Large Local and Global Dynamic Bifurcations of Nonlinear Evolution Equations

Desheng li ơ Zhi-Qiang Wang

AbSTRACT. We present new local and global dynamic bifurcation results for nonlinear evolution equations of the form $u_{t}+A u=f_{\lambda}(u)$ on a Banach space X, where A is a sectorial operator, and $\lambda \in \mathbb{R}$ is the bifurcation parameter. Suppose the equation has a trivial solution branch $\{(0, \lambda) \mid \lambda \in \mathbb{R}\}$. Denote Φ_{λ} the local semiflow generated by the initial value problem of the equation. It is shown that if the crossing number n at a bifurcation value $\lambda=\lambda_{0}$ is nonzero, and moreover, if $S_{0}=\{0\}$ is an isolated invariant set of $\Phi_{\lambda_{0}}$, then either there is a one-sided neighborhood I_{1} of λ_{0} such that Φ_{λ} bifurcates a topological sphere \mathbb{S}^{n-1} for each $\lambda \in I_{1} \backslash\left\{\lambda_{0}\right\}$, or there is a two-sided neighborhood I_{2} of λ_{0} such that the system Φ_{λ} bifurcates from the trivial solution an isolated nonempty compact invariant set K_{λ} with $0 \notin K_{\lambda}$ for each $\lambda \in I_{2} \backslash\left\{\lambda_{0}\right\}$. We also prove that the bifurcating invariant set has nontrivial Conley index. Building upon this fact, we establish a global dynamical bifurcation theorem. Roughly speaking, we prove that for any given neighborhood Ω of the bifurcation point $\left(0, \lambda_{0}\right)$, the connected bifurcation branch Γ from ($0, \lambda_{0}$) either meets the boundary $\partial \Omega$ of Ω, or meets another bifurcation point $\left(0, \lambda_{1}\right)$. This result extends the well-known Rabinowitz's Global Bifurcation Theorem to the setting of dynamic bifurcations of evolution equations without requiring the crossing number to be odd.

As an illustration example, we consider the well-known Cahn-Hilliard equation. Some global features on dynamical bifurcations of the equation are discussed.

1. Introduction

Dynamic bifurcation concerns the changes in the qualitative or topological structures of limiting motions such as equilibria, periodic solutions, homoclinic orbits, heteroclinic orbits, invariant tori, and so on for nonlinear evolution equations, as some relevant parameters in the equations vary. Historically, the subject can be traced back to the early work of Poincaré [30] around 1892. It is now a fundamental tool to study nonlinear problems in mathematical physics and mechanics [5, 11,27], and it enables us to understand how and when a system organizes new states and patterns near the original "trivial" one when the control parameters cross some critical values.

A relatively simpler case for dynamic bifurcation is that of the bifurcations from equilibria. Generally speaking, there are two typical such bifurcations in the classical bifurcation theory. One is the bifurcation from equilibria to equilibria (static bifurcation), and the other is from equilibria to periodic solutions (Hopf bifurcation). The former usually requires a "crossing odd-multiplicity" condition: namely, that the linearized equation of a system has an odd number of eigenvalues (counting with multiplicity) crossing the imaginary axis when the control parameter crosses a critical value (the Krasnosel'skii's Bifurcation Theorem). We also know that in such a case the bifurcation has some global features, which fact is addressed by the well-known Rabinowitz's Global Bifurcation Theorem. Situations become very complicated if one drops the "crossing odd-multiplicity" condition mentioned above. If the system under consideration is a gradient one, then by a classical bifurcation theorem on potential operator equations due to Krasnosel'skii (see [11, Chapter II, Section 7] or [12]), one can still have local bifurcation results, whereas the global bifurcation remains an open problem. To deal with general systems, Ma and Wang [20] proved some new local and global static bifurcation theorems by using higher-order nondegenerate singularities of nonlinearities. The Hopf bifurcation theory has a long history and, to some extent, forms the central part of the classical dynamic bifurcation theory. It focuses on the case when a pair of conjugate eigenvalues of the linearized equation cross the imaginary axis, and was fully developed in the 20th century. There has been a vast body of literature on how to determine Hopf bifurcation for nonlinear systems arising from applications. One can also find some nice results concerning global results in $[1,39]$, etc.

This present work is mainly concerned with the general case of the bifurcations from equilibria in terms of invariant-set bifurcation, where the number of eigenvalues of the linearized equation crossing the imaginary axis might be even and greater than two. A particular but very important case in this line is the theory of attractor bifurcation, which was first introduced by Ma and Wang in 2003 [19] and was further developed by the authors into a dynamic transition theory [25]. Roughly speaking, it states that if the trivial equilibrium solution θ of a system changes from an attractor to a repeller on the local center manifold when the bifurcation parameter λ crosses a critical value λ_{0}, then the system bifurcates a
compact invariant set K which is an attractor of the system on the center manifold. It is also known that K has the shape of an n-dimensional sphere, where n denotes the crossing number at $\lambda=\lambda_{0}$ (the number of eigenvalues of the linearized equation crossing the imaginary axis); see Theorem 1 in [35] or [22, Theorem 6.1]. Note that a fundamental assumption of this theory is that the trivial equilibrium θ is an attractor (repeller) of the system on the center manifold at $\lambda=\lambda_{0}$. Hence, it is no longer applicable when $S_{0}=\{\theta\}$ is only an isolated invariant set when $\lambda=\lambda_{0}$. Fortunately in such a case, we know that dynamic bifurcation still occurs as long as there are eigenvalues crossing the imaginary axis. This has already been addressed in the literature (see, e.g., Rybakowski [34, pp. 101-102] and Ward [38]).

An abstract global dynamic bifurcation theorem was also proved in Ward [38] in terms of semiflows on complete metric spaces. Let Φ_{λ} be a family of dynamical systems on a complete metric space X, where $\lambda \in \mathbb{R}$. Suppose that θ is an equilibrium solution for each Φ_{λ}. Let $[a, b]$ be a compact interval which contains exactly one bifurcation value $\lambda_{0} \in[a, b]$. Ward's global bifurcation theorem states that if

$$
h\left(\Phi_{a},\{\theta\}\right) \neq h\left(\Phi_{b},\{\theta\}\right)
$$

then a continua $\Gamma \subset X \times \mathbb{R}$ of bounded solutions bifurcates from (θ, λ_{0}), where $h\left(\Phi_{\lambda},\{\theta\}\right)$ denotes the Conley index of $\{\theta\}$ with respect to Φ_{λ}. Moreover, either Γ is unbounded in $X \times[a, b]$, or it intersects $X \times\{a, b\}$. Note that, because of the requirement on the uniqueness of bifurcation values in $[a, b]$, the theorem mentioned above may fail to work when a λ-interval contains multiple bifurcation values. This is somewhat different from the situation of the Rabinowitz Global Bifurcation Theorem.

In this paper, we consider the abstract evolution equation

$$
\begin{equation*}
u_{t}+A u=f_{\lambda}(u) \tag{1.1}
\end{equation*}
$$

on a Banach space X, where A is a sectorial operator on X with compact resolvent, $f_{\lambda}(u)$ is a locally Lipschitz continuous mapping from $X^{\alpha} \times \mathbb{R}$ to X for some $0 \leq \alpha<1$, and $\lambda \in \mathbb{R}$ is the bifurcation parameter. Our main goal is to establish new local and global dynamic bifurcation results.

Suppose that

$$
f_{\lambda}(0) \equiv 0, \quad \lambda \in \mathbb{R} .
$$

Thus, $u=0$ is always a trivial solution of (1.1) for all λ. It is also assumed that $f_{\lambda}(u)$ is differentiable in u with $\mathrm{D} f_{\lambda}(u)$ being continuous in (u, λ).

First, as one of our main purposes here, we give some more precise and general results on local dynamic bifurcations in terms of invariant sets. We show that if the crossing number n at a bifurcation value $\lambda=\lambda_{0}$ is nonzero, and if, moreover, $S_{0}=\{0\}$ is an isolated invariant set of the system, then either there is a one-sided neighborhood I_{1} of λ_{0} such that the system bifurcates an $(n-1)$-dimensional
topological sphere \mathbb{S}^{n-1} for each $\lambda \in I_{1} \backslash\left\{\lambda_{0}\right\}$, or there is a two-sided neighborhood I_{2} of λ_{0} such that the system bifurcates from the trivial solution an isolated nonempty compact invariant set K_{λ} with $0 \notin K_{\lambda}$ for each $\lambda \in I_{2} \backslash\left\{\lambda_{0}\right\}$.

Then, we prove that the invariant set K_{λ} from bifurcation has nontrivial Conley index. This result plays a key role in establishing our global dynamic bifurcation theorem. However, it may be of independent interest in its own right.

Finally, as our main goal in this work, we establish a global dynamic bifurcation theorem, extending Rabinowitz's Global Bifurcation Theorem on operator equations to dynamical systems without assuming the "crossing odd-multiplicity" condition and the uniqueness of bifurcation values in parameter intervals. Roughly speaking, given a neighborhood $\Omega \subset X^{\alpha} \times \mathbb{R}$ of the bifurcation point $\left(0, \lambda_{0}\right)$, we prove that the connected bifurcation branch Γ from $\left(0, \lambda_{0}\right)$ either meets the boundary $\partial \Omega$ of Ω, or meets another bifurcation point $\left(0, \lambda_{1}\right)$.

As an example, we consider the homogeneous Neumann boundary value problem of the Cahn-Hilliard equation

$$
u_{t}+\Delta(\kappa \Delta u-f(u))=0
$$

on a bounded domain $\Omega \subset R^{d}(d \leq 3)$ with sufficiently smooth boundary, where

$$
f(u)=a_{1} u+a_{2} u^{2}+a_{3} u^{3}, a_{3}>0 .
$$

The local attractor bifurcation and phase transition of the problem have been extensively studied in Ma and Wang [22-24]. Other results related to bifurcation of the problem can be found in [2,26], and so on. Here, by applying the theoretical results obtained above, we give some more precise local dynamic bifurcation results and demonstrate global features of the bifurcations.

This paper is organized as follows. In Section 2 we make some preliminaries, and in Section 3 we present results on local invariant manifolds of the equation (1.1) and give a slightly modified version of a reduction theorem for Conley index in [34]. In Section 4 we prove some local dynamic bifurcation results. Section 5 is concerned with the nontriviality of the Conley indices of bifurcating invariant sets. Section 6 is devoted to the global dynamic bifurcation theorem. Section 7 consists of an example mentioned above.

2. Preliminaries

This section is concerned with some preliminaries.
2.1. Basic topological notions and facts. Let X be a complete metric space with metric $d(\cdot, \cdot)$. For convenience, we always identify a singleton $\{x\}$ with the point x for any $x \in X$.

Let A and B be nonempty subsets of X. The distance $d(A, B)$ between A and B is defined as

$$
d(A, B)=\inf \{d(x, y) \mid x \in A, y \in B\}
$$

and the Hausdorff semi-distance and Hausdorff distance of A and B are defined, respectively, as

$$
\begin{aligned}
d_{\mathrm{H}}(A, B) & =\sup _{x \in A} d(x, B), \\
\delta_{\mathrm{H}}(A, B) & =\max \left\{d_{\mathrm{H}}(A, B), d_{\mathrm{H}}(B, A)\right\} .
\end{aligned}
$$

We also assign $d_{H}(\varnothing, B)=0$.
The closure, interior, and boundary of A are denoted, respectively, by $\bar{A}, \operatorname{int} A$, and ∂A. A subset U of X is called a neighborhood of A, if $\bar{A} \subset \operatorname{int} U$. The $\varepsilon-$ neighborhood $\mathrm{B}(A, \varepsilon)$ of A is defined to be the set $\{y \in X \mid d(y, A)<\varepsilon\}$.

Let $A_{\lambda}(\lambda \in \Lambda)$ be a family of nonempty subsets of X, where Λ is a metric space. When we say that A_{λ} is upper semicontinuous in λ at $\lambda_{0} \in \Lambda$, this means

$$
d_{\mathrm{H}}\left(A_{\lambda}, A_{\lambda_{0}}\right) \rightarrow 0 \quad \text { as } \lambda \rightarrow \lambda_{0} .
$$

Lemma 2.1 ([31]). Let X be a compact metric space, and let A and B be two disjoint closed subsets of X. Then, either there exists a subcontinuum C of X such that

$$
A \cap C \neq \varnothing \neq B \cap C,
$$

or $X=X_{A} \cup X_{B}$, where X_{A} and X_{B} are disjoint compact subsets of X containing A and B, respectively.

Lemma 2.2 ([3, p. 41]). Let X be a compact metric space. Denote $\mathcal{K}(X)$ the family of compact subsets of X which is equipped with the Hausdorff metric $\delta_{\mathrm{H}}($,$) .$ Then, $\mathcal{K}(X)$ is a compact metric space.
2.2. Criteria on bomotopy equivalence. We denote " \simeq " and " \cong " the homotopy equivalence and homeomorphism, respectively, between topological spaces.

Let X be a topological space, and $A \subset X$ be closed. The following result can be found in many textbooks on general topology.

Lemma 2.3. If A is a strong deformation retract of X, then $X \simeq A$.
Let $i_{A}: A \rightarrow X$ be the inclusion. Denote

$$
\begin{aligned}
M_{i_{A}} & =(X \times\{0\}) \cup(A \times I), \\
C_{i_{A}} & =M_{i_{A}} /(A \times\{1\}) .
\end{aligned}
$$

$M_{i_{A}}$ and $C_{i_{A}}$ are called the mapping cylinder and mapping cone of i_{A}, respectively.
The pair (X, A) is said to have homotopy extension property (H.E.P. for short) if, for any space Y, any mapping $f: M_{i_{A}} \rightarrow Y$ can be extended to a mapping $F: X \times I \rightarrow Y$.

Lemma 2.4 ($[9, ~ p .14]) .(X, A)$ has the H.E.P. if and only if $M_{i_{A}}$ is a retract of $X \times I$.

Lemma 2.5 ([9, Theorem 0.17]). Suppose (X, A) has the H.E.P. If A is contractible, then $X / A \simeq X$.

As a consequence of Lemma 2.5, we have the following result.
Corollary 2.6. Suppose (X, A) has the H.E.P. Let B be a closed subset of A. If B is a strong deformation retract of A, then $X / A \simeq X / B$.

Proof. We observe $X / A \cong(X / B) / \tilde{A}$, where $\tilde{A}=\pi_{B}(A)$, and $\pi_{B}: X \rightarrow X / B$ is the projection. In the following, we verify that $(X / B) / \tilde{A} \simeq X / B$, thus completing the proof of what we desired.

Since (X, A) has the H.E.P., $M_{i_{A}}$ is a retract of $X \times I$. Let $f: X \times I \rightarrow M_{i_{A}}$ be a retraction,

$$
f(x, t)=(\varphi(x, t), \xi(x, t)), \quad(x, t) \in X \times I
$$

where $\varphi(x, t) \in X$, and $\xi(x, t) \in I$. Define

$$
h: X \times I \rightarrow M_{i_{\bar{A}}}=((X / B) \times\{0\}) \cup(\tilde{A} \times I)
$$

as $h(x, t)=\left(\pi_{B} \circ \varphi(x, t), \xi(x, t)\right)$ for $(x, t) \in X \times I$. Let

$$
Q(x, t)=(\pi(x), t), \quad(x, t) \in X \times I .
$$

Then, $Q: X \times I \rightarrow(X / B) \times I$ is a quotient mapping. Observing that

$$
h(x, t)=\left(\pi_{B} \circ \varphi(x, t), \xi(x, t)\right)=\left(\pi_{B}(x), t\right), \quad(x, t) \in M_{i_{A}},
$$

we find that h remains constant on $B \times\{t\}$ for each $t \in I$. Consequently, we have $h \equiv$ const. on $Q^{-1}(y, t)$ for each $(y, t) \in(X / B) \times I$. Thus, by the basic knowledge in the theory of general topology (see, e.g., [29, Chapter 2, Theorem 11.1]), there is a mapping $g:(X / B) \times I \rightarrow M_{i_{\bar{A}}}$ such that $h=g \circ Q$. It is trivial to verify that g is a retraction from $(X / B) \times I$ to $M_{i_{\bar{A}}}$. Thus, the pair $(X / B, \tilde{A})$ has the H.E.P.

Since B is a strong deformation retract of A, the singleton $\{[B]\}$ is a strong deformation retract of \tilde{A}; that is, \tilde{A} is contractible. Lemma 2.5 then asserts that $(X / B) / \tilde{A} \simeq X / B$.
2.3. Wedge/smash product of pointed spaces. Let $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ be two pointed spaces. The wedge product $\left(X, x_{0}\right) \vee\left(Y, y_{0}\right)$ and smash product $\left(X, x_{0}\right) \wedge\left(Y, y_{0}\right)$ are defined, respectively, as follows:

$$
\begin{aligned}
& \left(X, x_{0}\right) \vee\left(Y, y_{0}\right)=\left(\mathcal{W},\left(x_{0}, y_{0}\right)\right), \\
& \left(X, x_{0}\right) \wedge\left(Y, y_{0}\right)=((X \times Y) / \mathcal{W},[\mathcal{W}]),
\end{aligned}
$$

where $\mathcal{W}=X \times\left\{y_{0}\right\} \cup\left\{x_{0}\right\} \times Y$.

We denote $\left[\left(X, x_{0}\right)\right]$ the homotopy type of a pointed space $\left(X, x_{0}\right)$. Since the operations " \vee " and " \wedge " preserve homotopy equivalence relations, they can be naturally extended to the homotopy types of pointed spaces. Specifically,

$$
\begin{aligned}
& {\left[\left(X, x_{0}\right)\right] \vee\left[\left(Y, y_{0}\right)\right]=\left[\left(X, x_{0}\right) \vee\left(Y, y_{0}\right)\right]} \\
& {\left[\left(X, x_{0}\right)\right] \wedge\left[\left(Y, y_{0}\right)\right]=\left[\left(X, x_{0}\right) \wedge\left(Y, y_{0}\right)\right] .}
\end{aligned}
$$

Denote $\overline{0}$ and Σ^{0} the homotopy types of the pointed spaces $(\{p\}, p)$ and $(\{p, q\}, q)$, respectively, where p and q are two distinct points. Let Σ^{m} be the homotopy type of a pointed m-dimensional sphere. We easily verify that

$$
\left[\left(X, x_{0}\right)\right] \vee \overline{0}=\left[\left(X, x_{0}\right)\right]
$$

and

$$
\Sigma^{m} \wedge \Sigma^{n}=\Sigma^{m+n}, \quad \forall m, n \geq 0
$$

2.4. Local semiflows and basic dynamical concepts. In this subsection, we briefly recall some dynamical concepts and facts that will be used throughout the paper.

Let X be a complete metric space.
A local semiflow Φ on X is a continuous map from an open subset \mathcal{D}_{Φ} of $\mathbb{R}^{+} \times X$ to X satisfying the following:
(i) For all $x \in X$, there exists $T_{x} \in(0, \infty]$ such that

$$
(t, x) \in \mathcal{D}_{\Phi} \Longleftrightarrow t \in\left[0, T_{x}\right)
$$

(ii) $\Phi(0)=,\mathrm{id}_{X}$.

Furthermore,

$$
\Phi(s+t, x)=\Phi(t, \Phi(s, x)), \quad \forall x \in X, s, t \geq 0
$$

as long as $(s+t, x) \in \mathcal{D}_{\Phi}$. The number T_{x} in the above definition is called the escape time of $\Phi(t, x)$.

Let Φ be a given local semiflow on X. For notational simplicity, we will rewrite $\Phi(t, x)$ as $\Phi(t) x$.

A trajectory on an interval J is a continuous mapping $\gamma: J \rightarrow X$ such that

$$
\gamma(t)=\Phi(t-s) \gamma(s), \quad \forall t, s \in J, t \geq s .
$$

If $J=\mathbb{R}$, then we simply call γ a complete trajectory. The ω-limit set $\omega(\gamma)$ and α-limit set $\alpha(\gamma)$ of a complete trajectory γ are defined, respectively, as

$$
\begin{aligned}
\omega(\gamma) & =\left\{y \mid \exists x_{n} \in A \text { and } t_{n} \rightarrow \infty \text { such that } \gamma\left(t_{n}\right) \rightarrow y\right\} \\
\alpha(\gamma) & =\left\{y \mid \exists x_{n} \in A \text { and } t_{n} \rightarrow-\infty \text { such that } \gamma\left(t_{n}\right) \rightarrow y\right\} .
\end{aligned}
$$

Let $S \subset X . S$ is said to be positively invariant (respectively, invariant), if $\Phi(t) S \subset S$ (respectively $\Phi(t) S=S$) for all $t \geq 0$. A compact invariant set \mathcal{A} is called an attractor if it attracts a neighborhood U of itself, namely,

$$
\lim _{t \rightarrow \infty} d_{H}(\Phi(t) U, \mathcal{A})=0
$$

The attraction basin of an attractor \mathcal{A}, denoted by $\mathcal{U}(\mathcal{A})$, is defined as

$$
\mathcal{U}(\mathcal{A})=\left\{x \mid \lim _{t \rightarrow \infty} d(\Phi(t) x, \mathcal{A})=0\right\} .
$$

Remark 2.7. By definition one easily verifies that the attraction basin $U(\mathcal{A})$ of an attractor \mathcal{A} is open. Furthermore, for any trajectory $\gamma: J \rightarrow X$ of Φ (where J is an interval), it holds that

$$
\text { either } \gamma(J) \subset \mathcal{U}(\mathcal{A}) \text {, or } \gamma(J) \cap \mathcal{U}(\mathcal{A})=\varnothing \text {. }
$$

2.5. Conley index. In this subsection we recall briefly some basic notions and results in the Conley index theory. (See [6,28] and [34] for details.)

Let Φ be a given local semiflow on X, and let M be a subset of X. We say that Φ does not explode in M if $T_{x}=\infty$ whenever $\Phi\left(\left[0, T_{x}\right)\right) x \subset M$.
M is said to be admissible (see [34, p. 13]) if, for any sequences $x_{n} \in M$ and $t_{n} \rightarrow \infty$ with $\Phi\left(\left[0, t_{n}\right]\right) x_{n} \subset M$ for all n, the sequence $\Phi\left(t_{n}\right) x_{n}$ has a convergent subsequence. Also, M is said to be strongly admissible if it is admissible and, moreover, Φ does not explode in M.

Definition 2.8. Φ is said to be asymptotically compact on X if each bounded subset B of X is strongly admissible.

From now on, we always assume that
(AC) Φ is asymptotically compact on X.
This requirement is fulfilled by a large number of examples from applications.
A compact invariant set S of Φ is said to be isolated if there exists a bounded closed neighborhood N of S such that S is the maximal invariant set in N. Consequently, N is called an isolating neighborhood of S.

Let there be given an isolated compact invariant set S. A pair of bounded closed subsets (N, E) is called an index pair of S if the following hold:
(i) $N \backslash E$ is an isolating neighborhood of S.
(ii) E is N-invariant; specifically, for any $x \in E$ and $t \geq 0$,

$$
\Phi([0, t]) x \subset N \Rightarrow \Phi([0, t]) x \subset E .
$$

(iii) E is an exit set of N. That is, for any $x \in N$, if $\Phi\left(t_{1}\right) x \notin N$ for some $t_{1}>0$, then there exists $0 \leq t_{0} \leq t_{1}$ such that $\Phi\left(t_{0}\right) x \in E$.
Remark 2.9. Index pairs in the terminology of [34] need not be bounded. However, the bounded ones are sufficient for our purposes here.

Definition 2.10 (bomotopy index). Let (N, E) be an index pair of S. Then, the homotopy Conley index of S is defined to be the homotopy type $[(N / E,[E])]$ of the pointed space ($N / E,[E]$), denoted by $h(\Phi, S)$.

Remark 2.11. Denote H_{*} and H^{*} the singular homology and cohomology theories with coefficient group \mathbb{Z}, respectively. Applying H_{*} and H^{*} to $h(\Phi, S)$, we obtain the homology and cohomology Conley index $\mathrm{CH}_{*}(\Phi, S)$ and $\mathrm{CH}^{*}(\Phi, S)$, respectively.

An important property of the Conley index is its continuation property. Here, we state a result in this line for the reader's convenience, which is actually a particular case of [34, Chapter 1, Theorem 12.2].

Let Φ_{λ} be a family of semiflows with parameter $\lambda \in \Lambda$, where Λ is a connected compact metric space. Assume $\Phi_{\lambda}(t) x$ is continuous in (t, x, λ). Denote $\tilde{\Phi}$ the skew-product flow of the family Φ_{λ} on $X \times \Lambda$ defined as follows:

$$
\tilde{\Phi}(t)(x, \lambda)=\left(\Phi_{\lambda}(t) x, \lambda\right), \quad(x, \lambda) \in X \times \Lambda .
$$

Theorem 2.12. Suppose $\tilde{\Phi}$ satisfies the assumption (AC) on $X \times \Lambda$. Let S be a compact isolated invariant set of $\tilde{\Phi}$. Then, $h\left(\Phi_{\lambda}, S_{\lambda}\right)$ is constant for $\lambda \in \Lambda$, where $S_{\lambda}=\{x \mid(x, \lambda) \in S\}$ is the λ-section of S.

Proof. Take a bounded closed isolating neighborhood U of S in $X \times \Lambda$. Then, the λ-section U_{λ} of U is an isolating neighborhood of S_{λ}. Since S is compact in $X \times \Lambda$, one easily verifies that S_{λ} is upper semicontinuous in λ, specifically, $d_{\mathrm{H}}\left(S_{\lambda^{\prime}}, S_{\lambda}\right) \rightarrow 0$ as $\lambda^{\prime} \rightarrow \lambda$. Consequently, for each fixed $\lambda \in \Lambda, \mathcal{U}_{\lambda}$ is also an isolating neighborhood of $S_{\lambda^{\prime}}$ for λ^{\prime} near λ. Now the conclusion directly follows from [34, Chapter 1, Theorem 12.2].

Finally, let us also recall the concept of an isolating block.
Let $B \subset X$ be a bounded closed set and $x \in \partial B$ be a boundary point. x is called a strict egress (respectively, strict ingress, bounce-off) point of B if, for every trajectory $\gamma:[-\tau, s] \rightarrow X$ with $\gamma(0)=x$, where $\tau \geq 0, s>0$, the following two properties hold:
(1) There exists $0<\varepsilon<s$ such that
$\gamma(t) \notin B$ (respectively, $\gamma(t) \in \operatorname{Int} B$, respectively $\gamma(t) \notin B), \quad \forall t \in(0, \varepsilon)$.
(2) If $\tau>0$, then there exists $0<\delta<\boldsymbol{\tau}$ such that
$\gamma(t) \in \operatorname{int} B$ (respectively, $\gamma(t) \notin B$, respectively $\gamma(t) \notin B), \quad \forall t \in(-\delta, t)$.
Denote B^{e} (respectively, B^{i}, B^{b}) the set of all strict egress (respectively, strict ingress, bounce-off) points of the closed set B, and set $B^{-}=B^{e} \cup B^{b}$.

A closed set $B \subset X$ is called an isolating block if B^{-}is closed and $\partial B=B^{i} \cup B^{-}$. It is well known that if B is a bounded isolating block, then $\left(B, B^{-}\right)$is an index pair of the maximal compact invariant set S (possibly empty) in B.

For convenience, if B is an isolating block, we call B^{-}the boundary exit set.

3. Local Invariant Manifolds

In this section, we present some fundamental results on local invariant manifolds of (1.1). We also state a slightly modified version of a reduction property of the Conley index given in [34].

It is well known that under the hypotheses in Section 1, the initial value problem of (1.1) is well posed in X^{α}. That is, for each $u_{0} \in X^{\alpha}$ the problem has a unique solution $u(t)$ in X^{α} with $u(0)=u_{0}$ on some maximal existence interval $[0, T)$ (see, e.g., [10, Theorem 3.3.3]).

Denote Φ_{λ} the local semiflow generated by the problem on X^{α}.
For convenience in the statement, given $Z \subset \mathbb{C}$ and $\alpha \in \mathbb{R}$, we will write $\operatorname{Re}(Z)<\alpha(>\alpha)$, which means that $\operatorname{Re}(\mu)<\alpha(>\alpha)$ for all $\mu \in Z$.

Let $L_{\lambda}=A-\mathrm{D} f_{\lambda}(0)$. Suppose then that there exists a neighborhood of λ_{0}, $J_{0}=\left[\lambda_{0}-\eta, \lambda_{0}+\eta\right]$, and $\delta>0$ such that the following hypotheses are fulfilled:
(H1) The spectral $\sigma\left(L_{\lambda}\right)$ has a decomposition $\sigma\left(L_{\lambda}\right)=\bigcup_{1 \leq i \leq 3} \sigma_{\lambda}^{i}$ with

$$
\operatorname{Re}\left(\sigma_{\lambda}^{1}\right)<-\alpha_{1}<-\alpha_{2} \leq \operatorname{Re}\left(\sigma_{\lambda}^{2}\right)<\alpha_{3}<\alpha_{4}<\operatorname{Re}\left(\sigma_{\lambda}^{3}\right)
$$

for $\lambda \in J_{0}$, where $\alpha_{i}(1 \leq i \leq 4)$ are positive constants independent of λ.
(H2) For each $\lambda \in J_{0}, X$ has a decomposition $X=X_{\lambda}^{1} \oplus X_{\lambda}^{2} \oplus X_{\lambda}^{3}$ corresponding to the spectral decomposition in (H1), where $X_{\lambda}^{i}(i=1,2,3)$ are L_{λ} invariant subspaces of X. Moreover, $\operatorname{dim}\left(X_{\lambda}^{1}\right), \operatorname{dim}\left(X_{\lambda}^{2}\right)<\infty$.
(H3) There is a family of invertible bounded linear operators $T=T_{\lambda}$ on X depending continuously on λ such that, when $\lambda \in J_{0}$, we have

$$
\begin{equation*}
T X_{\lambda}^{i}=X_{\lambda_{0}}^{i}:=X^{i}, \quad i=1,2,3 . \tag{3.1}
\end{equation*}
$$

Remark 3.1. Instead of (H3), a more natural hypothesis is to assume that (H3)' The projection operators $P_{\lambda}^{i}: X \rightarrow X_{\lambda}^{i}(i=1,2)$ are continuous in λ. Indeed, when (H3)' is fulfilled, it can be shown that there is a family of invertible bounded linear operators $T=T_{\lambda}$ on X such that (3.1) holds true (see Appendix A in [15] for details).

We rewrite $E=X^{\alpha}$ and set $E^{i}=E \cap X^{i}, E^{i j}=E \cap\left(X^{i} \oplus X^{j}\right)$, where $i, j=1,2,3(i \neq j)$. Then, $E=E^{2} \oplus E^{13}=E^{3} \oplus E^{12}$.

Remark 3.2. Since $\operatorname{dim}\left(X_{\lambda}^{1}\right), \operatorname{dim}\left(X_{\lambda}^{2}\right)<\infty$, we have $E^{1}=X^{1}, E^{2}=X^{2}$.
Lemma 3.3. Assume (H1)-(H3) are fulfilled. Then, we have the following:
(1) There exist an open convex neighborbood W of 0 in E^{2} and a mapping $\xi=$ $\xi_{\lambda}(w)$ from $W \times J_{0}$ to E^{13} which is continuous in (w, λ) and differentiable in w, such that for each $\lambda \in J_{0}$,

$$
\mathcal{M}_{\lambda}^{2}:=T^{-1} M_{\lambda}^{2}, \quad \text { where } M_{\lambda}^{2}:=\left\{w+\xi_{\lambda}(w) \mid w \in W\right\},
$$

is a local invariant manifold of the system (1.1).
(2) There exist an open convex neighborhood V of 0 in E^{12} and a mapping $\zeta=$ $\zeta_{\lambda}(v)$ from $V \times J_{0}$ to E^{3} which is continuous in (v, λ) and differentiable in v, such that for each $\lambda \in J_{0}$,

$$
\mathcal{M}_{\lambda}^{12}:=T^{-1} M_{\lambda}^{12}, \quad \text { where } M_{\lambda}^{12}:=\left\{v+\zeta_{\lambda}(v) \mid v \in V\right\}
$$

is a local invariant manifold of the system (1.1).
Proof. The above results are just slight modifications of the existing ones in the literature (see, e.g., [34, Chapter II, Theorem 2.1]). Here, we give a sketch of the proof for the reader's convenience.

Let $B_{\lambda}=T L_{\lambda} T^{-1}$, and define

$$
g_{\lambda}(v)=T\left(f_{\lambda}\left(T^{-1} v\right)-\mathrm{D} f_{\lambda}(0)\left(T^{-1} v\right)\right), \quad v \in E .
$$

Setting $u=T^{-1} v$, the system (1.1) can be transformed into an equivalent one:

$$
\begin{equation*}
v_{t}+B_{\lambda} v=g_{\lambda}(v) \tag{3.2}
\end{equation*}
$$

It is trivial to check that $\left\|\mathrm{D} g_{\lambda}(v)\right\| \rightarrow 0$ as $\|v\|_{\alpha} \rightarrow 0$ uniformly with respect to $\lambda \in J_{0}$. Further, by the Mean-value Theorem one easily verifies that for any $\varepsilon>0$, there exists a neighborhood U of 0 in E such that

$$
\left\|g_{\lambda}(u)-g_{\lambda}(v)\right\| \leq \varepsilon\|u-v\|_{\alpha}, \quad \forall u, v \in U, \lambda \in J_{0}
$$

We observe that

$$
B_{\lambda}-\mu I=T L_{\lambda} T^{-1}-\mu I=T\left(L_{\lambda}-\mu I\right) T^{-1}
$$

where $I=\mathrm{id}_{X}$ is the identity mapping on X, from which it can be easily seen that $\mu \in \mathbb{C}$ is a regular value of B_{λ} if and only if it is a regular value of L_{λ}. Hence, one concludes that

$$
\sigma\left(B_{\lambda}\right)=\sigma\left(L_{\lambda}\right) .
$$

Since $X_{\lambda}^{i}(i=1,2,3)$ are L_{λ}-invariant, it follows by (3.1) that X^{i} are B_{λ}-invariant for all $\lambda \in J_{0}$. Now, using some standard arguments in the geometric theory of PDEs (see Henry [10, Section 6] and Hale Appendix [8],) and the uniform contraction principle, it can be shown that there exist an open convex neighborhood W of 0 in E^{2} and a mapping $\xi=\xi_{\lambda}(w)$ from $W \times J_{0}$ to E^{13} which is continuous in (w, λ) and differentiable in w, such that for each $\lambda \in J_{0}$,

$$
\begin{equation*}
M_{\lambda}^{2}:=\left\{w+\xi_{\lambda}(w) \mid w \in W\right\} \tag{3.3}
\end{equation*}
$$

is a local invariant manifold of the system (3.2). Consequently, $\mathcal{M}_{\lambda}^{2}=T^{-1} M_{\lambda}^{2}$ is a local invariant manifold of (1.1).

The proof of part (2) follows a fully analogous argument.

Let $\mathcal{M}_{\lambda}^{2}$ and $\mathcal{M}_{\lambda}^{12}$ be the local invariant manifolds given in Lemma 3.3, and Φ_{λ}^{2} and Φ_{λ}^{12} be the restrictions of Φ_{λ} on $\mathcal{M}_{\lambda}^{2}$ and $\mathcal{M}_{\lambda}^{12}$, respectively, where Φ_{λ} is the local semiflow generated by (1.1).

The following result is a parameterized version of Theorem 3.1, Chapter II in [34], and can be proved in the same manner as in [34]. We omit the details.

Lemma 3.4. Assume (H1)-(H3). Then, there exist a neighborhood U of 0 in E and a number $\varepsilon>0$ such that, for every $\lambda \in\left[\lambda_{0}-\varepsilon, \lambda_{0}+\varepsilon\right]$, the following hold:
(1) $K \subset U$ is a compact invariant set of Φ_{λ} if and only if it is a compact invariant set of Φ_{λ}^{2} (respectively, Φ_{λ}^{12}) on $\mathcal{M}_{\lambda}^{2}$ (respectively, $\mathcal{M}_{\lambda}^{12}$).
(2) $K \subset U$ is an isolated invariant set of Φ_{λ} if and only if it is an isolated invariant set of Φ_{λ}^{2} (respectively, Φ_{λ}^{12}) on $\mathcal{M}_{\lambda}^{2}$ (respectively, $\mathcal{M}_{\lambda}^{12}$); furthermore,

$$
h\left(\Phi_{\lambda}, K\right)=h\left(\Phi_{\lambda}^{12}, K\right)=\Sigma^{m} \wedge h\left(\Phi_{\lambda}^{2}, K\right)
$$

where $m=\operatorname{dim}\left(X^{1}\right)$ is the dimension of X^{1}.

4. Local Dynamic Bifurcation

In this section, we state and prove some local dynamic bifurcation results concerning (1.1) in terms of invariant sets, so we always assume $n:=\operatorname{dim}\left(X^{2}\right) \geq 1$.

In what follows, by a k-dimensional topological sphere we mean the boundary ∂D of any contractible open subset D of a $(k+1)$-dimensional manifold \mathcal{M} without boundary. We use the notation \mathbb{S}^{k} to denote any k-dimensional topological sphere.

Definition 4.1. $\mu \in \mathbb{R}$ is called a (dynamic) bifurcation value of (1.1) if, for any neighborhood U of 0 and $\varepsilon>0$, there exists $\lambda \in(\mu-\varepsilon, \mu+\varepsilon)$ such that Φ_{λ} has a compact invariant set $K_{\lambda} \subset U$ with $K_{\lambda} \backslash\{0\} \neq \varnothing$.

If μ is a bifurcation value, then we call $(0, \mu)$ a (dynamic) bifurcation point.
We are basically interested in the bifurcation phenomena of the system (1.1) near a bifurcation value $\lambda=\lambda_{0}$. Thus, in addition to (H1)-(H3), we also assume
(H4) There exists $\varepsilon_{0}>0$ such that for $\lambda \in\left[\lambda_{0}-\varepsilon_{0}, \lambda_{0}+\varepsilon_{0}\right]$,

$$
\begin{array}{ll}
\operatorname{Re}\left(\sigma_{\lambda}^{2}\right)<0 & \left(\text { if } \lambda<\lambda_{0}\right) \\
\operatorname{Re}\left(\sigma_{\lambda}^{2}\right)>0 & \left(\text { if } \lambda>\lambda_{0}\right)
\end{array}
$$

Let $\mathcal{M}_{\lambda}^{2}$ and $\mathcal{M}_{\lambda}^{12}$ be the local invariant manifolds given in Lemma 3.3, and Φ_{λ}^{2} and Φ_{λ}^{12} be the restrictions of Φ_{λ} on $\mathcal{M}_{\lambda}^{2}$ and $\mathcal{M}_{\lambda}^{12}$, respectively.
Convention. For simplicity in statement, from now on we set $\lambda_{0}=0$.
4.1. Attractor/repeller bifurcation. We give here an attractor/repeller-bifurcation theorem, which slightly generalizes some fundamental results in Ma and Wang [22, Theorem 6.1] and [21, Theorem 4.3]. For the reader's convenience, we also present a self-contained proof for the theorem.

Theorem 4.2. Assume $(\mathrm{H} 1)-(\mathrm{H} 4)$ are fulfilled (with $\left.\lambda_{0}=0\right)$.
Suppose 0 is an attractor (respectively, repeller) of Φ_{0}^{2}. Then, there exists a closed neighborhood U of 0 in E and a number $\varepsilon>0$ such that, for each $\lambda \in[-\varepsilon, 0)$ (respectively, $(0, \varepsilon])$, the system Φ_{λ} bifurcates from 0 a maximal compact invariant set $K_{\lambda} \neq \varnothing$ in $U \backslash\{0\}$ which contains an invariant topological sphere \mathbb{S}^{n-1}. Furthermore,

$$
\lim _{\lambda \rightarrow 0} d_{H}\left(K_{\lambda}, S_{0}\right)=0
$$

Proof.
Case 1: 0 is an attractor of Φ_{0}^{2}. We first consider the equivalent system (3.2) for $\lambda \in J_{0}$. When (3.2) is restricted to the local center manifold M_{λ}^{2} defined by (3.3), it reduces to an ODE system on an open neighborhood W (independent of λ) of 0 in E^{2} :

$$
\begin{equation*}
w_{t}=-B_{\lambda}^{2} w+P^{2} g_{\lambda}\left(w+\xi_{\lambda}(w)\right):=F_{\lambda}(w) \tag{4.1}
\end{equation*}
$$

where $B_{\lambda}^{2}=P^{2} B_{\lambda}$, and P^{2} is the projection from $E=X^{\alpha}$ to E^{2}. Applying Lemma 3.4 to (3.2), one deduces that there exist a neighborhood U of 0 in E and $\varepsilon_{0}>0$ such that for $\lambda \in\left[-\varepsilon_{0}, \varepsilon_{0}\right], S$ is an isolated invariant set of (3.2) in U if and only if it is an isolated invariant set of the system restricted to the manifold M_{λ}^{2}.

Denote φ_{λ} the local semiflow on W generated by (4.1). Since 0 is an attractor of Φ_{0}^{2}, we find that $S_{0}:=\{0\}$ is an attractor of φ_{0}. Let $\Omega=\mathcal{U}\left(S_{0}\right)$ be the attraction basin of S_{0} in W with respect to φ_{0}. Then, by the converse Lyapunov theorem on attractors (see, e.g., [14, Theorems 3.1 and 3.2]), one can find a function $V \in C^{\infty}(\Omega)$ with $V(0)=0$ and $\lim _{x \rightarrow \partial \Omega} V(x)=+\infty$ such that

$$
\begin{equation*}
\nabla V(x) F_{0}(x) \leq-v(x), \quad \forall x \in \Omega, \tag{4.2}
\end{equation*}
$$

where $v \in C(\Omega)$ and $v(x)>0$ for $x \neq 0$. Let

$$
N=V_{a}:=\{x \in \Omega \mid V(x) \leq a\} .
$$

Then, N is a compact neighborhood of 0 in E^{2}. Pick two numbers $a, \rho>0$ sufficiently small so that

$$
\begin{equation*}
\tilde{U}:=N \times \mathrm{B}_{E^{13}}\left(\xi_{0}(N), \rho\right) \subset \mathcal{U}, \tag{4.3}
\end{equation*}
$$

where ξ_{0} is the mapping determining the local center manifold M_{0}^{2} given in Lemma 3.3, and $\mathrm{B}_{E^{13}}\left(\xi_{0}(N), \rho\right)$ denotes the ρ-neighborhood of $\xi_{0}(N)$ in E^{13}.

By (4.2), we have

$$
\nabla V(x) F_{0}(x) \leq-\mu, \quad \forall x \in \partial N
$$

where $\mu=\min _{x \in \partial N} v(x)>0$, and ∂N is the boundary of N in E^{2}. Further, by the continuity of F_{λ} in λ, there exists $0<\varepsilon_{1} \leq \varepsilon_{0}$ such that

$$
\begin{equation*}
\nabla V(x) F_{\lambda}(x) \leq-\frac{\mu}{2}, \quad \forall x \in \partial N \tag{4.4}
\end{equation*}
$$

for $\lambda \in\left[-\varepsilon_{1}, \varepsilon_{1}\right]$, which implies that N is a positively invariant set of φ_{λ}.
It can be assumed that ε_{1} is sufficiently small so that

$$
\begin{equation*}
\xi_{\lambda}(N) \subset \mathrm{B}_{E^{13}}\left(\xi_{0}(N), \rho\right), \quad \lambda \in\left[-\varepsilon_{1}, \varepsilon_{1}\right] \tag{4.5}
\end{equation*}
$$

Now, assume $\lambda \in\left[-\varepsilon_{1}, 0\right)$. Consider the inverse flow φ_{λ}^{-}of φ_{λ} generated by the system

$$
\begin{equation*}
w_{t}=-F_{\lambda}(w):=B_{\lambda}^{2} w-P^{2} g_{\lambda}\left(w+\xi_{\lambda}(w)\right) \tag{4.6}
\end{equation*}
$$

By (H4), we find that $\operatorname{Re}\left(\sigma\left(B_{\lambda}^{2}\right)\right)<0$, which implies that S_{0} is an attractor of φ_{λ}^{-}. Let $G_{\lambda}=\mathcal{U}\left(S_{0}\right)$ be the attraction basin of S_{0} in W with respect to φ_{λ}^{-}. We infer from (4.4) that each $x \in \partial N$ is a strict ingress point of φ_{λ}, and hence is a strict egress point of φ_{λ}^{-}. Thus, one necessarily has $G_{\lambda} \subset N$. Therefore, the boundary ∂G_{λ} of G_{λ} in E^{2} is contained in N (see Figure 4.1).

Figure 4.1. Attractor-bifurcation

We prove that ∂G_{λ} is an invariant set of φ_{λ}^{-}. For this purpose, it suffices to show that for each $x_{0} \in \partial G_{\lambda}$, there is a complete trajectory $w(t)$ of φ_{λ}^{-}(i.e., a solution of (4.6)) with $w(0)=x_{0}$ such that $w(t) \in \partial G_{\lambda}$ for all $t \in \mathbb{R}$.

Note that (4.6) always has a unique solution $w(t)$ defined on a maximal existence interval J such that $w(0)=x_{0}$. Since $x_{0} \notin G_{\lambda}$, by Remark 2.7 we deduce that $w(t) \notin G_{\lambda}$ for all $t \in J$. We claim that $w(t) \in \partial G_{\lambda}$ for $t \in J$, and consequently one also has $J=\mathbb{R}$, thus completing the proof of the invariance of ∂G_{λ}. We argue by contradiction and suppose the claim is false. Then, there would exist $t_{0} \in J$ such that $w\left(t_{0}\right) \notin \bar{G}_{\lambda}$. Hence, $d\left(w\left(t_{0}\right), \bar{G}_{\lambda}\right)>0$. Take a sequence
$x_{k} \in G_{\lambda}$ such that $x_{k} \rightarrow x_{0}$. Let $w_{k}(t)$ by the solution of (4.6) with $w_{k}(0)=x_{k}$. Then, by continuity properties on ODEs, we know that t_{0} belongs to the maximal existence interval J_{k} of $w_{k}(t)$ if k is sufficiently large; furthermore, $w_{k}\left(t_{0}\right) \notin \bar{G}_{\lambda}$. But by Remark 2.7, this leads to a contradiction since $w_{k}(0)=x_{k} \in G_{\lambda}$.

Denote A_{λ} the maximal compact invariant set of φ_{λ} in $N \backslash G_{\lambda}$. Clearly, $\partial G_{\lambda} \subset A_{\lambda}$. It is trivial to check that A_{λ} is the maximal compact invariant set of φ_{λ} in $N \backslash S_{0}$. Since N is an isolating neighborhood of S_{0} with respect to φ_{0}, by a simple argument via contradiction it can be shown that

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} d_{H}\left(A_{\lambda}, S_{0}\right)=0 \tag{4.7}
\end{equation*}
$$

We claim that ∂G_{λ} is an $(n-1)$-dimensional topological sphere. Indeed, define

$$
H(s, x)= \begin{cases}\varphi_{\lambda}^{-}\left(\frac{s}{1-s}\right) x, & s \in[0,1), x \in G_{\lambda}, \\ 0, & s=1, x \in G_{\lambda}\end{cases}
$$

Then, H is a strong deformation retraction shrinking G_{λ} to the point 0 . This shows that G_{λ} is contractible, and proves our claim.

Now, we define

$$
\begin{aligned}
\tilde{K}_{\lambda} & =\left\{w+\xi_{\lambda}(w) \mid w \in A_{\lambda}\right\}, \\
\tilde{S} & =\left\{w+\xi_{\lambda}(w) \mid w \in \partial G_{\lambda}\right\},
\end{aligned}
$$

where ξ_{λ} is the mapping in (4.1) given by Lemma 3.3. By (4.5) and (4.3), we find that $\tilde{K}_{\lambda} \subset \tilde{U} \subset \mathcal{U} . \tilde{K}_{\lambda}$ is the maximal compact invariant set of the system (3.2) in $\tilde{U} \backslash\{0\}$. It follows by (4.7) that $\lim _{\lambda \rightarrow 0} d_{H}\left(\tilde{K}_{\lambda}, S_{0}\right)=0$.

Finally, let $U_{\lambda}=T^{-1} \tilde{U}$, where $T=T_{\lambda}$ is the linear operator in (H3). Then, one can find a closed neighborhood U of 0 in E and a number $0<\varepsilon \leq \varepsilon_{1}$ such that $U \subset U_{\lambda}$ for all $\lambda \in[-\varepsilon, 0)$. Set $K_{\lambda}=T^{-1} \tilde{K}_{\lambda}$. Then, $\lim _{\lambda \rightarrow 0} d_{H}\left(K_{\lambda}, S_{0}\right)=0$. Thus, we may assume that ε is chosen sufficiently small so that $K_{\lambda} \subset \operatorname{int} U$ for all $\lambda \in[-\varepsilon, 0)$. It is easy to see that U and K_{λ} fulfill all the requirements of the theorem.
Case 2: The equilibrium 0 is a repeller of Φ_{0}^{2}. This case can be treated by replacing (4.1) and (4.6) with each other and repeating the above argument. We omit the details.
4.2. Invariant-set bifurcation. We now state and prove a general local in-variant-set bifurcation theorem.

Theorem 4.3. Assume that (H1)-(H4) are fulfilled. Suppose $S_{0}=\{0\}$ is an isolated invariant set of Φ_{0}. Then, one of the following assertions holds:
(1) S_{0} is an attractor (respectively, repeller) of Φ_{0}^{2}. In such a case, the system undergoes an attractor-bifurcation (respectively repeller-bifurcation) in Theorem 4.2.
(2) There exist a closed neighborhood U of 0 in E and a two-sided neighborhood I_{2} of λ_{0} such that Φ_{λ} has a nonempty maximal compact invariant set K_{λ} in $U \backslash S_{0}$ for each $\lambda \in I_{2} \backslash\left\{\lambda_{0}\right\}$.
Furthermore, in both cases the bifurcating invariant set K_{λ} is upper semicontinuous in λ with $\lim _{\lambda \rightarrow 0} d_{\mathrm{H}}\left(K_{\lambda}, 0\right)=0$.

Proof. Let us first verify the bifurcation results in (1) and (2). For this purpose, it suffices to assume S_{0} is neither an attractor nor a repeller of Φ_{0}^{2}, and to prove that the second assertion (2) holds true.

Let us start with the local semiflow φ_{λ} generated by the bifurcation equation (4.1) on W. Since $S_{0}=\{0\}$ is an isolated invariant set of Φ_{0}, by Lemma 3.4 it is isolated for Φ_{0}^{2}. Because Φ_{λ}^{2} and φ_{λ} are conjugate, one concludes that S_{0} is an isolated invariant set of φ_{0}.

Note that (H4) implies

$$
\begin{array}{ll}
\operatorname{Re}\left(\sigma\left(B_{\lambda}^{2}\right)\right)<0 & (\lambda<0) \\
\operatorname{Re}\left(\sigma\left(B_{\lambda}^{2}\right)\right)>0 & (\lambda>0)
\end{array}
$$

where B_{λ}^{2} is the linear operator in (4.1). Hence, S_{0} is a repeller of φ_{λ} when $\lambda<0$, and an attractor when $\lambda>0$. By Lemma 3.4 we also have for some $\varepsilon_{1}>0$ that

$$
\begin{array}{ll}
h\left(\varphi_{\lambda}, S_{0}\right)=\Sigma^{n} & \left(\lambda \in\left[-\varepsilon_{1}, 0\right)\right) \\
h\left(\varphi_{\lambda}, S_{0}\right)=\Sigma^{0} & \left(\lambda \in\left(0, \varepsilon_{1}\right]\right) \tag{4.8}
\end{array}
$$

Pick a closed neighborhood W_{0} of S_{0} in E^{2} such that it is an isolating neighborhood of S_{0} with respect to φ_{0}. Then, by a simple argument via contradiction, we deduce that W_{0} is also an isolating neighborhood of the maximal compact invariant set S_{λ} of φ_{λ} in W_{0} provided λ is sufficiently small; furthermore,

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} d_{\mathrm{H}}\left(S_{\lambda}, S_{0}\right)=0 \tag{4.9}
\end{equation*}
$$

Fix a positive number $\varepsilon<\varepsilon_{1}$ such that W_{0} is an isolating neighborhood of S_{λ} for all $\lambda \in[-\varepsilon, \varepsilon]$. Then, Theorem 2.12 asserts that

$$
\begin{equation*}
h\left(\varphi_{\lambda}, S_{\lambda}\right) \equiv \text { const., } \quad \lambda \in[-\varepsilon, \varepsilon] \tag{4.10}
\end{equation*}
$$

In what follows, we show that

$$
\begin{equation*}
h\left(\varphi_{0}, S_{0}\right) \neq \Sigma^{0} \tag{4.11}
\end{equation*}
$$

Since S_{0} is an isolated invariant set of φ_{0}, by [7 , Theorem 1.5], one can find a connected isolating block B of S_{0} (with respect to φ_{0}) with smooth boundary ∂B.

We claim that $B^{-} \neq \varnothing$, where B^{-}is the boundary exit set of B with respect to the flow φ_{0}. Indeed, if $B^{-}=\varnothing$ then B is positively invariant under the system φ_{0}. Because S_{0} is the maximal compact invariant set of φ_{0} in B, one easily deduces that it is an attractor of φ_{0}, which contradicts the assumption that S_{0} is not an attractor of Φ_{0}^{2} (recall that Φ_{λ}^{2} and φ_{λ} are conjugate).

Denote H_{*} the singular homology theories with coefficient group \mathbb{Z}. Then, $h\left(\varphi_{0}, S_{0}\right)=\left[\left(B / B^{-},\left[B^{-}\right]\right)\right]$, and therefore,

$$
H_{0}\left(h\left(\varphi_{0}, S_{0}\right)\right)=H_{0}\left(\left(B / B^{-},\left[B^{-}\right]\right)\right)=H_{0}\left(B, B^{-}\right) .
$$

As B is path-connected and $B^{-} \neq \varnothing$, by the basic knowledge in the theory of algebraic topology we find $H_{0}\left(B, B^{-}\right)=0$. Consequently, $H_{0}\left(h\left(\varphi_{0}, S_{0}\right)\right)=0$. On the other hand, recalling that Σ^{0} is the homotopy type of any pointed space ($\{p, q\}, q$) consisting of exactly two distinct points p and q, we have

$$
H_{0}\left(\Sigma^{0}\right)=H_{0}((\{p, q\}, q))=\mathbb{Z} .
$$

Hence, we see that (4.11) holds true.
Now assume $\lambda \in(0, \varepsilon]$. Combining (4.8) and (4.10) yields

$$
h\left(\varphi_{\lambda}, S_{\lambda}\right)=h\left(\varphi_{0}, S_{0}\right) \neq h\left(\varphi_{\lambda}, S_{0}\right),
$$

which implies that $S_{\lambda} \backslash S_{0} \neq \varnothing$. Recall that S_{0} is an attractor of φ_{λ}. Let

$$
R_{\lambda}=\left\{x \in S_{\lambda} \mid \omega(x) \cap S_{0}=\varnothing\right\} .
$$

Then, R_{λ} is a nonempty compact invariant set of φ_{λ} with $\left(R_{\lambda}, S_{0}\right)$ being a repellerattractor pair of S_{λ} (see [34, p. 141]). Because S_{λ} is maximal in W_{0}, it can be easily seen that R_{λ} is precisely the maximal compact invariant set in $W_{0} \backslash S_{0}$.

Consider the inverse flow φ_{λ}^{-}of φ_{λ} on W. Then, we have

$$
\begin{array}{ll}
h\left(\varphi_{\lambda}^{-}, S_{0}\right)=\Sigma^{0} & (\lambda \in[-\varepsilon, 0)), \\
h\left(\varphi_{\lambda}^{-}, S_{0}\right)=\Sigma^{n} & (\lambda \in(0, \varepsilon]) .
\end{array}
$$

Since S_{0} is a repeller of φ_{λ} for $\lambda \in[-\varepsilon, 0)$, it is an attractor of φ_{λ}^{-}. Repeating the argument above with φ_{λ} replaced by φ_{λ}^{-}, one immediately deduces that φ_{λ} has a nonempty maximal compact invariant set R_{λ} in $W_{0} \backslash S_{0}$ for $\lambda \in[-\varepsilon, 0)$.

We show that R_{λ} is upper semicontinuous in λ. We only consider the case where $\lambda \in(0, \varepsilon]$. The argument for the case where $\lambda \in[-\varepsilon, 0)$ can be performed in the same manner by considering the inverse flow φ_{λ}^{-}, and so we omit the details.

Let $\mathcal{U}_{\lambda}=\mathcal{U}\left(S_{0}\right)$ be the attraction basin of S_{0} in W with respect to φ_{λ}. For each fixed $\lambda>0$, pick a number $r>0$ such that $\overline{\mathrm{B}}_{r} \subset \mathcal{U}_{\lambda}$, where (and below) B_{r} denotes the ball in E^{2} centered at 0 with radius r. Then, by the stability property
of attraction basins (see, e.g., Li [13, Theorem 2.9]), there exists $\rho>0$ such that $\overline{\mathrm{B}}_{r / 2} \subset \mathcal{U}_{\lambda^{\prime}}$ provided $\left|\lambda^{\prime}-\lambda\right| \leq \rho$. This implies that

$$
R_{\lambda^{\prime}} \cap \overline{\mathrm{B}}_{r / 2}=\varnothing
$$

for all $\lambda^{\prime} \in(0, \varepsilon]$ with $\left|\lambda^{\prime}-\lambda\right| \leq \rho$. We check that $\lim _{\lambda^{\prime} \rightarrow \lambda} d_{\mathrm{H}}\left(R_{\lambda^{\prime}}, R_{\lambda}\right)=0$, thus proving what we desired.

Suppose the contrary. There would then exist $\lambda_{k} \rightarrow \lambda$ and $\delta_{0}>0$ such that

$$
d_{\mathrm{H}}\left(R_{\lambda_{k}}, R_{\lambda}\right) \geq \delta_{0}, \quad \forall k \geq 1
$$

We may assume $\left|\lambda_{k}-\lambda\right| \leq \rho$, and hence $R_{\lambda_{k}} \subset W_{0} \backslash \mathrm{~B}_{r / 2}$ for all k. Because of Lemma 2.2, it can be assumed that $R_{\lambda_{k}}$ converges to a nonempty compact subset R_{λ}^{\prime} of $W_{0} \backslash \mathrm{~B}_{r / 2}$ in the sense of Hausdorff distance $\delta_{\mathrm{H}}\left(\right.$,). Then, $d_{\mathrm{H}}\left(R_{\lambda}^{\prime}, R_{\lambda}\right) \geq \delta_{0}$. On the other hand, we can trivially verify that R_{λ}^{\prime} is an invariant set of φ_{λ}. Thus, $R_{\lambda} \cup R_{\lambda}^{\prime}$ is a compact invariant set of φ_{λ} in $W_{0} \backslash S_{0}$. This contradicts the maximality of R_{λ} in $W_{0} \backslash S_{0}$.

We are now ready to complete the proof of the theorem. Let U be the neighborhood of 0 given in Lemma 3.4. We may restrict U sufficiently small in advance so that $P^{2} T_{\lambda} U \subset W_{0}$ for all $\lambda \in[-\varepsilon, \varepsilon]$, where $P^{2}: E \rightarrow E^{2}$ is the projection, and T_{λ} is the operator in (H3). Let $K_{\lambda}=T_{\lambda}^{-1} \tilde{R}_{\lambda}$, where

$$
\tilde{R}_{\lambda}=\left\{w+\xi_{\lambda}(w) \mid w \in R_{\lambda}\right\}
$$

Then, K_{λ} is upper semicontinuous in λ and is a compact invariant set of Φ_{λ}. By (4.9), we have $\lim _{\lambda \rightarrow 0} d_{\mathrm{H}}\left(R_{\lambda}, S_{0}\right)=0$. It follows that $\lim _{\lambda \rightarrow 0} d_{\mathrm{H}}\left(K_{\lambda}, S_{0}\right)=0$. Thus, we can assume ε is chosen sufficiently small so that $K_{\lambda} \subset U$ for $\lambda \in[-\varepsilon, \varepsilon]$.

We claim that K_{λ} is the maximal compact invariant set of Φ_{λ} in $U \backslash S_{0}$, which completes the proof of the theorem. Indeed, if this were false, then Φ_{λ} would have another compact invariant set $K_{\lambda}^{\prime} \subset U \backslash S_{0}$ such that $K_{\lambda} \mp K_{\lambda}^{\prime}$. It follows that

$$
R_{\lambda}=P^{2} T_{\lambda} K_{\lambda} \mp P^{2} T_{\lambda} K_{\lambda}^{\prime}:=R_{\lambda}^{\prime} .
$$

By the invariance of K_{λ}^{\prime}, it is easy to deduce that R_{λ}^{\prime} is a compact invariant set of φ_{λ} in $W_{0} \backslash S_{0}$. However, this contradicts the maximality of R_{λ} in $W_{0} \backslash S_{0}$.
4.3. Some remarks on static bifurcation. It is worth noticing that Theorem 4.3 may also give us information on the static bifurcation of the system in some cases. For example, if the stationary problem

$$
\begin{equation*}
A u=f_{\lambda}(u), \quad u \in E:=X^{\alpha} \tag{4.12}
\end{equation*}
$$

has a variational structure, then (1.1) is a gradient-like system, and each nonempty compact invariant set K of Φ_{λ} contains at least one equilibrium point,
which is precisely a solution of (4.12). On the other hand, it is also easy to see that if K consists of at least two distinct points, then it contains at least two distinct equilibrium points of Φ_{λ}. Thus, under the hypotheses of Theorem 4.3, one immediately concludes that either there is a one-sided neighborhood I_{1} of λ_{0} such that (4.12) bifurcates two distinct nontrivial solutions for each $\lambda \in I_{1} \backslash\left\{\lambda_{0}\right\}$, or there is a two-sided neighborhood I_{2} of λ_{0} such that (4.12) bifurcates at least one nontrivial solution for each $\lambda \in I_{2} \backslash\left\{\lambda_{0}\right\}$.

We refer the interested reader to $[4,32,33]$, [36], and so on for more detailed bifurcation results on such operator equations.

As another example, we consider the particular but important case where

$$
n=\operatorname{dim}\left(X^{2}\right)=1 .
$$

We first claim that each compact invariant set C_{λ} of Φ_{λ} close to 0 contains at least one equilibrium point which is a solution of (4.12). Indeed, each such invariant set C_{λ} is contained in the local invariant manifold $\mathcal{M}_{\lambda}^{2}$. Because $\mathcal{M}_{\lambda}^{2}$ is a C^{1} curve, every connected component ℓ of C_{λ} is a segment of $\mathcal{M}_{\lambda}^{2}$. Since (1.1) reduces to a one-dimensional ODE on $\mathcal{M}_{\lambda}^{2}$ (hence, backward uniqueness holds on $\mathcal{M}_{\lambda}^{2}$), by invariance of ℓ it is trivial to deduce that the end points of ℓ are equilibria of Φ_{λ}.

Using the above basic fact, we can also easily verify that 0 is an isolated solution of (4.12) at λ_{0} if and only if $S_{0}=\{0\}$ is an isolated invariant set of $\Phi_{\lambda_{0}}$. By Theorem 4.3, we immediately obtain the following bifurcation result, which generalizes Henry [10, Theorem 6.3.2].

Theorem 4.4. Assume $(\mathrm{H} 1)-(\mathrm{H} 4)$ are fulfilled with $\operatorname{dim}\left(X^{2}\right)=1$. Then, one of the following alternatives occurs:
(1) There is a sequence u_{k} of nontrivial solutions of (4.12) at $\lambda=\lambda_{0}$ such that $u_{k} \rightarrow 0$ as $k \rightarrow \infty$.
(2) There is a one-sided neighborhood I_{1} of λ_{0} such that (4.12) bifurcates at least two nontrivial solutions for each $\lambda \in I_{1} \backslash\left\{\lambda_{0}\right\}$.
(3) There is a two-sided neighborhood I_{2} of λ_{0} such that (4.12) bifurcates at least one nontrivial solution for each $\lambda \in I_{2} \backslash\left\{\lambda_{0}\right\}$.
Remark 4.5. When $\operatorname{dim}\left(X^{2}\right)=1$, we can also use the classical Crandall-Rabinowitz Theorem (see [11, Theorem I.5.1] to derive more explicit static bifurcation results under some additional assumptions such as the transversality condition. (Some nice bifurcation results when the transversality condition mentioned above is violated can be found in [17], etc.) Other general bifurcation theorems such as the Krasnosel'skii Bifurcation Theorem (see [11, Theorem II.3.2]) also apply to dealing with this special case.

Remark 4.6. Whether the bifurcating invariant set K_{λ} contains equilibrium solutions is an interesting problem. In the case of attractor-bifurcation, this problem has already been addressed by Ma and Wang [22, p. 155, Theorem 6.1], where one can find an index formula on equilibrium solutions. For the general case treated here, results in this line will be reported in our forthcoming paper
entitled "Equilibrium index of invariant sets and global static bifurcation for nonlinear evolution equations."

5. Nontriviality of the Conley Indices of the Bifurcating Invariant Sets

Our main goal in this section is to show that the bifurcating invariant set K_{λ} in Theorem 4.3 has nontrivial Conley index. This result will play a crucial role in establishing our global dynamic bifurcation theorem. However, it may also be of independent interest in its own right.

Let $m=\operatorname{dim}\left(X^{1}\right), n=\operatorname{dim}\left(X^{2}\right)(n \geq 1)$, and let K_{λ} be the bifurcating invariant set of Φ_{λ} in Theorem 4.3.

Theorem 5.1. Suppose (H1)-(H4) are fulfilled (with $\left.\lambda_{0}=0\right)$, and $S_{0}=\{0\}$ is an isolated invariant set of Φ_{0}. Then, there exists $\varepsilon>0$ such that the following hold:
(1) Ifh $\left(\Phi_{0}, S_{0}\right) \neq \Sigma^{m+n}$, then

$$
\begin{equation*}
h\left(\Phi_{\lambda}, K_{\lambda}\right) \neq \overline{0}, \quad \lambda \in[-\varepsilon, 0) \tag{5.1}
\end{equation*}
$$

(2) Ifh $\left(\Phi_{0}, S_{0}\right) \neq \Sigma^{m}$, then

$$
h\left(\Phi_{\lambda}, K_{\lambda}\right) \neq \overline{0}, \quad \lambda \in(0, \varepsilon] .
$$

Proof. Let U be the neighborhood of 0 given in Theorems 4.2 and 4.3. Since S_{0} is an isolated invariant set of Φ_{0}, we can pick an $\varepsilon>0$ sufficiently small such that U is an isolating neighborhood of the maximal compact invariant set S_{λ} of Φ_{λ} for all $\lambda \in[-\varepsilon, \varepsilon]$. We may also assume that U and ε are chosen sufficiently small so that Lemma 3.4 applies.
(1) Assume $h\left(\Phi_{0}, S_{0}\right) \neq \Sigma^{m+n}$. Let $\lambda \in[-\varepsilon, 0)$. Then, by (H1) and (H4),

$$
h\left(\Phi_{\lambda}, S_{0}\right)=\sum^{m+n} \neq h\left(\Phi_{0}, S_{0}\right)
$$

and the system bifurcates in $U \backslash S_{0}$ a maximal compact invariant set K_{λ}. By Lemma 3.4 one has $h\left(\Phi_{\lambda}, K_{\lambda}\right)=h\left(\Phi_{\lambda}^{12}, K_{\lambda}\right)$. Therefore, to prove (5.1), we need to check that $h\left(\Phi_{\lambda}^{12}, K_{\lambda}\right) \neq \overline{0}$.

Choose an isolating block $N=N_{\lambda}$ of S_{λ} in $\mathcal{M}_{\lambda}^{12}$. Since S_{0} is a repeller of Φ_{λ}^{12} on $\mathcal{M}_{\lambda}^{12}$ (by (H4)), one can find an isolating block N_{0} of S_{0} in $\mathcal{M}_{\lambda}^{12}$ (depending upon λ) with $K_{\lambda} \cap N_{0}=\varnothing$ such that $N_{0}^{-}=\partial N_{0}$, where ∂N_{0} is the boundary of N_{0} in $\mathcal{M}_{\lambda}^{12}$. Then, $M=N \backslash \operatorname{int} N_{0}$ is an isolating block of K_{λ} (see Figure 5.1 (1)).

As $h\left(\Phi_{\lambda}, S_{0}\right)=\Sigma^{m+n}$, one finds that

$$
\begin{equation*}
S^{m+n} \simeq N_{0} / \partial N_{0}=N / M \cong\left(N / N^{-}\right) / \tilde{M}, \tag{5.2}
\end{equation*}
$$

where $\tilde{M}=\pi_{N^{-}}(M)$, and $\pi_{N^{-}}: N \rightarrow N / N^{-}$is the projection. Now, let us argue by contradiction, and suppose that $h\left(\Phi_{\lambda}^{12}, K_{\lambda}\right)=\overline{0}$. Noticing that we have

(1) $\lambda<0$

(2) $\lambda>0$

Figure 5.1.
$\left(M / N^{-},\left[N^{-}\right]\right) \cong\left(\tilde{M},\left[N^{-}\right]\right)$(here, we have used the same notation $\left[N^{-}\right]$to denote both the base points in M / N^{-}and N / N^{-}), we deduce that

$$
\left[\left(\tilde{M},\left[N^{-}\right]\right)\right]=\left[\left(M / N^{-},\left[N^{-}\right]\right)\right]=h\left(\Phi_{\lambda}^{12}, K_{\lambda}\right)=\overline{0},
$$

where " $[\cdot]$ " denotes homotopy type. This implies that \bar{M} is contractible.
By a standard argument, one can easily show that ∂N_{0} is a strong deformation retract of $N_{0} \backslash S_{0}$. Consequently, M is a strong deformation retract of $N \backslash S_{0}$. It then follows that \bar{M} is a strong deformation retract of $\left(N \backslash S_{0}\right) / N^{-}$. Hence, by [34, Chapter I, Proposition 3.6], we deduce that the pair $\left(N / N^{-}, \tilde{M}\right)$ has the homotopy extension property. Further, by Lemma 2.5 and (5.2), it holds that

$$
\begin{equation*}
N / N^{-} \simeq\left(N / N^{-}\right) / \tilde{M} \simeq S^{m+n} . \tag{5.3}
\end{equation*}
$$

On the other hand, by the continuation property of the index, we have

$$
h\left(\Phi_{\lambda}, S_{\lambda}\right)=h\left(\Phi_{0}, S_{0}\right) \neq \Sigma^{m+n}, \quad \lambda \in[-\varepsilon, 0) .
$$

Since $h\left(\Phi_{\lambda}, S_{\lambda}\right)=h\left(\Phi_{\lambda}^{12}, S_{\lambda}\right)$, we find that

$$
h\left(\Phi_{\lambda}^{12}, S_{\lambda}\right)=\left[\left(N / N^{-},\left[N^{-}\right]\right)\right] \neq \Sigma^{m+n} .
$$

This implies that $N / N^{-} \neq S^{m+n}$, which contradicts (5.3).
(2) Now, consider the case where $h\left(\Phi_{0}, S_{0}\right) \neq \Sigma^{m}$.

Let $\lambda \in(0, \varepsilon]$. Then, by (H1) and (H4), we have $h\left(\Phi_{\lambda}, S_{0}\right)=\Sigma^{m}$. Hence, $h\left(\Phi_{\lambda}, S_{0}\right) \neq h\left(\Phi_{0}, S_{0}\right)$, so the system bifurcates in $U \backslash S_{0}$ a maximal compact invariant set $K_{\lambda} \neq \varnothing$.

Let S_{λ} be the maximal compact invariant set of Φ_{λ} in U. Then, $S_{\lambda} \subset \mathcal{M}_{\lambda}^{2}$. By Lemma 3.4, we have

$$
\begin{equation*}
h\left(\Phi_{\lambda}, S_{\lambda}\right)=\Sigma^{m} \wedge h\left(\Phi_{\lambda}^{2}, S_{\lambda}\right) \tag{5.4}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
h\left(\Phi_{\lambda}, S_{\lambda}\right)=h\left(\Phi_{0}, S_{0}\right) \neq \Sigma^{m} \tag{5.5}
\end{equation*}
$$

Thus, by (5.4) and (5.5), we conclude that

$$
\begin{equation*}
h\left(\Phi_{\lambda}^{2}, S_{\lambda}\right) \neq \Sigma^{0} \tag{5.6}
\end{equation*}
$$

As Φ_{λ}^{2} and the semiflow φ_{λ} generated by the ODE system (4.1) on W are conjugate, in the following argument we identify Φ_{λ}^{2} with φ_{λ}, regardless of the conjugacy between them. By [7, Theorem 1.5], one can find a connected isolating block N of S_{0} (with respect to φ_{0}) with smooth boundary ∂N. Further, by [7, Theorem 1.6], it can be assumed that ε is sufficiently small so that N is an isolating block of S_{λ} (with respect to φ_{λ}) for all $\lambda \in(0, \varepsilon]$ with $B_{\lambda}^{-} \equiv B_{0}^{-}:=N^{-}$, where B_{λ}^{-} denotes the boundary exit set of N with respect to φ_{λ}. We claim that $N^{-} \neq \varnothing$. Indeed, if this were false, S_{0} would be an attractor of φ_{0} in N that attracts N. As S_{0} is a singleton, it follows that N is contractible. Consequently,

$$
\left[h\left(\varphi_{\lambda}, S_{\lambda}\right)=h\left(\varphi_{0}, S_{0}\right)=\left[\left(N / N^{-},\left[N^{-}\right]\right)\right]=[(N, \varnothing)]=\Sigma^{0}\right.
$$

for $\lambda \in(0, \varepsilon]$, which contradicts (5.6).
Because S_{0} is an attractor of φ_{λ} in W for $\lambda \in(0, \varepsilon]$ (by (H4)), using an appropriate smooth Lyapunov function of S_{0}, we can find an arbitrarily small isolating block N_{0} of S_{0} (depending upon λ) with smooth boundary ∂N_{0} such that $N_{0}^{-}=\varnothing$, where N_{0}^{-}is the boundary exit set of N_{0} with respect to φ_{λ}. Note that $M:=N \backslash \operatorname{int} N_{0}$ is then an isolating block of K_{λ} (with respect to φ_{λ}) with $M^{-}=N^{-} \cup \partial N_{0}$ (see Figure 5.1(2)). We show that

$$
\begin{equation*}
C H_{*}\left(\varphi_{\lambda}, K_{\lambda}\right)=H_{*}\left(h\left(\varphi_{\lambda}, K_{\lambda}\right)\right) \neq 0, \tag{5.7}
\end{equation*}
$$

where $C H_{*}\left(\varphi_{\lambda}, K_{\lambda}\right)$ is the homology Conley index of K_{λ} with respect to φ_{λ}.
First, we infer from [34] that the inclusion $M^{-} \subset M$ has the homotopy extension property. This implies that M^{-}is a strong deformation retract of one of its neighborhoods in M. As N^{-}and ∂N_{0} are disjointed compact subsets of M, each of them is a strong deformation retract of a neighborhood of itself in M. We collapse N^{-}and ∂N_{0} to two distinct points z and w (see Figure 5.1 (2)), respectively, and denote \tilde{M} the corresponding quotient space. Let $\tilde{M}_{0}=\{z, w\}$. Then,

$$
\begin{equation*}
h\left(\varphi_{\lambda}, K_{\lambda}\right)=\left[\left(M / M^{-},\left[M^{-}\right]\right)\right]=\left[\left(\tilde{M} / \tilde{M}_{0},\left[\tilde{M}_{0}\right]\right)\right] . \tag{5.8}
\end{equation*}
$$

Consider the mapping cone C_{f} as depicted in Figure 5.2, where $f: \tilde{M}_{0} \rightarrow \tilde{M}$ is the inclusion. Let

$$
C \bar{M}_{0}=\left(\tilde{M}_{0} \times I\right) /\left(\tilde{M}_{0} \times\{1\}\right) .
$$

Then, $C \tilde{M}_{0}$ is homeomorphic to $I=[0,1]$. Hence, one can think of C_{f} as the space obtained by identifying the end points 0 and 1 of I with z and w, respectively, in the disjoint union of \tilde{M} and I. We observe that \bar{M}_{0} is a strong deformation retract of an appropriate neighborhood in \tilde{M}. Consequently, $C \tilde{M}_{0}$ is a strong deformation retract of an appropriate neighborhood in C_{f}. Noticing that C_{f} is metrizable, by [34, Chapter I, Proposition 3.6], we deduce that the inclusion $C \bar{M}_{0} \subset C_{f}$ has the homotopy extension property. Since $C \bar{M}_{0}$ is contractible, by the basic knowledge on homotopy equivalence (see, e.g., [9, Proposition 0.17]), we have

$$
\begin{equation*}
\tilde{M} / \tilde{M}_{0}=C_{f} / C \tilde{M}_{0} \simeq C_{f} . \tag{5.9}
\end{equation*}
$$

FIGURE 5.2. $M / M^{-} \simeq \tilde{M} / \tilde{M}_{0} \simeq C_{f} / C \tilde{M}_{0} \simeq C_{f}$
Because M is a domain in E^{2} with smooth boundary, we deduce that M is path-connected. It then follows that \bar{M} is path-connected as well. Consequently C_{f} is a path-connected space. Let γ_{1} be a path in $\bar{M} \times\{0\}$ from $(w, 0)$ to $(z, 0)$ (see Figure 5.2), and γ_{2} be a path in C_{f} from $(z, 0)$ to $(w, 0)$ along $C \bar{M}_{0}$. Define a closed path γ in C_{f} from $(z, 0)$ to $(z, 0)$ to be the product $\gamma_{1} * \gamma_{2}$ of γ_{1} and γ_{2}. Then, by a simple continuity argument, it can be easily shown that γ is not homotopic to any constant path. Thus, the fundamental group $\pi_{1}\left(C_{f}\right) \neq 0$. Further, by some basic knowledge in the theory of algebraic topology, we know that $H_{1}\left(C_{f}\right) \neq 0$. In view of (5.8) and (5.9), we immediately conclude that $H_{1}\left(h\left(\varphi_{\lambda}, K_{\lambda}\right)\right) \neq 0$. This finishes the proof of (5.7).

Now, we verify that $h\left(\Phi_{\lambda}, K_{\lambda}\right) \neq \overline{0}$. By Lemma 3.4, it suffices to check that $h\left(\Phi_{\lambda}^{12}, K_{\lambda}\right) \neq \overline{0}$. Suppose the contrary. Then, we would have $C H_{*}\left(\Phi_{\lambda}^{12}, K_{\lambda}\right)=0$. Invoking the Poincaré-Lefschetz duality theory on homology Conley index (see

McCord [18, Theorem 2.1]), it then holds that $C H^{*}\left(\left(\Phi_{\lambda}^{12}\right)^{-}, K_{\lambda}\right)=0$, where $\left(\Phi_{\lambda}^{12}\right)^{-}$denotes the inverse flow of Φ_{λ}^{12}. On the other hand, for $\left(\Phi_{\lambda}^{12}\right)^{-}$, we have

$$
h\left(\left(\Phi_{\lambda}^{12}\right)^{-}, K_{\lambda}\right)=h\left(\left(\Phi_{\lambda}^{2}\right)^{-}, K_{\lambda}\right)=h\left(\varphi_{\lambda}^{-}, K_{\lambda}\right) .
$$

(Recall that we identify Φ_{λ}^{2} with φ_{λ}, regardless of the conjugacy between them.) Hence, $C H^{*}\left(\varphi_{\lambda}^{-}, K_{\lambda}\right)=0$. Again, by the Poincaré-Lefschetz duality theory, we find that $\mathrm{CH}_{*}\left(\varphi_{\lambda}, K_{\lambda}\right)=0$, which contradicts (5.7).

6. Global Dynamic Bifurcation

In this section, we establish a global dynamic bifurcation result.
6.1. Existence of a local bifurcation branch. We first prove an existence result for a local bifurcation branch.

Set $\mathcal{E}=E \times \mathbb{R}$, where $E=X^{\alpha}$. Here, \mathcal{E} is equipped with the metric ρ defined as

$$
\rho\left((u, \lambda),\left(v, \lambda^{\prime}\right)\right)=\|u-v\|_{\alpha}+\left|\lambda-\lambda^{\prime}\right|, \quad \forall(u, \lambda),\left(v, \lambda^{\prime}\right) \in \mathcal{E}
$$

Let $Z \subset \mathcal{E}$. For any $\lambda \in \mathbb{R}$, denote \mathcal{Z}_{λ} the λ-section of $\mathcal{Z}, \mathcal{Z}_{\lambda}=\{u \mid(u, \lambda) \in \mathcal{Z}\}$.
Let $\tilde{\Phi}$ be the skew-product flow of the family $\Phi_{\lambda}(\lambda \in \mathbb{R})$ on \mathcal{E},

$$
\tilde{\Phi}(t)(u, \lambda)=\left(\Phi_{\lambda}(t) u, \lambda\right), \quad \forall(u, \lambda) \in \mathcal{E} .
$$

By the basic theory on abstract evolution equations (see, e.g., [10, Chaptet 3] or [34, Chapter 1, Theorem 4.4]), one can easily verify that $\tilde{\Phi}$ is asymptotically compact: that is, that $\tilde{\Phi}$ satisfies the hypothesis (AC) in Section 2.

For each $\lambda \in \mathbb{R}$, denote \mathcal{K}_{λ} the family of nonempty compact invariant sets K of Φ_{λ} with $0 \notin K$. Given $\mathcal{U} \subset \mathcal{E}$, define

$$
C(\mathcal{U})=\overline{\bigcup\left\{K \times\{\lambda\} \subset \mathcal{U} \mid K \in \mathcal{K}_{\lambda}, \lambda \in \mathbb{R}\right\}}
$$

Definition 6.1 (Bifurcation branch). Let $\left(0, \lambda_{0}\right)$ be a bifurcation point, and $\mathcal{U} \subset \mathcal{E}$ be a closed neighborhood of $\left(0, \lambda_{0}\right)$. Then, the bifurcation branch in \mathcal{U} from $\left(0, \lambda_{0}\right)$, denoted by $\Gamma_{U}\left(0, \lambda_{0}\right)$, is defined to be the connected component of $C(\mathcal{U})$ which contains $\left(0, \lambda_{0}\right)$.

We now prove the following interesting result which ensures the existence of a local bifurcation branch.

Theorem 6.2. Suppose the hypotheses (H1)-(H4) in Theorem 4.3 are fulfilled with $\lambda_{0}=0$, and that $S_{0}=\{0\}$ is an isolated invariant set of Φ_{0}. Then, there exists $\varepsilon>0$ such that $\Gamma \cap(U \times\{ \pm \varepsilon\}) \neq \varnothing$, where $\Gamma=\Gamma \mathcal{U}(0,0)$, and $\mathcal{U}=U \times[-\varepsilon, \varepsilon]$.

Proof. Let U be the neighborhood of 0 given in Theorem 4.3, and let S_{λ} be the maximal compact invariant set of Φ_{λ} in U. Choose an $\varepsilon>0$ such that the assertions in Theorem 5.1 hold. Let K_{λ} be the maximal compact invariant set of Φ_{λ} in $U \backslash S_{0}$. Since $\lim _{\lambda \rightarrow 0} d_{\mathrm{H}}\left(K_{\lambda}, 0\right)=0$, we may also assume ε is sufficiently small so that there exists $r>0$ such that

$$
\begin{equation*}
\mathrm{B}\left(K_{\lambda}, r\right) \subset U, \quad \forall \lambda \in[-\varepsilon, \varepsilon] . \tag{6.1}
\end{equation*}
$$

We show that ε fulfills the requirement of the theorem.
For definiteness, by Theorem 5.1 it can be assumed that

$$
\begin{equation*}
h\left(\Phi_{\lambda}, K_{\lambda}\right) \neq \overline{0} \tag{6.2}
\end{equation*}
$$

for $\lambda \in(0, \varepsilon]$. We check that $\Gamma \cap(U \times\{\varepsilon\}) \neq \varnothing$, thus completing the proof of the theorem.

We first prove that for any $0<\mu<\varepsilon, C\left(U_{\mu}\right)$ has a connected component Z such that

$$
\begin{equation*}
Z \cap(U \times\{\mu\}) \neq \varnothing \neq Z \cap(U \times\{\varepsilon\}), \tag{6.3}
\end{equation*}
$$

where $\mathcal{U}_{\mu}=U \times[\mu, \varepsilon]$. For this purpose, let us first verify that

$$
C\left(\mathcal{U}_{\mu}\right)=\bigcup_{\mu \leq \lambda \leq \varepsilon} K_{\lambda} \times\{\lambda\}:=\mathcal{K} .
$$

Indeed, we infer from the maximality of K_{λ} in $U \backslash S_{0}$ that $C\left(\mathcal{U}_{\mu}\right)=\overline{\mathcal{K}}$. On the other hand, it is clear that \mathcal{K} is invariant under the skew-product flow $\tilde{\Phi}$. Hence, by asymptotic compactness of $\tilde{\Phi}$, we deduce that \mathcal{K} is pre-compact. Further, by upper semicontinuity of K_{λ} in λ, one can easily verify that \mathcal{K} is closed. Thus, \mathcal{K} is compact. Consequently, $\mathcal{C}\left(\mathcal{U}_{\mu}\right)=\overline{\mathcal{K}}=\mathcal{K}$.

The compactness of \mathcal{K} also implies

$$
\begin{equation*}
d\left(0, K_{\lambda}\right) \geq 2 \eta, \quad \forall \lambda \in[\mu, \varepsilon] \tag{6.4}
\end{equation*}
$$

where $\eta>0$ is a positive number independent of λ.
In what follows, we argue by contradiction and suppose that (6.3) fails to be true. Then, for any connected component \mathcal{Z} of $C\left(\mathcal{U}_{\mu}\right)$, we have

$$
\text { either } Z \cap(U \times\{\mu\})=\varnothing \text {, or } Z \cap(U \times\{\varepsilon\})=\varnothing \text {. }
$$

If there are only a finite number of components, then each component Z is isolated in \mathcal{U}. Because the λ-section \mathcal{Z}_{λ} of \mathcal{Z} is empty when λ is close to either μ or ε, by the continuation property of the Conley index, we see that $h\left(\Phi_{\lambda}, Z_{\lambda}\right) \equiv \overline{0}$. Consequently, the "sum" of these indices equals $\overline{0}$. This contradicts (6.2) and
justifies (6.3), as the union of $\mathcal{Z}_{\lambda}{ }^{\prime} s$ is precisely K_{λ}. However, in general there is also the possibility that $C\left(\mathcal{U}_{\mu}\right)$ may contain infinitely many components. We will employ the separation lemma given in Section 2 to overcome this difficulty.

Set $\mathcal{O}_{\mu}=\mathcal{U}_{\mu} \backslash(\mathrm{B}(0, \eta) \times[\mu, \varepsilon])$. Then, clearly $C\left(\mathcal{O}_{\mu}\right)=C\left(\mathcal{U}_{\mu}\right)$. Denote \mathcal{F} the family of connected components of $C\left(\mathcal{O}_{\mu}\right)$. By (6.1) and (6.4), we see that \mathcal{O}_{μ} is a neighborhood of Z in the space

$$
\mathcal{H}=E \times[\mu, \varepsilon]
$$

for each $\mathcal{Z} \in \mathcal{F}$. This allows us to pick for each $Z \in \mathcal{F}$ a closed neighborhood $\Omega_{\mathcal{Z}}$ in \mathcal{H} with $\Omega_{z} \subset \mathcal{O}_{\mu}$ such that if $\mathcal{Z} \cap(U \times\{\sigma\})=\varnothing$ (where $\sigma=\mu$ or ε), then

$$
\begin{equation*}
\Omega_{\mathcal{Z}} \cap(U \times\{\sigma\})=\varnothing \tag{6.5}
\end{equation*}
$$

(see Figure 6.1).

FIGURE 6.1. Separating neighborhoods of \mathcal{Z} in \mathcal{H}
For any $\mathcal{O} \subset \mathcal{H}$, denote $\partial_{\mathcal{H}} \mathcal{O}$ the boundary of \mathcal{O} in \mathcal{H}. Given $Z \in \mathcal{F}$, set

$$
\begin{aligned}
\mathfrak{B} & =\bigcup\left\{\mathcal{F} \in \mathcal{F} \mid \mathcal{F} \cap \partial_{\mathcal{H}} \Omega_{\mathcal{Z}} \neq \varnothing\right\} \\
\mathfrak{D} & =\bigcup\left\{\mathcal{F} \in \mathcal{F} \mid \mathcal{F} \cap \Omega_{\mathcal{Z}} \neq \varnothing\right\}
\end{aligned}
$$

We claim that both \mathfrak{B} and \mathfrak{D} are closed. Indeed, if $b \in \overline{\mathfrak{B}}$, then there exists a sequence $b_{k} \in \mathfrak{B}$ such that $b_{k} \rightarrow b$. We may assume that $b_{k} \in \mathcal{F}_{k}$ for some $\mathcal{F}_{k} \in \mathcal{F}$ with $\mathcal{F}_{k} \cap \partial_{\mathcal{H}} \Omega_{\mathcal{Z}} \neq \varnothing$. By Lemma 2.2, we deduce that there exists a subsequence of \mathcal{F}_{k}, still denoted by \mathcal{F}_{k}, such that

$$
\lim _{k \rightarrow \infty} \delta_{\mathrm{H}}\left(\mathcal{F}_{k}, \mathcal{F}_{0}\right)=0
$$

One trivially checks that \mathcal{F}_{0} is connected and contained in $C\left(\mathcal{O}_{\mu}\right)$; moreover, $\mathcal{F}_{0} \cap \partial_{\mathcal{H}} \Omega_{\mathcal{Z}} \neq \varnothing$. Since $b \in \mathcal{F}_{0}$, we conclude that $b \in \mathfrak{B}$. Hence, \mathfrak{B} is closed. Likewise, it can be shown that \mathfrak{D} is closed.

Note that $\mathcal{Z} \cap \mathfrak{B}=\varnothing$. Since \mathcal{Z} does not intersect any other connected component of \mathfrak{D}, by Lemma 2.1 there exist two disjoint closed subsets \mathcal{K}_{1} and \mathcal{K}_{2} of \mathfrak{D} such that $\mathfrak{D}=\mathcal{K}_{1} \cup \mathcal{K}_{2}$, and $\mathcal{Z} \subset \mathcal{K}_{1}, \mathfrak{B} \subset \mathcal{K}_{2}$. It is clear that \mathcal{K}_{1} is contained in the interior of Ωz relative to \mathcal{H}.

Take a positive number δz with

$$
\delta_{z}<\frac{1}{8} \min \left(d\left(\mathcal{K}_{1}, \mathcal{K}_{2}\right), d\left(\mathcal{K}_{1}, \partial_{\mathcal{H}} \Omega_{z}\right)\right) .
$$

Let $\mathcal{V}_{\mathcal{Z}}=\mathrm{B}_{\mathcal{H}}\left(\mathcal{K}_{1}, 4 \delta_{z}\right)$ be the $4 \delta_{z}$-neighborhood of \mathcal{K}_{1} in \mathcal{H}. Then, $\mathcal{V}_{\mathcal{Z}} \subset \Omega_{\mathcal{Z}}$, and

$$
\begin{equation*}
\mathrm{B}_{\mathcal{H}}\left(\partial_{\mathcal{H}} \mathcal{V}_{\mathcal{Z}}, 2 \delta_{z}\right) \cap \mathcal{C}\left(\mathcal{O}_{\mu}\right)=\varnothing \tag{6.6}
\end{equation*}
$$

By the compactness of $C\left(\mathcal{O}_{\mu}\right)$, there exist a finite number of $\mathcal{Z} \in \mathcal{F}$, say, $\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{l}$, such that $\mathcal{C}\left(\mathcal{O}_{\mu}\right) \subset \bigcup_{1 \leq k \leq l} \mathcal{V}_{z_{k}}$. Set

$$
\mathcal{W}_{k}=\mathcal{V}_{z_{k}} \backslash\left(\overline{\mathcal{V}}_{z_{1}} \cup \ldots \cup \overline{\mathcal{V}}_{z_{k-1}}\right), \quad k=1,2, \ldots, l
$$

Then, $\mathcal{W}_{k}{ }^{\prime} s$ are disjoint open subsets of \mathcal{H}. We can easily check that

$$
\begin{equation*}
\partial_{\mathcal{H}} \mathcal{W}_{k} \subset \bigcup_{1 \leq i \leq k} \partial_{\mathcal{H}} \mathcal{V}_{\mathcal{Z}_{i}} . \tag{6.7}
\end{equation*}
$$

Thus, we deduce that $\mathcal{C}\left(\mathcal{O}_{\mu}\right) \subset \cup_{1 \leq k \leq l} \mathcal{W}_{k}$.
Let $S_{k}=C\left(\mathcal{O}_{\mu}\right) \cap \mathcal{W}_{k}$. We claim that

$$
\begin{equation*}
d\left(S_{k}, \partial_{\mathcal{H}} \mathcal{W}_{k}\right)>0 . \tag{6.8}
\end{equation*}
$$

Indeed, if $w \in S_{k}$, then by (6.6) we have

$$
d\left(w, \partial_{\mathcal{H}} \mathcal{V}_{z_{i}}\right) \geq 2 \delta z_{z_{i}} \geq 2 \min _{1 \leq j \leq l} \delta z_{j}:=\delta_{0}>0, \quad 1 \leq i \leq l,
$$

and the conclusion follows from (6.7).
It follows by (6.8) that $S_{k}=C\left(\mathcal{O}_{\mu}\right) \cap \bar{W}_{k}$. Hence, S_{k} is compact. It can be easily seen that S_{k} is the maximal compact invariant set of $\bar{\Phi}$ in \bar{W}_{k}. Since \bar{W}_{k} is a neighborhood of S_{k} in \mathcal{H}, by Theorem 2.12 , we have

$$
\begin{equation*}
h\left(\Phi_{\lambda}, S_{k, \lambda}\right) \equiv \text { const., } \quad \lambda \in[\mu, \varepsilon], \tag{6.9}
\end{equation*}
$$

where $S_{k, \lambda}$ is the λ-section of S_{k}. On the other hand, by (6.5) we have either $S_{k, \mu}=\varnothing$ or $S_{k, \varepsilon}=\varnothing$. Hence, by (6.9) it holds that

$$
\begin{equation*}
h\left(\Phi_{\lambda}, S_{k, \lambda}\right) \equiv \overline{0}, \quad \lambda \in[\mu, \varepsilon] . \tag{6.10}
\end{equation*}
$$

Now, by (6.10) we conclude that

$$
h\left(\Phi_{\lambda}, K_{\lambda}\right)=h\left(\Phi_{\lambda}, S_{1, \lambda}\right) \vee \cdots \vee h\left(\Phi_{\lambda}, S_{l, \lambda}\right)=\overline{0} .
$$

This contradicts (6.2), and completes the proof of (6.3).
We are now ready to complete the proof of the theorem. Take a sequence of positive numbers $\mu_{k} \rightarrow 0$. For each μ_{k}, pick a connected component \mathcal{Z}_{k} of $\mathcal{C}\left(\mathcal{O}_{\mu_{k}}\right)$ such that

$$
\mathcal{Z}_{k} \cap\left(U \times\left\{\mu_{k}\right\}\right) \neq \varnothing \neq \mathcal{Z}_{k} \cap(U \times\{\varepsilon\}) .
$$

By Lemma 2.2, we may assume that

$$
\lim _{k \rightarrow \infty} \delta_{\mathrm{H}}\left(Z_{k}, Z_{0}\right)=0 .
$$

Then, \mathcal{Z}_{0} is a continuum in $\mathcal{C}(\mathcal{U})$ with $(0,0) \in \mathcal{Z}_{0}$ and $\mathcal{Z}_{0} \cap(U \times\{\varepsilon\}) \neq \varnothing$. \square
6.2. Global bifurcation. For the sake of convenience in statement, we make a convention that $\infty \in \partial \Omega$ if Ω is an unbounded subset of \mathcal{E}.

The main result in this subsection is the following theorem.
Theorem 6.3 (Global dynamic bifurcation). Assume that the hypotheses in Theorem 4.3 are fulfilled. Let $\Omega \subset \mathcal{E}$ be a closed neighborhood of the bifurcation point $(0,0)$. Suppose that $S_{0}=\{0\}$ is an isolated invariant set of Φ_{0}.

Let $\Gamma=\Gamma_{\Omega}(0,0)$. Then, one of the following cases occurs:
(1) $\Gamma \cap \partial \Omega \neq \varnothing$ (see Figure $6.2(1))$.
(2) $0 \in \overline{\Gamma_{0} \backslash\{0\}}$, where Γ_{0} is the 0 -section of Γ (see Figure 6.2 (2)).
(3) There exists $\lambda_{1} \neq 0$ such that $\left(0, \lambda_{1}\right) \in \Gamma$ (see Figure 6.2 (3)).

Proof. We argue by contradiction and suppose that none of the cases (1)-(3) occurs. Then, Γ is a bounded closed subset of \mathcal{E} contained in the interior of Ω as depicted in Figure $6.2(4)$. It is easy to see that Γ is invariant under the skewproduct flow $\tilde{\Phi}$. Hence, by asymptotic compactness of $\tilde{\Phi}$, we deduce that Γ is compact.

Since $0 \notin \overline{\Gamma_{0} \backslash S_{0}}$, we can write Γ_{0} as $\Gamma_{0}=S_{0} \cup A_{0}$, where A_{0} is a compact invariant set of Φ_{0} with $A_{0} \cap S_{0}=\varnothing$. We only consider the case where $A_{0} \neq \varnothing$. The argument for the case where $A_{0}=\varnothing$ is a slight modification of that of the former one.

Let $U \subset E$ and $\varepsilon>0$ be as in Theorem 6.2. Then, the system Φ_{λ} bifurcates for, say, each $0<\lambda \leq \varepsilon$, a nonempty maximal compact invariant set K_{λ} in $U \backslash S_{0}$ with

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} d_{\mathrm{H}}\left(K_{\lambda}, S_{0}\right)=0 \tag{6.11}
\end{equation*}
$$

Figure 6.2.
and

$$
\begin{equation*}
h\left(\Phi_{\lambda}, K_{\lambda}\right) \neq \overline{0}, \quad \forall \lambda \in(0, \varepsilon] . \tag{6.12}
\end{equation*}
$$

Pick a closed neighborhood V of 0 with $V \subset U$ and $d\left(A_{0}, V\right):=\sigma_{0}>0$. By (6.11) we can further restrict ε sufficiently small so that, for some $r_{0}>0$,

$$
\mathrm{B}\left(K_{\lambda}, r_{0}\right) \subset V, \quad \forall \lambda \in(0, \varepsilon] .
$$

By the compactness of Γ it is easy to verify that the λ-section Γ_{λ} of Γ is upper semicontinuous in λ. Let $Z=\Gamma \cap(V \times[0, \varepsilon])$. Then, $d_{\mathrm{H}}\left(Z_{\lambda}, S_{0}\right) \rightarrow 0$ as $\lambda \rightarrow 0$. As $A_{0} \cap S_{0}=\varnothing$, it also holds that

$$
\lim _{\lambda \rightarrow 0} d_{\mathrm{H}}\left(A_{\lambda}, A_{0}\right) \rightarrow 0
$$

where $A_{\lambda}=\Gamma_{\lambda} \backslash Z_{\lambda}(\lambda \in[0, \varepsilon])$. Thus, there exist $\eta_{0}>0$ and $0<\varepsilon^{\prime} \leq \varepsilon$ such that

$$
\begin{equation*}
\overline{\mathrm{B}}\left(z_{\lambda}, \eta_{0}\right) \subset V, \overline{\mathrm{~B}}\left(A_{\lambda}, \eta_{0}\right) \cap V=\varnothing \tag{6.13}
\end{equation*}
$$

for all $\lambda \in\left[0, \varepsilon^{\prime}\right]$. Note that both \mathcal{Z}_{λ} and A_{λ} are compact invariant sets of Φ_{λ}.

Let $M_{0}=\bigcup_{\lambda \geq \varepsilon^{\prime}} \Gamma_{\lambda}$. It can be easily shown that M_{0} is a compact subset of E. Clearly, $0 \notin M_{0}$; hence,

$$
\begin{equation*}
d\left(0, M_{0}\right):=\delta_{0}>0 . \tag{6.14}
\end{equation*}
$$

Fix a number $0<r<\frac{1}{3} \min \left(\eta_{0}, \delta_{0}\right)$. Utilizing the separation lemma, by a similar argument as in the proof of Theorem 6.2, we can find a closed neighborhood \mathcal{O} of Γ with $\mathcal{O} \subset \mathrm{B}_{\mathcal{E}}(\Gamma, r)$ such that

$$
\begin{equation*}
C(\Omega) \cap \partial \mathcal{O}=\varnothing \tag{6.15}
\end{equation*}
$$

Here, $\mathrm{B}_{\mathcal{E}}(\Gamma, r)$ denotes the r-neighborhood of Γ in \mathcal{E}. By the choice of r, it can be easily seen that if $\lambda \in\left(0, \varepsilon^{\prime}\right]$, then $\mathcal{O}_{\lambda} \subset \overline{\mathrm{B}}\left(\mathcal{Z}_{\lambda}, \eta_{0}\right) \cup \overline{\mathrm{B}}\left(A_{\lambda}, \eta_{0}\right)$ (see Figure 6.3 (1)). Set

$$
G_{\lambda}=\mathcal{O}_{\lambda} \cap \overline{\mathrm{B}}\left(\mathcal{Z}_{\lambda}, \eta_{0}\right), H_{\lambda}=\mathcal{O}_{\lambda} \cap \overline{\mathrm{B}}\left(A_{\lambda}, \eta_{0}\right) .
$$

By (6.13), we have

$$
\begin{equation*}
\mathcal{O}_{\lambda}=G_{\lambda} \cup H_{\lambda}, G_{\lambda} \cap H_{\lambda}=\varnothing \tag{6.16}
\end{equation*}
$$

for $\lambda \in\left(0, \varepsilon^{\prime}\right]$.
We claim there exists $\sigma>0$ such that $\mathrm{B}_{\sigma} \subset G_{\lambda}$ for all λ sufficiently small, where (and below) B_{R} denotes the ball in E centered at 0 with radius R. Suppose the contrary. There would then exist sequences $\lambda_{k} \rightarrow 0$ and $x_{k} \in \partial G_{\lambda_{k}}$ such that $x_{k} \rightarrow 0$. Noticing that $\left(x_{k}, \lambda_{k}\right) \in \partial \mathcal{O}$, we conclude that $(0,0) \in \partial \mathcal{O}$, a contradiction!

By (6.11), we can find a number $0<\mu \leq \varepsilon^{\prime} / 2$ such that

$$
\begin{equation*}
K_{\lambda} \subset \mathrm{B}_{\sigma} \subset G_{\lambda}, \quad \forall \lambda \in(0,2 \mu] . \tag{6.17}
\end{equation*}
$$

Using the upper semicontinuity of K_{λ} in λ (see Theorems 4.3), we can easily show that $F=\bigcup_{\mu \leq \lambda \leq \varepsilon^{\prime}} K_{\lambda}$ is closed in E. Because $\mathcal{F}=\bigcup_{\mu \leq \lambda \leq \varepsilon^{\prime}} K_{\lambda} \times\{\lambda\}$ is invariant under the system $\tilde{\Phi}$, by asymptotic compactness of $\tilde{\Phi}$ we deduce that \mathcal{F} is precompact in \mathcal{E}. It then follows that F is compact in E, and hence,

$$
d(0, F):=d_{0}>0 .
$$

Take a $\Lambda>0$ such that $\mathcal{O} \subset E \times(-\Lambda, \Lambda)$. Let ρ be a positive number with $\rho<\rho_{0}:=\frac{1}{2} \min \left(d_{0}, \delta_{0}\right)$, where δ_{0} is the number given in (6.14). Set

$$
\mathcal{V}=\mathcal{O} \cap \mathcal{H}, \mathcal{W}=\mathcal{V} \backslash\left(\mathrm{B}_{\rho} \times[\mu, \Lambda]\right),
$$

where $\mathcal{H}=E \times[\mu, \Lambda]$ (see Figure $6.3(2)$). Clearly, \mathcal{V} is closed in \mathcal{H}. Since $\mathrm{B}_{\rho} \times[\mu, \Lambda]$ is open in \mathcal{H}, we see that \mathcal{W} is closed in \mathcal{H} as well. We claim that

$$
\begin{equation*}
\mathcal{C}(\mathcal{W})=C(\mathcal{V}):=C, \quad \forall \rho<\rho_{0} . \tag{6.18}
\end{equation*}
$$

Figure 6.3.
To see this, by definition it suffices to show that if $\lambda \in[\mu, \Lambda]$, then any compact invariant set M of Φ_{λ} in $\mathcal{V}_{\lambda} \backslash S_{0}$ is necessarily contained in \mathcal{W}_{λ}.

We first consider $\lambda \in\left[\mu, \varepsilon^{\prime}\right]$. By (6.13) and the choice of r, we have

$$
M \subset \mathcal{V}_{\lambda} \subset \overline{\mathrm{B}}\left(A_{\lambda}, \eta_{0}\right) \cup V .
$$

Clearly, $M \cap \overline{\mathrm{~B}}\left(A_{\lambda}, \eta_{0}\right) \subset \mathcal{W}_{\lambda}$. We observe that $M \cap V$ is a compact invariant set of Φ_{λ} in $V \backslash S_{0}$. Therefore, by the maximality of K_{λ} in $V \backslash S_{0}$, we have $M \cap V \subset K_{\lambda}$. Because $K_{\lambda} \cap \mathrm{B}_{2 \rho}=\varnothing$ for $\mu \leq \lambda \leq \varepsilon^{\prime}$, by the definition of \mathcal{W} we see that $M \cap V \subset \mathcal{W}_{\lambda}$. Thus, $M \subset \mathcal{W}_{\lambda}$.

Now, assume that $\lambda>\varepsilon^{\prime}$. Then, by the choice of ρ, we find that $\mathcal{O}_{\lambda} \cap \mathrm{B}_{\rho}=\varnothing$ (see Figure $6.3(2))$. It follows that $\mathcal{V}_{\lambda}=\mathcal{W}_{\lambda}$. This finishes the proof of what we desired. Hence, (6.18) holds true.

We show that \mathcal{V} is a neighborhood of C in $\mathcal{H}:=E \times[\mu, \Lambda]$. Suppose the contrary. Then, $\mathcal{C} \cap \partial_{\mathscr{H}} \mathcal{V} \neq \varnothing$, where $\partial_{\mathcal{H}} \mathcal{V}$ denotes the boundary of \mathcal{V} relative to \mathcal{H}. Noticing that

$$
\partial_{\mathcal{H}} \mathcal{V}=\partial_{\mathcal{H}}(\mathcal{O} \cap \mathcal{H}) \subset \partial \mathcal{O} \cap \mathcal{H},
$$

we have

$$
C \cap \partial \mathcal{O}=C \cap(\partial \mathcal{O} \cap \mathcal{H}) \supset C \cap \partial_{\mathcal{H}} \mathcal{V} \neq \varnothing \text {. }
$$

This contradicts (6.15).
By (6.18), we can fix a $\rho>0$ sufficiently small so that $\mathcal{W}=\mathcal{V} \backslash\left(\mathrm{B}_{\rho} \times[\mu, \Lambda]\right)$ is a neighborhood of C in \mathcal{H}. By the definitions of $C=C(\mathcal{W})$ and the skewproduct flow, one can easily see that C is the maximal compact invariant set of $\tilde{\Phi}$ in \mathcal{W}. Hence, \mathcal{W} is an isolating neighborhood of \mathcal{C} in \mathcal{H}. It then follows by Theorem 2.12 that

$$
\begin{equation*}
h\left(\Phi_{\lambda}, C_{\lambda}\right) \equiv h\left(\Phi_{\Lambda}, C_{\Lambda}\right)=h\left(\Phi_{\Lambda}, \varnothing\right)=\overline{0}, \quad \lambda \in[\mu, \Lambda] . \tag{6.19}
\end{equation*}
$$

On the other hand, if $\mu \leq \lambda \leq 2 \mu$, then by (6.17) and the choice of ρ, we find that $\tilde{G}_{\lambda}:=G_{\lambda} \backslash \mathrm{B}_{\rho}$ is a neighborhood of K_{λ}. Since K_{λ} is the maximal compact
invariant of Φ_{λ} in $V \backslash S_{0}$ (and hence in \tilde{G}_{λ}), we infer from (6.16) that $C_{\lambda} \backslash K_{\lambda}$ is necessarily contained in H_{λ} (note that $\mathcal{W}_{\lambda}=\tilde{G}_{\lambda} \cup H_{\lambda}$). Thus,

$$
h\left(\Phi_{\lambda}, C_{\lambda}\right)=h\left(\Phi_{\lambda}, K_{\lambda}\right) \vee h\left(\Phi_{\lambda}, C_{\lambda} \backslash K_{\lambda}\right) .
$$

Then, (6.19) implies that $h\left(\Phi_{\lambda}, K_{\lambda}\right)=\overline{0}$. This contradicts (6.12), which completes the proof of the theorem.

7. An Example

In this section, we give an example to illustrate our theoretical results by considering the well-known Cahn-Hilliard equation describing the spinodal decomposition.

The nondimensional form of the equation reads (see [24])

$$
\begin{cases}u_{t}+\Delta^{2} u+\lambda \Delta u=\Delta\left(b_{2} u^{2}+b_{3} u^{3}\right), & (x, t) \in \Omega \times R^{+} \tag{7.1}\\ \frac{\partial u}{\partial v}=\frac{\partial(\Delta u)}{\partial v}=0, & (x, t) \in \partial \Omega \times R^{+} \\ m(u)=0 & \end{cases}
$$

where $\Omega \subset R^{d}(d \leq 3)$ is a bounded domain with smooth boundary $\partial \Omega, b_{3}>0$, and

$$
m(u)=\frac{1}{|\Omega|} \int_{\Omega} u \mathrm{~d} x
$$

The local attractor bifurcation and phase transition of the system have been extensively studied in Ma and Wang [24]. Other results related to bifurcation of the problem can be found in [2,26], and so on. Here, by applying the theoretical results obtained above, we try to provide some new results about the dynamic bifurcation of the system, and demonstrate global features of the bifurcations.
7.1. Mathematical setting of the system. Denote by (,) and || the usual inner product and norm of $L^{2}(\Omega)$, respectively. For a mathematical setting, we introduce the Hilbert space H as follows:

$$
H=\left\{u \in L^{2}(\Omega) \mid m(u)=0\right\}
$$

Let $A_{0}=-\Delta$ be the Laplacian in H associated with the homogeneous boundary condition

$$
\frac{\partial u}{\partial v}=0, \quad x \in \partial \Omega
$$

Set $A=A_{0}^{2}$. Then, A is a positive-definite self-adjoint operator in H (and hence is a sectorial operator) with compact resolvent, and

$$
D(A)=\left\{u \in H^{4}(\Omega) \cap H \left\lvert\, \frac{\partial u}{\partial v}=\frac{\partial(\Delta u)}{\partial v}=0\right. \text { on } \partial \Omega\right\}
$$

The spectral $\sigma\left(A_{0}\right)$ of A_{0} consists of countably infinitely many eigenvalues:

$$
0<\mu_{1}<\mu_{2}<\cdots<\mu_{k} \rightarrow+\infty .
$$

Let $V:=D\left(A_{0}\right)=D\left(A^{1 / 2}\right)$. Denote || || the norm in V.
Define

$$
g_{\lambda}(u)=\Delta\left(b_{2} u^{2}+b_{3} u^{3}\right), \quad u \in V .
$$

Then, $g_{\lambda}: V \rightarrow H$ is locally Lipschitz, and the system (7.1) can be reformulated in an abstract form:

$$
\begin{equation*}
u_{t}+L_{\lambda} u=g_{\lambda}(u), \tag{7.2}
\end{equation*}
$$

where $L_{\lambda}=A_{0}^{2}-\lambda A_{0}$. We infer from Henry [10, Chapter 3] that, for each $u_{0} \in V$, (7.2) has a unique global strong solution $u(t)$ in V with $u(0)=u_{0}$.

It is worth noticing that the problem has a natural Lyapunov function $J(u)$,

$$
J(u)=\frac{1}{2}|\nabla u|^{2}+\int_{\Omega} F_{\lambda}(u) \mathrm{d} x, \quad \text { where } F_{\lambda}(s)=-\frac{\lambda}{2} s^{2}+\frac{b_{2}}{3} s^{3}+\frac{b_{3}}{4} s^{4} .
$$

7.2. Bifurcation from the trivial solution. It is obvious that each eigenvector w of A_{0} corresponding to μ_{k} is also an eigenvector of L_{λ} corresponding to the eigenvalue

$$
\beta_{k}(\lambda):=\mu_{k}^{2}-\lambda \mu_{k}=\mu_{k}\left(\mu_{k}-\lambda\right) .
$$

Because H has a canonical basis consisting of eigenvectors of A_{0}, we deduce that $\beta_{k}(\lambda)(k=1,2, \ldots)$ are precisely all the eigenvalues of L_{λ}.

Let Φ_{λ} be the semiflow generated by the system. We have the following result.
Theorem 7.1. Assume $b_{2} \neq 0$. Suppose A_{0} has an eigenvector w corresponding to μ_{j} such that $\int_{\Omega} w^{3} \mathrm{~d} x \neq 0$, and that 0 is an isolated equilibrium of $\Phi_{\mu_{j}}$.

Then, there exist a closed neighborhood U of 0 in V and a two-sided neighborhood I_{2} of μ_{j} such that Φ_{λ} has a nonempty maximal compact invariant set K_{λ} in $U \backslash\{0\}$ for each $\lambda \in I_{2} \backslash\left\{\mu_{j}\right\}$. Consequently, for $\lambda \in I_{2} \backslash\left\{\mu_{j}\right\}$, Φ_{λ} has at least one nontrivial equilibrium.

Proof. Since the system is a gradient-like one, by assumption it is easy to check that $S_{0}=\{0\}$ is an isolated invariant set of $\Phi_{\mu_{j}}$. In what follows, we check that S_{0} is neither an attractor nor a repeller of the restriction $\Phi_{\mu_{j}}^{c}$ of $\Phi_{\mu_{j}}$ to \mathcal{M}^{c}, and hence the conclusion of the theorem immediately follows from Theorem 4.3.

Denote E_{j} the space spanned by the eigenvectors of A_{0} corresponding to μ_{j}. Then, $H=E_{j} \oplus E_{j}^{\perp}$. Let $V_{j}^{\perp}=V \cap E_{j}^{\perp}$. Then, $V=E_{j} \oplus V_{j}^{\perp}$. We infer from [34, Chapter II, Theorem 2.1] that there is a small neighborhood W of 0 in E_{j} and a C^{1} mapping $\xi: W \rightarrow V_{j}^{\perp}$ with

$$
\xi(v)=0\left(\|v\|^{2}\right) \quad(\text { as }\|v\| \rightarrow 0)
$$

such that $\mathcal{M}^{c}=\{v+\xi(v) \mid v \in W\}$ is a local center manifold of $\Phi_{\mu_{j}}$.
For $u=v+\xi(v)$, where $v \in W$, simple computations show that

$$
J(u)=\frac{1}{2} \int_{\Omega}\left|\xi^{\prime}(v) \nabla v\right|^{2} \mathrm{~d} x+\frac{b_{2}}{3} \int_{\Omega} v^{3} \mathrm{~d} x+o\left(\|v\|^{3}\right)
$$

Here, we have used the facts that $\xi(v), \Delta \xi(v) \in E_{j}^{\perp}$. Set $v=\tau w$, where w is the eigenvector of A_{0} given in the theorem; then, since $\xi^{\prime}(v)=0(\|v\|)$, we have

$$
\begin{equation*}
J(\tau w)=\tau^{3} \frac{b_{2}}{3} \int_{\Omega} w^{3} \mathrm{~d} x+o\left(|\tau|^{3}\right) \quad \text { as } \tau \rightarrow 0 \tag{7.3}
\end{equation*}
$$

As $\left(b_{2} / 3\right) \int_{\Omega} w^{3} \mathrm{~d} x \neq 0$, by (7.3) it is clear that 0 is neither a local maximum nor a minimum point of J, which completes the proof of what we desired.

The following result demonstrates some global features of the dynamic bifurcation of the system.

Theorem 7.2. Suppose 0 is an isolated equilibrium of $\Phi_{\mu_{j}}$. Let Γ be the bifurcation branch in V from the bifurcation point $\left(0, \mu_{j}\right)$. Set

$$
\begin{aligned}
& \Lambda_{0}=\inf \left\{\lambda \mid \Gamma_{\lambda} \neq \varnothing\right\} \\
& \Lambda_{1}=\sup \left\{\lambda \mid \Gamma_{\lambda} \neq \varnothing\right\}
\end{aligned}
$$

where $\Gamma_{\lambda}=\{u \mid(u, \lambda) \in \Gamma\}$ is the λ-section of Γ.
Then, $-\infty<\Lambda_{0}<\Lambda_{1} \leq+\infty$, and one of the following assertions holds:
(1) $\Lambda_{1}=+\infty$.
(2) $0 \in \overline{\Gamma_{\mu_{j}} \backslash\{0\}}$.
(3) There exists $\lambda_{1} \neq \mu_{j}$ such that $\left(0, \lambda_{1}\right) \in \Gamma$. Furthermore, one of the following holds:
(i) Either there is a sequence $\left(u_{k}, v_{k}\right) \in \Gamma$ approaching $\left(0, \lambda_{1}\right)$, where u_{k} is a nontrivial equilibrium of $\Phi_{v_{k}}$ for each k;
(ii) $\operatorname{Or} \Gamma_{\lambda_{1}}$ contains at least two distinct complete trajectories $\sigma^{ \pm}$such that

$$
\begin{aligned}
& J\left(\alpha\left(\sigma^{+}\right)\right) \equiv \text { const. }>0, \omega\left(\sigma^{+}\right)=\{0\} \\
& J\left(\omega\left(\sigma^{-}\right)\right) \equiv \text { const. }<0, \alpha\left(\sigma^{-}\right)=\{0\}
\end{aligned}
$$

Remark 7.3. It is worth noticing that both $\alpha\left(\sigma^{+}\right)$and $\omega\left(\sigma^{-}\right)$in (3) consist of nontrivial equilibrium points. Therefore, when (3) occurs, $\Phi_{\lambda_{1}}$ has at least two distinct nontrivial equilibria. When $\Gamma_{\lambda_{1}}$ contains only a finite number of equilibria, each of the two limit sets $\alpha\left(\sigma^{+}\right)$and $\omega\left(\sigma^{-}\right)$consists of exactly one equilibrium. Consequently, $\sigma^{ \pm}$become heteroclinic orbits.

Proof of Theorem 7.2. It can be easily shown that if $\lambda<0$ is large enough, then the trivial solution 0 is the global attractor of Φ_{λ}. Hence, we necessarily have $\Lambda_{0}>-\infty$. The existence of a local bifurcation branch also implies $\Lambda_{0}<\Lambda_{1}$.

Assume $\Lambda_{1}<+\infty$ (otherwise, (1) holds true, and thus we are done). Then, $I=\left[\Lambda_{0}, \Lambda_{1}\right]$ is a compact interval. Therefore, we infer from the proof for the existence of a global attractor of the system in Temam [37] (see also [16], etc.) that the system is dissipative uniformly with respect to $\lambda \in I$. Specifically, there is a bounded set $B \subset V$ such that

$$
\begin{equation*}
\mathcal{A}_{\lambda} \subset B, \quad \forall \lambda \in I, \tag{7.4}
\end{equation*}
$$

where \mathcal{A}_{λ} is the global attractor of Φ_{λ}. Thus, the bifurcation branch Γ is bounded. Hence, by Theorem 6.3 we conclude that either (2) holds, or there is a $\lambda_{1} \neq \mu_{j}$ such that $\left(0, \lambda_{1}\right) \in \Gamma$. To complete the proof of the theorem, it remains to check the alternatives in (3).

We therefore assume that $\left(0, \lambda_{1}\right) \in \Gamma$ for some $\lambda_{1} \neq \mu_{j}$. Suppose the case (i) does not occur. Then, 0 is an isolated equilibrium of $\Phi_{\lambda_{1}}$. Fix a $\delta_{1}>0$ such that $\Phi_{\lambda_{1}}$ has no equilibria other than the trivial one in the δ_{1}-neighborhood $\mathrm{B}_{\delta_{1}}$ of 0 in V. By the definition of a bifurcation branch, we deduce there exists a sequence $v_{k} \rightarrow \lambda_{1}$ such that for each $k, \Phi_{\nu_{k}}$ has a nonempty compact invariant set $M_{k} \subset \Gamma_{v_{k}}$ with $0 \notin M_{k}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(0, M_{k}\right)=0 . \tag{7.5}
\end{equation*}
$$

For convenience, denote $\mathcal{E}\left(\Phi_{\lambda}, M\right)$ the set of equilibria of Φ_{λ} in $M \subset V$. Let

$$
\mathcal{E}_{k}:=\mathcal{E}\left(\Phi_{V_{k}}, M_{k}\right) .
$$

Then, \mathcal{E}_{k} is a nonempty compact subset of M_{k}. As we have assumed that (i) does not occur, it can be easily seen that there exists $0<\delta<\delta_{1}$ such that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} d\left(0, \mathcal{E}_{k}\right) \geq 4 \delta>0 \tag{7.6}
\end{equation*}
$$

By (7.5), for each k we can pick a $u_{k} \in M_{k}$ such that the sequence $u_{k} \rightarrow 0$ as $k \rightarrow \infty$. It can be assumed that

$$
\begin{equation*}
\left\|u_{k}\right\|<\delta \tag{7.7}
\end{equation*}
$$

for all k (hence $d\left(u_{k}, \mathcal{F}_{k}\right)>3 \delta$). Let γ_{k} be a complete trajectory of $\Phi_{v_{k}}$ contained in M_{k} with $\gamma_{k}(0)=u_{k}$. We have

$$
\min _{t \leq 0} J\left(\gamma_{k}(t)\right)=J\left(\gamma_{k}(0)\right)=J\left(u_{k}\right) \rightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

Set

$$
t_{k}=\min \left\{s<0 \mid \max _{t \in[s, 0]}\left\|\gamma_{k}(t)-u_{k}\right\| \leq 2 \delta\right\} .
$$

Noticing that $\alpha\left(\gamma_{k}\right) \subset \mathcal{E}_{k}$, we deduce by (7.6) and (7.7) that $t_{k}>-\infty$, and hence $\left\|\gamma_{k}\left(t_{k}\right)-u_{k}\right\|=2 \delta$. Therefore,

$$
\begin{equation*}
\delta \leq\left\|\gamma_{k}\left(t_{k}\right)\right\| \leq 3 \delta, \quad k \geq 1 . \tag{7.8}
\end{equation*}
$$

Define a sequence of complete trajectories σ_{k} as

$$
\sigma_{k}(t)=\gamma_{k}\left(t_{k}+t\right), \quad t \in \mathbb{R}
$$

Since all these trajectories are contained in the bounded set B in (7.4), by a very standard argument it can be shown that σ_{k} has a subsequence (still denoted by σ_{k}) converging uniformly on any compact interval to a complete trajectory σ^{+}. It is trivial to check that σ^{+}is contained in $\Gamma_{\lambda_{1}}$. Observing that $\sigma^{+}(0)=\lim _{k \rightarrow \infty} \gamma_{k}\left(t_{k}\right)$, by (7.8) we deduce that

$$
\begin{equation*}
\delta \leq\left\|\sigma^{+}(0)\right\| \leq 3 \delta \tag{7.9}
\end{equation*}
$$

Because

$$
J\left(\sigma_{k}(0)\right) \geq J\left(\sigma_{k}\left(-t_{k}\right)\right)=J\left(\gamma_{k}(0)\right)=J\left(u_{k}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

we also have $J\left(\sigma^{+}(0)\right) \geq 0$.
On the other hand, as $\Phi_{\lambda_{1}}$ has no equilibrium in $\mathrm{B}_{\delta_{1}} \backslash\{0\}$, by (7.9) we see that $\sigma^{+}(0)$ is not an equilibrium of $\Phi_{\lambda_{1}}$. Hence, there is a small open interval $I_{\varepsilon}=(-\varepsilon, \varepsilon)$ such that $J\left(\sigma^{+}(t)\right)$ is strictly decreasing in t on I_{ε}. Consequently,

$$
J\left(\alpha\left(\sigma^{+}\right)\right) \equiv \text { const. }>J\left(\sigma^{+}(0)\right) \geq 0
$$

In what follows, we show that $\omega\left(\sigma^{+}\right)=\{0\}$. If t_{k} has a bounded subsequence (still denoted by t_{k}) with $t_{k} \rightarrow-\tau \leq 0$, then

$$
\sigma^{+}(\tau)=\lim _{k \rightarrow \infty} \sigma_{k}\left(-t_{k}\right)=\lim _{k \rightarrow \infty} \gamma_{k}(0)=\lim _{k \rightarrow \infty} u_{k}=0 .
$$

Hence, $\sigma^{+}(t) \equiv 0$ for $t \geq \tau$, which contradicts (7.9). Thus, we know that $t_{k} \rightarrow-\infty$. Since $\left\|\gamma_{k}(t)-u_{k}\right\| \leq 2 \delta$ for $t \in\left[t_{k}, 0\right]$, we have

$$
\left\|\gamma_{k}(t)\right\| \leq\left\|u_{k}\right\|+2 \delta \leq 3 \delta, \quad t \in\left[t_{k}, 0\right]
$$

and therefore,

$$
\left\|\sigma_{k}(t)\right\| \leq 3 \delta, \quad t \in\left[0,-t_{k}\right]
$$

from which it follows that $\left\|\sigma^{+}(t)\right\| \leq 3 \delta$ for all $t \geq 0$. As 0 is the unique equilibrium of $\Phi_{\lambda_{1}}$ in $\mathrm{B}_{\delta_{1}}$ and $3 \delta<\delta_{1}$, we immediately conclude $\omega\left(\sigma^{+}\right)=\{0\}$.

Likewise, we can prove there is a complete trajectory σ^{-}in $\Gamma_{\lambda_{1}}$ such that

$$
J\left(\omega\left(\sigma^{-}\right)\right) \equiv \text { const. }<0, \quad \alpha\left(\sigma^{-}\right)=\{0\}
$$

The proof of the theorem is finished.

Remark 7.4. We have assumed in Theorems 7.1 and 7.2 that the trivial solution 0 of the system is an isolated equilibrium of $\Phi_{\mu_{j}}$. In general, it seems to be difficult to verify this condition because of the degeneracy. However, in some particular but important cases one can really do so. For instance, if $b_{2}=0$ then it can be shown that the equilibrium 0 is isolated with respect to $\Phi_{\mu_{j}}$ (see the proof of Theorem 9.4 in Ma and Wang [23]).

Acknowledgements. The authors would like to express their gratitude to the referees for their valuable comments and suggestions which helped to greatly improve the quality of the paper. The first author is supported by the NSFC (grant nos. 11471240, 11071185), while the second author is supported by the NSFC (grant no. 11271201) and a Simons collaboration grant.

References

[1] J. C. Alexander and J. A. Yorke, Global bifurcations of periodic orbits, Amer. J. Math. 100 (1978), no. 2, 263-292. http://dx.doi.org/10.2307/2373851. MR0474406
[2] Th. Bartsch, N. Dancer, and Z. Q. WANG, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), no. 3-4, 345-361.
http://dx.doi.org/10.1007/s00526-009-0265-y. MR2592975
[3] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-New York, 1977. MR0467310
[4] K. C. Chang and Z. Q. Wang, Notes on the bifurcation theorem, J. Fixed Point Theory Appl. 1 (2007), no. 2, 195-208. http://dx.doi.org/10.1007/s11784-007-0013-x. MR2336610
[5] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR660633
[6] Ch. ConLey, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR511133
[7] Ch. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35-61. http://dx.doi.org/10.2307/1995770. MR0279830
[8] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR941371
[9] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. MR1867354
[10] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR610244
[11] H. KIelhöFER, Bifurcation Theory: An Introduction with Applications to PDEs, Applied Mathematical Sciences, vol. 156, Springer-Verlag, New York, 2004.
http://dx.doi.org/10.1007/b97365. MR2004250
[12] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, The Macmillan Co., New York, 1964. Translated by A.H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book. MR0159197
[13] D.S. LI, Morse decompositions for general dynamical systems and differential inclusions with applications to control systems, SIAM J. Control Optim. 46 (2007), no. 1, 35-60. http://dx.doi.org/10.1137/060662101. MR2299619
[14] D. S. LI and Y. WANG, Smooth Morse-Lyapunov functions of strong attractors for differential inclusions, SIAM J. Control Optim. 50 (2012), no. 1, 368-387. http://dx.doi.org/10.1137/10081280x. MR2888270
[15] D. S. Li and Z. Q. WANG, Equilibrium index of invariant sets and global static bifurcation for nonlinear evolution equations, preprint.
[16] D. S. LI and C. ZHONG, Global attractor for the Cabn-Hilliard system with fast growing nonlinearity, J. Differential Equations 149 (1998), no. 2, 191-210. http://dx.doi.org/10.1006/jdeq.1998.3429. MR1646238
[17] P. LiU, J. SHI, and Y. WANG, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal. 251 (2007), no. 2, 573-600. http://dx.doi.org/10.1016/j.jfa.2007.06.015. MR2356424
[18] Ch. MCCORD, Poincaré-Lefschetz duality for the homology Conley index, Trans. Amer. Math. Soc. 329 (1992), no. 1, 233-252. http://dx.doi.org/10.2307/2154086. MR1036005
[19] T. MA and S. H. WANG, Attractor bifurcation theory and its applications to Rayleigh-Bénard convection, Commun. Pure Appl. Anal. 2 (2003), no. 4, 591-599. http://dx.doi.org/10.3934/cpaa.2003.2.591. MR2019070
[20] , Bifurcation of nonlinear equations I: Steady state bifurcation, Methods Appl. Anal. 11 (2004), no. 2, 155-178. MR2143518
[21] \qquad , Dynamic bifurcation of nonlinear evolution equations, Chinese Ann. Math. Ser. B 26 (2005), no. 2, 185-206. http://dx.doi.org/10.1142/S0252959905000166. MR2143646
[22] \qquad , Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 53, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005. http://dx.doi.org/10.1142/9789812701152. MR2310258
[23] \qquad Stability and Bifurcation of Nonlinear Evolution Equations, Science Press, Beijing, 2007.
[24] tin. Dyn. Syst. Ser. B 11 (2009), no. 3, 741-784.
http://dx.doi.org/10.3934/dcdsb.2009.11.741. MR2529323
[25] \qquad , Phase Transition Dynamics, Springer, New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8963-4. MR3154868
[26] S. Maier-PaApe, K. Mischaikow, and Th. Wanner, Structure of the attractor of the CabnHilliard equation on a square, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 (2007), no. 4, 12211263. http://dx.doi.org/10.1142/S0218127407017781. MR2329522
[27] J. E. Marsden and M. McCracken, The Hopf Bifurcation and its Applications, Applied Mathematical Sciences, vol. 19, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J.R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt, and S. Smale. MR0494309
[28] K. Mischaikow and M. Mrozek, Conley index, Handbook of Dynamical Systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 393-460. http://dx.doi.org/10.1016/S1874-575X (02) 80030-3. MR1901060
[29] J. R. Munkres, Topology: A First Course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. MR0464128
[30] H. Poincaré, Les Méthodes Nouvelles de la Mćanique Céleste", Vol. I, Paris, 1892.
[31] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), no. 3, 487-513. http://dx.doi.org/10.1016/0022-1236(71) 90030-9. MR0301587
[32] \qquad , A bifurcation theorem for potential operators, J. Functional Analysis 25 (1977), no. 4, 412-424. http://dx.doi.org/10.1016/0022-1236(77) 90047-7. MR0463990
[33] P. H. Rabinowitz, J. Su, and Z. Q. Wang, Multiple solutions of superlinear elliptic equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 18 (2007), no. 1, 97-108. http://dx.doi.org/10.4171/RLM/482. MR2314466
[34] K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 1987. http://dx.doi.org/10.1007/978-3-642-72833-4. MR910097
[35] J. M. R. SANJURJO, Global topological properties of the Hopf bifurcation, J. Differential Equations 243 (2007), no. 2, 238-255.
http://dx.doi.org/10.1016/j.jde.2007.05.001. MR2371787
[36] K. Schmitt and Z. Q. Wang, On bifurcation from infinity for potential operators, Differential Integral Equations 4 (1991), no. 5, 933-943. MR1123344
[37] R. TEMAM, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0645-3. MR1441312
[38] J. R. WARD Jr., Bifurcating continua in infinite-dimensional dynamical systems and applications to differential equations, J. Differential Equations 125 (1996), no. 1, 117-132. http://dx.doi.org/10.1006/jdeq.1996.0026. MR1376062
[39] J. WU, Symmetric functional-differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998), no. 12, 4799-4838.
http://dx.doi.org/10.1090/S0002-9947-98-02083-2. MR1451617
DESHENG Li:
Department of Mathematics
Tianjin University
Tianjin 300072, P. R. China
E-MAIL: lidsmath@tju.edu.cn
Zhi-Qiang Wang:
Center for Applied Mathematics
Tianjin University
Tianjin 300072, P. R. China
AND

Department of Mathematics and Statistics
Utah State University
Animal Science, 3900 Old Main Hill
Logan, UT 84322, USA
E-MAIL: zhi-qiang.wang@usu.edu
KEY WORDS AND PHRASES: Evolution equation, invariant-set bifurcation, global dynamical bifurcation.
2010 Mathematics Subject Classification: 34C23, 34K18, 35B32, 37G99.
Received: April 3, 2016.

