k, F (xk)),∇bΨθp(x
k, F (xk))

〉
−η2K

∥∥∥∥∂Ψθp

∂a
(xk, F (xk))

∥∥∥∥2

≥ −
∥∥∥∇bΨθp(x

k, F (xk))
∥∥∥2
− 2

〈
∇aΨθp(x

k, F (xk)),∇bΨθp(x
k, F (xk))

〉
−
∥∥∥∇aΨθp(x

k, F (xk))
∥∥∥2

= −
∥∥∥∇bΨθp(x

k, F (xk)) +∇aΨθp(x
k, F (xk))

∥∥∥2
. (3.11)

where the inequality follows from ηK ∈ (0, 1), and
〈
∇aΨθp(x

k, F (xk)),∇bΨθp(x
k, F (xk))

〉
≥ 0 from

Lemma 2.1(ii).

Now, by combining (3.10) with (3.11), we obtain that

Ψθp(x
k)−Ψθp(x

k + γKdk) ≥ −γK
〈
∇Ψθp(x

k), dk
〉
− L̄γK

2

2

∥∥∥dk∥∥∥2

≥ γK%
∥∥∥∇bΨθp(x

k, F (xk)) +∇aΨθp(x
k, F (xk))

∥∥∥2
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− L̄γ
2K

2

∥∥∥∇bΨθp(x
k, F (xk)) +∇aΨθp(x

k, F (xk))
∥∥∥2

= γK(%− L̄γK

2
)
∥∥∥∇bΨθp(x

k, F (xk)) +∇aΨθp(x
k, F (xk))

∥∥∥2

≥ 2
(

2− (2θ)
1
p

)2
γK(%− L̄γK

2
)Ψθp(x

k). (3.12)

the last inequality is from Proposition 3.1 and % − L̄γK

2 > 0. In fact, from Lemma 3.7, we have

2
(

2− (2θ)
1
p

)2
(%− L̄γK

2 ) ≥ σγK > 0, so %− L̄γK

2 > 0.

It follows from the inequality (3.12) that Step 2 of Algorithm 2.1 is satisfied whenever

2
(

2− (2θ)
1
p

)2
γK(%− L̄γK

2
) ≥ σγ2K ,

i.e.,

2
(

2− (2θ)
1
p

)2
γK(%− L̄γK

2
) ≥ σγ2K .

From Lemma 3.7, we have the above inequality holds. That is, Step 2 of Algorithm 2.1 is satisfied

for tk = K.

Denote η̄ := ηK , γ̄ := γK , then it follows that xk+1 = xk + γtkdk with γtk ≥ γ̄ > 0. Thus, we

obtain that

Ψθp(x
k)−Ψθp(x

k+1) ≥ σγ̄2Ψθp(x
k).

This implies (
1− σγ̄2

)
Ψθp(x

k) ≥ Ψθp(x
k+1) ≥ 0,

which means that {Ψθp(x
k)} converges Q-linearly to zero.

From Theorem 2.1 and Lemma 3.2, we can further get

‖xk − x∗‖ ≤ L+ 1√
2λ

ΨNR(xk)
1
2 ≤

√
2(L+ 1)

(2− (2θ)
1
p )λ

Ψθp(x
k)

1
2 .

Since the sequence {Ψθp(x
k)} converges Q-linearly to zero, the sequence {xk} converges R-linearly

to the solution x∗ of the NCP . 2

4 Numerical results

Some numerical results of Algorithm 2.1 for complementarity problems from MCPLIB[1] are re-

ported in [12]. From the results, we see that Algorithm 2.1 works well for the tested problem

in MCPLIB[1]. In this section, we implement Algorithm 2.1 in MATLAB 7.11 for some comple-

mentarity problems from MCPLIB[1] to observe the convergence of Algorithm 2.1. All numerical

experiments are done at a PC with CPU of 2.4 GHz and RAM of 256 MB. The algorithm was

terminated whenever one of the following conditions was satisfied:
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(1) Ψθp(x
k) ≤ 10−9 and d ≤ 10−3;

(2) the steplength γtk is less than 10−9;

(3) the number of iterations is more than 100000.

We tests some problems for two purse: one is to investigate the convergence of Algorithm 2.1

with different p; the other is to investigate the convergence of Algorithm 2.1 with different θ.

Firstly, we take “gafni(1)” for example with different p. The parameters are chosen as follows:

η = 0.8, σ = 0.5, γ = 0.6 and θ = 0.5.

Figure 1, 2, 3 describe the detail iteration process of Algorithm 2.1 with p = 1.1, p = 10, p = 100,

respectively.

Secondly, we take “josephy(5)” for example with different θ. The parameters are chosen as

follows:

η = 0.8, σ = 0.5, γ = 0.6 and p = 10.

Figure 4, 5,6 describe the detail iteration process of Algorithm 2.1 with θ = 0, θ = 0.5 and θ = 1,

respectively.

Some interesting phenomenon can be obtained from Figures 1-6:

• For the tested problems, the sequence {Ψθp(x
k)}, got from Algorithm 2.1, converges Q-

linearly to zero. This phenomenon indeed verified the conclusions of Theorem 3.1. We also

test other problems form MCPLIB[1], the convergent behaviors of Algorithm 2.1 are almost

the same.

• From Figure 1-3 we may see that the merit function Ψθp in case when p = 100 has a faster

decrease than the case when p = 10; Ψθp in case when p = 10 has a faster decrease than

the case when p = 1.1. We may get a conclusion that the convergence rate of Algorithm 2.1

becomes better when p increases.

• From Figure 4-6 we may see that the merit function Ψθp in case when θ = 0 has a faster

decrease than the case when θ = 0.5; Ψθp in case when θ = 0.5 has a faster decrease than

the case when θ = 1. We may get a conclusion that the convergence rate of Algorithm 2.1

becomes worse when θ increases.

5 Some Final Remarks

In this paper, we obtained several favorite properties of the merit function Ψθp, including the

growth behavior of the merit function Ψθp, the estimation on the upper bound of Ψθp, and the

Lipschitz continuity of the gradient function∇Ψθp. In particular, we showed that the iterative point
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Figure 1: Convergence behavior of “gafni(1)” with p = 1.1.
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Figure 2: Convergence behavior of “gafni(1)” with p = 10.
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Figure 3: Convergence behavior of “gafni(1)” with p = 100.
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Figure 4: Convergence behavior of “josephy(5)” with θ = 0.
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Figure 5: Convergence behavior of “josephy(5)” with θ = 0.5.
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Figure 6: Convergence behavior of “josephy(5)” with θ = 1.
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sequence {xk} generated by Algorithm 2.1 is globally R-linearly convergent and the corresponding

merit function sequence {Ψθp(x
k)} is globally Q-linearly convergent under suitable assumptions.

It is interesting whether the NCP-function φθp and the merit function Ψθp can be extended to

the case of the symmetric cone or not. If yes, whether the properties of these functions and the

convergence results of the derivative-free descent method, obtained in [12] and this paper, are still

satisfied. These are our subjects of future research.
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