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Abstract

In this article, we establish some relationships between several types of partial

differential equations and ordinary differential equations. One application of these

relationships is that we can get the exact values of the blowup time and the blowup

rate of the solution to a partial differential equation by solving an ordinary dif-

ferential equation. Another application of these relationships is that we can give

the estimates for the spatial integration(or mean value) of the solution to a partial

differential equation. We also obtain the lower and upper bounds for the blowup

time of the solution to a parabolic equation with weighted function and space-time

integral in the nonlinear term.
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1 Introduction

In this paper, we are concerned with the blowup times of the solutions to some

types of partial differential equation problems.

The first type of problems can be written as
ut = div

(
c(x)∇G(u)

)
+ h
(
x,
∫ t

0

∫
Ω udxds

)
, x ∈ Ω, t > 0

a1
∂u
∂ν + b1u = g(x), x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(1.1)

∗The corresponding author, e-mail: songxianfa@tju.edu.cn (X. F. Song).
†E-mail:lvxiaoshuang1021@163.com (X. S. Lv)
‡This work is supported by the Independent Innovation Project of Tianjin University, Grant No.

YCX16019.

1



where c(x) ≥ 0, G′(u) ≥ 0, and Ω ⊂ Rn(n ≥ 1) is a smooth bounded domain, h is a

given smooth function, (a1, b1) and g(x) are defined by (1.3) and (1.4) respectively.

The second type of problems can be written as
ut = div

(
c(x)∇G(u)

)
+ d1u+ f

(
x,
∫

Ω udx
)
, x ∈ Ω, t > 0

a1
∂u
∂ν + b1u = g(x), x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(1.2)

where d1 ≥ 0, c(x) ≥ 0, G′(u) ≥ 0, Ω ⊂ Rn(n ≥ 1) is a smooth bounded domain, f is

a given smooth function, while

(a1, b1) =

{
(1, 0) if G′(0) 6= 0

(0, 1) if G′(0) = 0
(1.3)

and g satisfies {
g(x) ≡ 0 if G(u) 6= u

g(x) ≥ 0 if G(u) = u.
(1.4)

Besides obtaining the exact blowup times of the solutions to these types of problems

above, we also give the estimate for the bound of the blowup time to solution of the

following problem
ut = 4u+ a(x)

[ ∫ t
0

∫
Ω β(x)u(x, s)dxds

]p
, x ∈ Ω, t > 0

u(x, t) = 0 or ∂u
∂ν = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(1.5)

where Ω ⊂ Rn(n ≥ 1) is a smooth bounded domain, ν is the outward norm vector, u0(x)

is a continuous nonnegative function and satisfies the compatible condition u0(x) = 0

or ∂u0
∂ν = 0 on ∂Ω, β(x) ∈ C(Ω̄), β(x) ≥ 0, β(x) 6≡ 0, the weighted function a(x) ∈

C2(Ω) ∩ C0(Ω̄) satisfies

(a1) a(x) ≥ c > 0 for some constant c

or

(a2) a(x) > 0 in Ω, and a(x) = 0 on ∂Ω.

These models often appear in physical theory and engineering applications. Since

the equation has the nonlocal nonlinear term in each model, we call it nonlocal partial

differential equation. There is an extensive literature on nonlocal parabolic equation

or nonlocal wave equation, we can refer to [1, 2, 6, 15, 9, 10, 16, 13, 20, 25, 29, 30, 31,

32, 33, 34, 35] and the references therein.

There are many interesting topics on these problems, such as the conditions on

global existence and blowup in finite time, estimates for the blowup rate and blowup

time of the solutions. By the results of [4, 5, 7, 8, 11, 12, 14, 21], we know that the

solution to (1.2) ( or (1.1), or (1.5)) will blow up in finite time under some assumptions,

one of the essential conditions for (1.2)( or (1.1), or (1.5)) is that the function f (or h)

2



satisfies f(x, θ) ≥ cθp1 > 0 (or h(x, θ)) with some p1 > 1 for θ large and any x ∈ Ω. Yet

we don’t care about the conditions on the blowup in finite time and global existence

of the solution in this paper, we focus on the lower and upper bounds for the blowup

time of the solutions.

Our first result is about the exact value of the blowup time t∗1 of the blowup solution

to (1.1).

Theorem 1. Assume that the solution to (1.1) will blow up in finite time. Then

the exact value of the blowup time t∗1 is

t∗1 =

∫ ∞
0

dη√
2
(
H̃(η)− H̃(0)

)
+ 2η

∫
∂Ω c(x)g(x)dS +

( ∫
Ω u0dx

)2
. (1.6)

Here H̃(l) =
∫

Ω h̃(x, l)dx and h̃(ϑ) =
∫

Ω h(x, ϑ)dx for ϑ > 0. And the blowup rate can

be written as ∫
Ω
u(x, t)dx =

2

t∗2 − t
. (1.7)

Our second result is about the exact value of the blowup time t∗2 of the blowup

solution to (1.2).

Theorem 2. Assume that the solution to (1.2) will blow up in finite time. Then

the exact value of the blowup time t∗2 is

t∗2 =

∫ ∞
T (0)

dξ

f̃(ξ) + d1ξ +
∫
∂Ω c(x)g(x)dS

. (1.8)

Here T (t) =
∫

Ω udx and f̃(θ) =
∫

Ω f(x, θ)dx for θ > 0.

For (1.5), we can establish the lower bounds for the blowup time of the solution

to it as follows.

Theorem 3. Assume that u is a nonnegative solution to (1.5) which becomes

unbounded in Lk+1-norm at t = t∗. Then a lower bound for blowup time of the solution

is given by

t∗ ≥
∫ ∞
φ(0)

dη

kη +K1ε−(k+1)pηp
. (1.9)

Here

φ(t) =

∫
Ω
uk+1dx, K1 =

∫
Ω

(
a(x)

)k+1
dx
(∫

Ω

(
β(x)

) k+1
k dx

)kp
(1.10)

and the constant k > 0

We would like to compare our methods with others. There are many results about

the topic on the bounds for blowup time of the solution to a parabolic equation, we
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can refer to [3, 19, 22, 23, 24, 26, 27, 28] and the references therein. Differing from

the methods in these references, in order to establish the lower and upper bounds

for the blowup time of the solutions to these problems above, we will establish some

relationships between these partial differential equations and some ordinary differential

equations. Using these relationships, we can obtain the exact values of the blowup time

and the blowup rate of the solutions.

Using Fourier transform, or Laplace transform, or other transform, we may change

a partial differential equation into an ordinary differential equation, but we must make

its inverse transform in order to obtain the behavior for the solution of the partial

differential equation. However, we needn’t to make inverse transform and can use our

methods to directly deal with these types of nonlocal parabolic equations and nonlocal

wave equations in this paper.

The rest of the paper is organized as follows. In Section 2, we will establish some

relationships between partial differential equations and ordinary differential equations

and get the exact value of the blowup time of the solution. In Section 3, we will deal

with the integration
∫

Ω u(x, t) of the partial differential equation. In Section 4, we will

apply the method of constructing the sub-solution of (1.5) to obtain the upper bound

and use another method to get the lower bound for blowup time of the solution.

2 The exact values of blowup time and blowup rate

To illustrate our idea, we discuss a model as follows:
ut = 4u+ a(x)h

( ∫ t
0

∫
Ω u(x, s)dxds

)
, x ∈ Ω, t > 0

∂u
∂ν = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(2.1)

where h(θ) is a nonnegative function which is increasing in θ. By the result of [8, 14],

if limθ→∞
h(θ)
θp ≥ c > 0 for some p > 1, then the solution to (2.1) will blow up in finite

time.

Let

J(t) =

∫ t

0

∫
Ω
u(x, s)dxds. (2.2)

Integrating the first equation of (2.1) and using Green’s formula, we get(∫
Ω
udx

)
t

=

∫
Ω
utdx =

∫
Ω
a(x)dxh

(∫ t

0

∫
Ω
u(x, s)dx

)
:= Ah

(
J(t)

)
. (2.3)

Then by (2.2), we can obtain the following problem
J
′′
(t) = Ah

(
J(t)

)
J(0) = 0, J

′
(0) =

∫
Ω u0(x)dx.

(2.4)
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Multiplying the first equation of (2.4) by J
′
(t) and integrating it with respect to t, we

get ∫ t

0
J
′′
(s)J

′
(s)ds = A

∫ t

0
h
(
J(s)

)
J
′
(s)ds. (2.5)

After some elementary computations, we finally obtain

J
′
(t) =

√
2A
(
H
(
J(t)

)
−H(0)

)
+
(∫

Ω
u0dx

)2
, (2.6)

where H(θ) =
∫

Ω h(x, θ)dx. Integrating (2.6) from 0 to t∗, we get the blow up time

t∗ =

∫ ∞
0

dη√
2A
(
H(η)−H(0)

)
+
( ∫

Ω u0dx
)2
. (2.7)

Now we have established the following proposition:

Propsition 2.1. Assume that u is a nonnegative solution to (2.1) which becomes

unbounded in L1-norm at t = t∗. Then the exact blowup time of the solution is given

by (2.7). Especially, h(θ) = θp and p > 1, the blowup time of the solution is

t∗ =

∫ ∞
0

dη√
2A
1+pη

p+1 +
( ∫

Ω u0dx
)2
. (2.8)

Similar to the discussions above, we give the proof of Theorem 1.

Proof of Theorem 1: It is easy to verify the relationship between (1.1) and the

following problem 
J
′′
(t) = h̃

(
J(t)

)
+
∫
∂Ω c(x)g(x)dS

J(0) = 0, J
′
(0) =

∫
Ω u0(x)dx.

(2.9)

Here J(t) =
∫ t

0

∫
Ω udxds and h̃(ϑ) =

∫
Ω h(x, ϑ)dx for ϑ > 0. Assume the solution will

blow up in finite time. Then using (2.9), we can obtain the exact value of the blowup

time t∗2 of the solution to (1.1)

t∗2 =

∫ ∞
0

dη√
2
(
H̃(η)− H̃(0)

)
+ 2η

∫
∂Ω c(x)g(x)dS +

( ∫
Ω u0dx

)2
(2.10)

with H̃(l) =
∫

Ω h̃(x, l)dx. Here we have used the fact that
∫

Ω u(x, t)dx → ∞ if and

only if
∫ t

0

∫
Ω u(x, s)dxds→∞(see [30]).
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Next, we can integrate (2.9) from t to t∗2 and get

t∗2 − t =

∫ t∗2

t

J ′(t)√
2
(
H̃
(
J(t)

)
− H̃(0)

)
+ 2J(t)

∫
∂Ω c(x)g(x)dS +

( ∫
Ω u0dx

)2

=

∫ ∞
J(t)

dη√
2
(
H̃(η)− H̃(0)

)
+ 2η

∫
∂Ω c(x)g(x)dS +

( ∫
Ω u0dx

)2

:= Ψ(J)(t). (2.11)

Since Ψ(J(t)) is decreasing in J , we know that Ψ−1 exists and it is also a decreasing

function. Consequently, we have∫ t

0

∫
Ω
u(x, s)dxds = J(t) = Ψ−1(t∗2 − t). (2.12)

Using (2.11) and (2.12), we can obtain the blowup rate of the solution to (1.1) which

will blow up at t∗2 in L1(Ω). For example, if h(η) =
(
∫
Ω u0(x)dx)

2

2|Ω|2 eη −
∫
∂Ω c(x)g(x)dS

|Ω|2 η, we

have

t∗2 − t =
1∫

Ω u0(x)dx

∫ ∞
J(t)

e−
η
2 dη

and ∫ t

0

∫
Ω
u(x, s)dxds = J(t) = −2 ln[

∫
Ω u0(x)dx

2
(t∗2 − t)],

which means that ∫
Ω
u(x, t)dx =

2

t∗2 − t
. (2.13)

Theorem 1 is proved. �
Similarly, we can prove Theorem 2.

The proof of Theorem 2: It is easy to get the relationship between (1.2) and

the following problem
T
′
(t) = f̃

(
T (t)

)
+ d1T (t) +

∫
∂Ω c(x)g(x)dS

T (0) =
∫

Ω u0(x)dx.

(2.14)

Here T (t) =
∫

Ω udx and f̃(θ) =
∫

Ω f(x, θ)dx. Assume that the solution will blow up in

finite time. Then using (2.14), we can obtain the exact value of the blowup time t∗1 of

the solution to (1.2)

t∗1 =

∫ ∞
T (0)

dξ

f̃(ξ) + d1ξ +
∫
∂Ω c(x)g(x)dS

. (2.15)

6



We will establish the blowup rate of the solution to (1.2) by (2.14). In fact, we

can integrate (2.14) from t to t∗1 and get

t∗1 − t =

∫ t∗1

t

T ′(t)

f̃
(
T (t)

)
+ d1T (t) +

∫
∂Ω c(x)g(x)dS

=

∫ ∞
T (t)

dη

f̃
(
η
)

+ d1η +
∫
∂Ω c(x)g(x)dS

:= Φ(T )(t). (2.16)

Noticing that Φ(T (t)) is decreasing in T , we know that Φ−1 exists and it is also a

decreasing function. Consequently, (2.16) means that

T (t) = Φ−1(t∗1 − t), (2.17)

which gives the blowup rate of the solution to (1.2) which will blow up at t∗1 in L1(Ω).

An interesting phenomenon is that the blowup rate only depends on the nonlinearity

but is independent of the diffusion. For example, if d1 = 0, f(τ) = cτp and g(x) = 0

with c > 0, p > 1, we can obtain∫
Ω
u(x, t)dx = T (t) = [c(p− 1)|Ω|(t∗1 − t)]

1
1−p . (2.18)

If d1 = 0, f(τ) = ceaτ and g(x) = 0 with c, a > 0, we get∫
Ω
u(x, t)dx = T (t) = −1

a
ln[ac|Ω|(t∗1 − t)]. (2.19)

Theorem 2 is proved. �
Remark 2.1. By the discussions above, we see that if the nonlinear term f(x, t, u)

in a parabolic equation satisfies that
∫

Ω f(x, t, u)dx is a function of
∫

Ω udx, then
∫

Ω udx

satisfies an ordinary equation. And we can use this fact to obtain the exact values of

the blowup time and blowup rate of the solution.

3 Some relationships between partial differential equa-

tions and ordinary differential equations

In this section, we focus on the spatial integration(or mean value) of the solutions

to some partial differential equations. We would like to illustrate our idea by some

examples.

Example 3.1. We can establish the relationship between a parabolic equation

and an ordinary differential equation.
ut = ∆um + d2u+ k(x, t) x ∈ Ω, t > 0
∂u
∂ν = 0 or u = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

(3.1)
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Here m > 1, d2 ∈ R and k(x, t) ∈ L1(Ω) for any t > 0. It is well known that the

solution is global existence. Integrating the first equation of (3.1) over Ω, we have(∫
Ω
u(x, t)dx

)
t

= d2

∫
Ω
u(x, t)dx+

∫
Ω
k(x, t)dx.

Letting
∫

Ω u(x, t)dx = I(t) and
∫

Ω k(x, t)dx = K(t), we obtain an ordinary differential

equation

I ′(t) = d2I(t) +K(t).

Especially, if K(t) = 0 for all t ≥ 0, we can get

I(t) = I(0)ed2t,

which implies that ∫
Ω u(x, t)dx

|Ω|
=

∫
Ω u0(x)dx

|Ω|
ed2t. (3.2)

Physically, u often represents temperature(or density) in the model of (3.1). (3.2)

illustrates the link between the mean value of the temperature(or density) at time t

and that of the initial temperature(or density).

Example 3.2. Consider the following problem{
ut = ∆um + d3u+ l(x, t), x ∈ RN , t > 0

u(x, 0) = u0(x) ≥ 0, x ∈ RN .
(3.3)

Here m > 1, d3 ∈ R, l(x, t) ∈ L1(RN ) for any t > 0 and u0(x) is a continuous function

which has compact support set in RN . It is well known that the solution is global

existence. Integrating the first equation of (3.1) over RN , we have(∫
RN

u(x, t)dx

)
t

= d3

∫
RN

u(x, t)dx+

∫
RN

l(x, t)dx.

Letting
∫
RN u(x, t)dx = Y (t) and

∫
RN l(x, t)dx = L(t), we obtain an ordinary differen-

tial equation

Y ′(t) = d3Y (t) + L(t).

Especially, if L(t) = 0 for all t ≥ 0, we can get

Y (t) = Y (0)ed3t,

which means that ∫
RN

u(x, t)dx = ed3t

∫
RN

u0(x)dx. (3.4)
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Remark 3.1. From Examples 3.1 and 3.2, we can see that if
∫

Ω f(x, t, u)dx(or∫
RN f(x, t, u)dx) is a function of

∫
Ω udx(or

∫
RN udx), then

∫
Ω udx(or

∫
RN udx) satisfies

an ordinary equation.

Example 3.3. We will claim that, whether the solution to a wave solution will

blow up in finite time or exist globally, there exists the relationship between a wave

equation and an ordinary partial equation.
autt + but = div

(
c(x)∇u

)
+ d4u+ f

(
x,
∫

Ω udx
)

( or h
(
x,
∫ t

0

∫
Ω udxds

)
), x ∈ Ω, t > 0

∂u
∂ν = g(x), x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ Ω,

(3.5)

where a > 0, b ≥ 0, c(x) ≥ 0. In fact, from (3.5), we can find that T (t) =
∫

Ω udx

satisfies the following problem:
aT
′′
(t) + bT

′
(t) =

∫
∂Ω c(x)g(x)dS + d4T (t) + f̃

(
T (t)

)
T (0) =

∫
Ω u0(x)dx, T

′
(0) =

∫
Ω v0(x)dx,

(3.6)

or J(t) =
∫ t

0

∫
Ω udxdτ satisfies

aJ (3)(t) + bJ
′′
(t) =

∫
∂Ω c(x)g(x)dS + d4J(t) + h̃

(
J(t)

)
J(0) = 0, J

′
(0) =

∫
Ω u0(x)dx, J

′′
(0) =

∫
Ω v0(x)dx.

(3.7)

Example 3.4. Considering the following Cauchy problem{
autt + but = div

(
c(x)∇u

)
+ d5u+ f

(
x,
∫
RN udx

)
, x ∈ RN , t > 0

u(x, 0) = u0(x), ut(x, 0) = v0(x), x ∈ RN ,
(3.8)

where a > 0, b ≥ 0, c(x) ≥ 0, we can also obtain the estimate for
∫
RN u(x, t). We omit

the details here.

4 Bounds for blowup time of the solution to (1.5)

There are many literature on (1.5), we can refer to [17, 18, 30] and the references

therein. Since we hope to obtain the bounds for the blowup time t∗ of u(x, t), we are

only concerned with (1.5) in the case of p > 1. Similar to [3, 19], we will obtain the

upper bound for the blowup time to the solution by constructing sub-solution. Let

λ > 0 be the first eigenvalue of{
∆ϕ+ λϕ = 0 in Ω

ϕ|
∂Ω

= 0,
(4.1)
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and ϕ be the corresponding eigenfunction satisfying that ϕ(x) > 0 in Ω and max
x∈ Ω

ϕ(x) =

1. Assume that there exist two positive constants c1 and c2 such that u0(x) ≥
c1 exp(1)ϕ(x) and c2a(x) ≥ ϕ(x). Letting

ε =
(c1

2

) p−1
p
c

1
p

2

∫
Ω
β(x)ϕ(x)dx, (4.2)

and constructing

u(x, t) = c1ϕ(x)

[
1

(1− εt)2
exp

(
1

1− εt

)
+ exp(A− 2λt)

]
, (4.3)

where A is large enough such that ut−∆u < 0 at t = 0. Since ut−∆u is increasing in

t, we can consider the first time value t0 such that ut −∆u = 0 in Ω. That is,{
ε

(1− εt0)4
+

2ε

(1− εt0)3
+

λ

(1− εt0)2

}
exp

(
2λt0 +

1

(1− εt0)

)
= λeA. (4.4)

Obviously, we can choose A large such that t0 ≥ 1
ε ·

r0−1
r0
≥ 1

ε ·
ln 2

ln 2+1 , where

r0 = inf
r∈R+
{r ≥ 1 + ln 2, exp

(
(p− 1)r

)
≥ 2(3ε+ λ)r4}.

Now we will compare ut − ∆u with a(x)
[ ∫ t

0

∫
Ω β(x)u(x, s)dxds

]p
respectively in

the time interval [0, t0] and (t0,
1
ε ). By the discussions above, we have

ut −∆u ≤ 0 ≤ a(x)
[ ∫ t

0

∫
Ω
β(x)u(x, s)dxds

]p
if t ∈ [0, t0]. Meanwhile, we get that

ut −∆u ≤ c1ϕ

[
2ε

(1− εt)3
+

ε

(1− εt)4
+

λ

(1− εt)2

]
exp

(
1

1− εt

)
≤ c1ϕ

3ε+ λ

(1− εt)4
exp

(
1

1− εt

)
≤ 1

2
c1ϕ exp

(
p

1− εt

)
and

a(x)
[ ∫ t

0

∫
Ω
β(x)u(x, s)dxds

]p
≥ cp1a(x)

(∫
Ω
β(x)ϕ(x)dx

)p
ε−p

(
exp

(
1

1− εt

)
− exp(1)

)p
≥ 2−pcp1a(x)

(∫
Ω
β(x)ϕ(x)dx

)p
ε−p exp

(
p

1− εt

)
.
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if t ∈ (t0,
1
ε ). Consequently,

ut −∆u ≤ a(x)
[ ∫ t

0

∫
Ω
β(x)u(x, s)dxds

]p
if t ∈ (t0,

1
ε ). Using comparison principle, we can verify that u(x, t) is a sub-solution

of (1.5). As a result, the solution u(x, t) of (1.5) will blow up at some t∗ < 1
ε for any

x ∈ Ω. Therefore, we have established the following propsition:

Proposition 4.1. Assume that u is the blowup solution to (1.5) with p > 1. Then

the upper bound for the blowup time of the solution to (1.5) is 1
ε .

Now, we will give the proof of Theorem 3 and establish the lower bound estimates

for the blowup time of the solution to (1.5) if p > 1.

The proof of Theorem 3:

Let

φ(t) =

∫
Ω
uk+1dx (4.5)

with k > 0. Multiplying the first equation of (1.5) by uk and integrating it by parts,

we get∫
Ω
ukutdx =

∫
Ω
uk4udx+

∫
Ω
a(x)uk

[ ∫ t

0

∫
Ω
β(x)u(x, s)dxds

]p
dx

=

∫
∂Ω
uk
∂u

∂ν
dS − k

∫
Ω
uk−1|∇u|2dx+

∫
Ω
a(x)uk

[ ∫ t

0

∫
Ω
β(x)u(x, s)dxds

]p
dx.

(4.6)

Using Young’s inequality, we obtain

a(x)uk
[ ∫ t

0

∫
Ω
β(x)u(x, s)dxds

]p
≤ k

k + 1
uk+1 +

1

k + 1

(
a(x)

)k+1
[ ∫ t

0

∫
Ω
β(x)u(x, s)dxds

](k+1)p

. (4.7)

Then it follows that

dφ

dt
≤ kφ+

∫
Ω

(
a(x)

)k+1
[ ∫ t

0

∫
Ω
β(x)u(x, s)dxds

](k+1)p

dx. (4.8)

Note that ∫
Ω
β(x)u(x, s)dx ≤

(∫
Ω
uk+1dx

) 1
k+1
(∫

Ω

(
β(x)

) k+1
k dx

) k
k+1

(4.9)

by Hölder’s inequality. Then we obtain

dφ

dt
≤ kφ+K1

(∫ t

0
φ

1
k+1 ds

)(k+1)p

≤ kφ+K1φ
p(t)(t∗)(k+1)p

≤ kφ+K1ε
−(k+1)pφp, (4.10)

11



where ε is taken as (4.2). And here

K1 =

∫
Ω

(
a(x)

)k+1
dx
(∫

Ω

(
β(x)

) k+1
k dx

)kp
. (4.11)

Integrating (4.10) from 0 to t∗, we have

t∗ ≥
∫ ∞
φ(0)

dη

kη +K1ε−(k+1)pηp
. (4.12)

Theorem 3 is proved. �
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