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1 Introduction.1

In this paper, we consider a nonsmooth constrained optimization problem:2

(P) min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · , p,

hj(x) = 0, j = p+ 1, · · · , q,

x ∈ Ω,

where Ω ⊂ Rn is a closed convex set and f, gi, i = 1, · · · , p, hj, j = p + 1, · · · , q : Rn → R3

are Lipschitz continuous functions.4

There are various methods to deal with nonsmooth programs. In this paper, we5

take our attention on the smoothing technique. The authors [40] introduced a function6

sequence converges continuously to the Lipschitz continuous functions.7

Definition 1.1 Let g : Rn → R be a locally Lipschitz function. Assume that, for a given8

ρ > 0, gρ : Rn → R is a continuously differentiable function. We say that {gρ : ρ > 0} is9

a family of smoothing functions of g if lim
z→x, ρ↑∞

gρ(z) = g(x) for any fixed x ∈ Rn.10

From numerical point of view, we need the following property to obtain a stationary11

point for certain smoothing method.12

Definition 1.2 [9, 16] Let g : Rn → R be a locally Lipschitz continuous function. We say

that a family of smoothing functions {gρ : ρ > 0} of g satisfies the gradient consistency

property if lim sup
z→x, ρ↑∞

∇gρ(z) is nonempty and lim sup
z→x, ρ↑∞

∇gρ(z) ⊆ ∂g(x) holds for any x ∈ Rn,

where lim sup
z→x, ρ↑∞

∇gρ(z) denotes the set of all outer limits of ∇gρ(z) when z → x and ρ→∞,

namely,

lim sup
z→x, ρ↑∞

∇gρ(z) :=
{

lim
k→∞
∇gρk(zk) : zk → x, ρk ↑ ∞

}
.

∂g denotes the Clarke generalized gradient of g and ∇g denotes the gradient of g; see13

Section 2.14

To generate a family of smoothing functions with the gradient consistency property15

for any locally Lipschitz function, one can use the integral-convolution with bounded16

supports. Rockafellar and Wets [40, Example 7.19 and Theorem 9.67] showed that for17

any locally Lipschitz function g,18

gρ(x) :=

∫
Rn
g(x− y)φρ(y)dy =

∫
Rn
g(y)φρ(x− y)dy (1.1)

is a family of smoothing functions of g with the gradient consistency property, where

φρ : Rn → R+ is a sequence of bounded, measurable functions with
∫
Rn φρ(x)dx = 1 such
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that the sets Bρ = {x : φρ(x) > 0} form a bounded sequence converging to {0} as ρ ↑ ∞.

Note that for gρ(x) defined by (1.1), the inclusion

∂g(x) ⊆ co lim sup
z→x, ρ↑∞

∇gρ(z)

always holds by [40, Theorem 9.61 and Corollary 8.47 (b)]. Thus the definition of gradient

consistency in Definition 1.2 is equivalent to saying that

∂g(x) = co lim sup
z→x, ρ↑∞

∇gρ(z),

which is showed in [10, 12].1

In practice, many Lipschitz functions can be considered as a composition of a smooth2

function with a plus function (t)+ := max{0, t}. By using the integral convolution with3

density functions, Chen and Mangasarian [15] constructed smoothing approximations to4

the plus function. Let φ : R → R+ be a piecewise continuous density function with5

φ(s) = φ(−s) and

∫ +∞

−∞
|s|φ(s)ds < ∞. Then ψµ(t) :=

∫ +∞

−∞
(t− µs)+φ(s)ds, with µ ↓ 06

is a family of smoothing functions of the plus function with the gradient consistency7

property. Different density functions derive different smoothing approximations. Choos-8

ing φ1(s) := 2

(s2+4)
3
2

results in the so-called the CHKS (Chen-Harker-Kanzow-Smale)9

smoothing function of (t)+ ([13, 26, 42]):10

ψ1
µ(t) :=

1

2

(
t+
√
t2 + 4µ2

)
.

Choosing φ2(s) :=

{
0, if |s| > 1

2

1, if |s| ≤ 1
2
,

results in the so-called uniform smoothing function11

of (t)+:12

ψ2
µ(t) :=

{
(t)+, if |t| > µ

2
1

2µ
(t+ µ

2
)2, if |t| ≤ µ

2
.

Since |t| = (t)+ + (−t)+, approximating (t)+ by ψ2
µ(t) and (−t)+ by ψ2

µ(−t) respectively13

results in the following smoothing function of |t| which is used frequently:14

ψ3
µ(t) :=

{
|t|, if |t| > µ

2
t2

µ
+ µ

4
, if |t| ≤ µ

2
.

There also exists many other smoothing functions which are not generated by the integral-15

convolution [10, 11, 12, 15, 33].16

The augmented Lagrangian method [19] is known as a method of multipliers for solving17

constrained optimization problems, which is also basis for some high quality software such18
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as ALGENCAN [1] and LANCELOT [27]. The augmented Lagrangian method has been1

studied for decades, the initial researches can be found in [6, 25, 35, 37, 38]. As an exact2

penalty method, the convergence result of the augmented Lagrangian method requires3

the boundedness of the penalty parameters. By assuming the LICQ or Mangasarian-4

Fromovitz constraint qualification (MFCQ) holds at all feasible and infeasible accumu-5

lation points of iteration sequence would derive boundedness parameters [20, 44]. Many6

researchers also studied the boundedness of the parameters under the so called Constant7

Positive Linear Dependence (CPLD) and its relaxed vision RCPLD [2, 3, 4, 8]. Re-8

cently, Curtis et al. [21] proposed an adaptive augmented Lagrangian method for smooth9

constrained problems which greatly improved the overall performance of the algorithm.10

However, the adaptive method may converges to an infeasible point.11

To overcome the infeasibility problem of the augmented Lagrangian method, Lu and12

Zhang [29] proposed an augmented Lagrangian method for solving a nonlinear program13

where the objective function is a sum of a smooth term and a nonsmooth convex term and14

established global convergence to a feasible stationary point under MFCQ. The method15

differs from the classical augmented Lagrangian method in that: (i) the values of aug-16

mented Lagrangian function along the solutions generated by the algorithm are bounded17

from above, (ii) the magnitude of penalty parameters outgrows that of Lagrange multi-18

pliers. If there is a feasible point known at the beginning of the algorithm, the upper19

bound would be obtained easily. Chen et al. [14] applied such method to a non-Lipschitz20

nonconvex programming. While for many problems, such as the bilevel programming21

problems, it is not easy to get a feasible point and thus the upper bound may difficult to22

obtain.23

Since the usual constraint qualifications are still too strong to hold for many problems,24

such as the mathematical program with equilibrium constraints (MPEC) and bilevel pro-25

grams, recently Xu, Ye and Zhang [45] proposed a weaker version of the GMFCQ, which26

called weakly generalized Mangasarian Fromovitz constraint qualification (WGMFCQ).27

The WGMFCQ is based on the smoothing functions and the sequence of iteration points28

generated by the smoothing algorithm. It was shown in [45, 46] that although the GM-29

FCQ will never hold for the bilevel program, the weaker version of the GMFCQ may hold30

for bilevel programs.31

In this paper, we extend the concept of WGMFCQ to the case where abstract con-32

straint is involved. For the general nonsmooth and nonconvex problem (P), we propose a33

smoothing augmented Lagrange algorithm and show that any accumulation point is a sta-34

tionary point of the original problem (P) under the extension version of WGMFCQ. Note35

that we do not assume that the WGMFCQ holds at all feasible and infeasible accumula-36

tion points as in [20, 44, 46]. Finally, we prove that if the upper bound of the augmented37
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Lagrangian functions along the approximated solution sequence exists, any accumulation1

point will be a feasible point and the WGMFCQ guarantees a stationary point. We also2

apply the smoothing augmented Lagrangian method to the bilevel program.3

The rest of the paper is organized as follows. In Section 2, we present a summary of the4

constraint qualifications and extend the WGMFCQ to the case where abstract constraint5

involved. In Section 3, we propose a smoothing augmented Lagrangian algorithm for6

locating a stationary point of a general nonsmooth and nonconvex optimization problem7

(P) and establish a convergence result for the algorithm. Furthermore, we prove that if8

a feasible point for problem (P) is known, then any accumulation point will be a feasible9

point and the WGMFCQ guarantees a stationary point. In Section 4, we report the results10

of our numerical experiments for some general nonsmooth and nonconvex constrained11

optimization problems as well as some bilevel programs.12

We adopt the following standard notation in this paper. For any two vectors a and b13

in Rn, we denote by aT b their inner product. Given a function G : Rn → Rm, we denote14

its Jacobian by ∇G(z) ∈ Rm×n and, if m = 1, the gradient ∇G(z) ∈ Rn is considered as15

a column vector. For a set Ω ⊆ Rn, we denote by aff Ω,int Ω, ri Ω, co Ω, and dist(x,Ω)16

the affine hull, interior, relative interior, the convex hull, and the distance from x to Ω17

respectively. For a matrix A ∈ Rn×m, AT denotes its transpose. In addition, we let N be18

the set of nonnegative integers and exp[z] be the exponential function.19

2 Background and constraint qualifications20

In this section, we present some background materials on variational analysis. Detailed21

discussions on these subjects can be found in [17, 18, 32, 40]. Then we discuss the issue of22

constraint qualifications and extend the WGMFCQ to the case where abstract constraint23

involved.24

Let ϕ : Rn → R be Lipschitz continuous near x̄. The directional derivative of ϕ at x̄25

in direction d is defined by26

ϕ′(x̄; d) := lim
t↓0

ϕ(x̄+ td)− ϕ(x̄)

t
.

The Clarke generalized directional derivative of ϕ at x̄ in direction d is defined by27

ϕ◦(x̄; d) := lim sup
x→x̄, t↓0

ϕ(x+ td)− ϕ(x)

t
.

The Clarke generalized gradient of ϕ at x̄ is a convex and compact subset of Rn defined

by

∂ϕ(x̄) := {ξ ∈ Rn : ξTd ≤ ϕ◦(x̄; d), ∀d ∈ Rn}.
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Note that when ϕ is convex, the Clarke generalized gradient coincides with the subdiffer-

ential in the sense of convex analysis, i.e.,

∂ϕ(x̄) = {ξ ∈ Rn : ξT (x− x̄) ≤ ϕ(x)− ϕ(x̄), ∀x ∈ Rn}

and, when ϕ is continuously differentiable at x̄, we have ∂ϕ(x̄) = {∇ϕ(x̄)}. Detailed1

discussions of the Clarke generalized gradient and its properties can be found in [17, 18].2

For a nonempty closed set Ω ⊆ Rn and a point x̄ ∈ Ω, the Clarke tangent cone [17, 18]

of Ω at x̄ is given by

TΩ(x̄) := {d ∈ Rn : disto(x̄,Ω) = 0},

and the Clarke normal cone [17, 18] of Ω at x̄ is given by

NΩ(x̄) := {ζ ∈ Rn : ζTd ≤ 0, ∀d ∈ TΩ(x̄)}

respectively.3

Definition 2.1 (Stationary point) We call a feasible point x̄ of problem (P ) a (Clarke)4

stationary point if there exists λ ∈ Rq such that5

0 ∈ ∂f(x̄) +

p∑
i=1

λi∂gi(x̄) +

q∑
j=p+1

λj∂hj(x̄) +NΩ(x̄),

λi ≥ 0, λigi(x̄) = 0, i = 1, · · · , p.

Following from the Fritz John type necessary optimality condition [17, Theorem 6.1.1],6

Definition 2.2 (NNAMCQ) We say that the no nonzero abnormal multiplier con-7

straint qualification (NNAMCQ) holds at a feasible point x̄ of problem (P ) if8

0 ∈
∑
i∈I(x̄)

λi∂gi(x̄) +

q∑
j=p+1

λj∂hj(x̄) +NΩ(x̄) and λi ≥ 0, i ∈ I(x̄) =⇒ λi = 0, λj = 0.

where I(x̄) := {i = 1, · · · , p : gi(x̄) = 0} the active set at x̄.9

The NNAMCQ is equal to the GMFCQ.10

Definition 2.3 (GMFCQ) A feasible point x̄ is said to satisfy the generalized Mangasarian-11

Fromovitz constraint qualification (GMFCQ) for problem (P ) if12

(i) vp+1, · · · , vq are linearly independent, where vj ∈ ∂hj(x̄), j = p+ 1, · · · , q,13

(ii) there exists a direction d ∈ int TΩ(x̄) such that14

vTi d < 0, ∀vi ∈ ∂gi(x̄), i ∈ I(x̄),

vTj d = 0, ∀vj ∈ ∂hj(x̄), j = p+ 1, · · · , q.
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However, NNAMCQ and GMFCQ may be too strong to hold for many problems, such1

as the bilevel programs.2

Using the smoothing technique, one can approximate the Lipschitz functions f(x),3

gi(x), i = 1, · · · , p and hj(x), j = p+ 1, · · · , q by families of smoothing functions {fρ(x) :4

ρ > 0}, {giρ(x) : ρ > 0}, i = 1, · · · , p and {hjρ(x) : ρ > 0}, j = p + 1, · · · , q which satisfy5

the gradient consistency property. Based on the sequence of iteration points generated by6

certain algorithm, [45] defined two new constraint qualifications for problem (P) without7

the abstract constraint. In this paper, we extend the conditions to the case where the8

abstract constraint is involved:9

Definition 2.4 (WNNAMCQ) Let {xk} be a sequence of iteration points for problem10

(P ) and ρk ↑ ∞ as k →∞. Suppose that x̄ is a feasible accumulation point of the sequence11

{xk}. We say that the weakly no nonzero abnormal multiplier constraint qualification12

(WNNAMCQ) based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, · · · , p, {hjρ(x) :13

ρ > 0}, j = p+ 1, · · · , q holds at x̄ provided that λi ≥ 0, i ∈ I(x̄) and14

0 ∈
∑
i∈I(x̄)

λivi +

q∑
j=p+1

λjvj +NΩ(x̄) (2.1)

implies that λi = 0, λj = 0 for any K0 ⊆ K ⊆ N such that lim
k→∞,k∈K

xk = x̄ and15

vi = lim
k→∞,k∈K0

∇giρk(xk), i ∈ I(x̄),

vj = lim
k→∞,k∈K0

∇hjρk(xk), j = p+ 1, · · · , q.

Definition 2.5 (WGMFCQ) Let {xk} be a sequence of iteration points for problem16

(P ) and ρk ↑ ∞ as k → ∞. Let x̄ be a feasible accumulation point of the sequence17

{xk}. We say that the weakly generalized Mangasarian Fromovitz constraint qualification18

(WGMFCQ) based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, · · · , p, {hjρ(x) :19

ρ > 0}, j = p + 1, · · · , q holds at x̄ provided the following conditions hold. For any20

K0 ⊆ K ⊆ N such that lim
k→∞,k∈K

xk = x̄ and any21

vi = lim
k→∞,k∈K0

∇giρk(xk), i ∈ I(x̄)

vj = lim
k→∞,k∈K0

∇hjρk(xk), j = p+ 1, · · · , q,

(i) vp+1, · · · , vq are linearly independent;22

(ii) there exists a direction d ∈ int TΩ(x̄) such that23

vTi d < 0, for all i ∈ I(x̄), (2.2)

vTj d = 0, for all j = p+ 1, · · · , q.. (2.3)
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We now show the equivalence between the WGMFCQ and WNNAMCQ.1

Theorem 2.1 Let x̄ ∈ Ω. Then the following implication always holds:

WGMFCQ =⇒WNNAMCQ,

and the reverse implication holds provided int TΩ(x̄) 6= ∅.2

Proof. We first show that WGMFCQ implies WNNAMCQ. To the contrary we suppose3

that WGMFCQ holds but WNNAMCQ does not hold which means that there exist scalars4

λi ≥ 0, i ∈ I(x̄), λj ≥ 0, j = p+ 1, · · · , q not all zero such that for any K0 ⊆ K ⊆ N such5

that lim
k→∞,k∈K

xk = x̄ and η ∈ NΩ(x̄),6

vi = lim
k→∞,k∈K0

∇giρk(xk), i ∈ I(x̄),

vj = lim
k→∞,k∈K0

∇hjρk(xk), j = p+ 1, · · · , q,

such that7

0 =
∑
i∈I(x̄)

λivi +

q∑
j=p+1

λjvj + η. (2.4)

Suppose that d ∈ int TΩ(x̄) is the direction that satisfies the condition (ii) of WGMFCQ.8

When λi, i ∈ I(x̄) not all zero, multiplying both sides of condition (2.4) by d, it follows9

from conditions (2.2) and (2.3) that10

0 =
∑
i∈I(x̄)

λiv
T
i d+

q∑
j=p+1

λjv
T
j d < 0,

which is a contradiction.11

When λi = 0, for all i ∈ I(x̄), multiplying both sides of condition (2.4) with d, it12

follows from condition (2.3) that13

m∑
j=1

λjv
T
j d = 0.

Since d ∈ int TΩ(x̄), there exists ε > 0 such that14

d+ εB ∈ TΩ(x̄),

where B denotes the unit ball in Rn. Then multiplying both sides of condition (2.4) with15

d+ d′, ∀d′ ∈ εB, we have16

0 ≤
q∑

j=p+1

λjv
T
j (d+ d′) =

m∑
j=1

λjv
T
j d
′.

8



Since d′ is an arbitrary vector in εB, we must have1

m∑
j=1

λjvj = 0,

which contradicts with the linearly independence of v1, · · · , vm. Therefore, WNNAMCQ2

holds.3

We now prove the reverse implication. Assume the WNNAMCQ holds. WNNAMCQ4

implies (i) of WGMFCQ. If both (i) and (ii) of WGMFCQ hold, we are done. Suppose5

that the condition (ii) of WGMFCQ does not hold; that is, there exists a subsequence6

K0 ⊂ K ⊂ N and v1, · · · , vq with lim
k→∞,k∈K

xk = x̄ and7

vi = lim
k→∞,k∈K0

∇giρk(xk), i = 1, · · · , p,

vj = lim
k→∞,k∈K0

∇hjρk(xk), j = p+ 1, · · · , q,

such that for all direction d ∈ int TΩ(x̄), (2.2) or (2.3) fails to hold. Let A be the matrix8

with vi, i ∈ I(x̄), vp+1, . . . , vq are columns and9

S1 := {z : ∃d ∈ int TΩ(x̄) such that z = ATd},

S2 := {z : zi < 0, i ∈ I(x̄), zj = 0, j = p+ 1, · · · , q}.

Since the convex sets S1 and clS2 are nonempty and ri S1 and ri clS2 have no point in10

common by the violation of the condition (ii) of EWGMFCQ, there exists a hyperplane11

separating S1 and clS2 properly from [36, Theorem 11.3]. Since S1 is a subspace and thus12

a cone, from [36, Theorem 11.7], there exists a hyperplane separating S1 and clS2 properly13

and passes through the origin. By the separation theorem (see e.g. [36, Theorem 11.1]),14

there exists a vector y such that15

inf{yT z : z ∈ S1} ≥ 0 ≥ sup{yT z : z ∈ clS2},

sup{yT z : z ∈ S1} > inf{yT z : z ∈ clS2}. (2.5)

From (2.5), we know that y 6= 0. Therefore, there exists y ∈ Rq, y 6= 0 such that16

yT z ≥ 0,∀z ∈ S1 and yT z ≤ 0, ∀z ∈ clS2.17

(a) We first consider the inequality yT z ≤ 0, ∀z ∈ clS2. By taking z0 ∈ clS2 such that18

z0
j = 0, j = p+ 1, . . . , q and z0

i → −∞, i ∈ I(x̄), we conclude that19

yi ≥ 0, i ∈ I(x̄). (2.6)

(b) We now consider the inequality yT z ≥ 0,∀z ∈ S1. Select an arbitrary nonzero

d ∈ int TΩ(x̄). Then z1 := ATd ∈ S1, and hence∑
i∈I(x̄)

yiv
T
i d+

q∑
j=p+1

yjv
T
j d = yT z1 ≥ 0.

9



That is,1

−(
∑
i∈I(x̄)

yivi +

q∑
j=p+1

yjvj) ∈ NΩ(x̄). (2.7)

Therefore, if there exists a nonzero vector y such that yT z ≥ 0,∀z ∈ S1 and yT z ≤ 0, ∀z ∈2

clS2, the vector should also satisfies conditions (2.6)-(2.7). While from the WNNAMCQ,3

conditions (2.6)-(2.7) imply that y = 0, which is a contradiction. Thus the condition (ii)4

of WGMFCQ must hold. The proof is therefore complete.5

The WNNAMCQ and the WGMFCQ can be extended to infeasible points.6

Definition 2.6 (EWNNAMCQ) Let {xk} be a sequence of iteration points for problem7

(P ) and ρk ↑ ∞ as k → ∞. Let x̄ ∈ Ω be a accumulation point of the sequence {xk}.8

We say that the extended weakly no nonzero abnormal multiplier constraint qualification9

(EWNNAMCQ) based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, · · · , p, {hjρ(x) :10

ρ > 0}, j = p+ 1, · · · , q holds at x̄ provided that11

0 ∈
p∑
i=1

λivi +

q∑
j=p+1

λjvj +NΩ(x̄) and λi ≥ 0, i = 1, · · · , p,

p∑
i=1

λigi(x̄) +

q∑
j=p+1

λjhj(x̄) ≥ 0.

implies that λi = 0, λj = 0 for any K0 ⊆ K ⊆ N such that lim
k→∞,k∈K

xk = x̄ and12

vi = lim
k→∞,k∈K0

∇giρk(xk), i = 1, · · · , p,

vj = lim
k→∞,k∈K0

∇hjρk(xk), j = p+ 1, · · · , q.

Definition 2.7 (EWGMFCQ) Let {xk} be a sequence of iteration points for problem13

(P ) and ρk ↑ ∞ as k →∞. Let x̄ ∈ Ω be a accumulation point of the sequence {xk}. We14

say that the extended weakly generalized Mangasarian Fromovitz constraint qualification15

(EWGMFCQ) based on the smoothing functions {giρ(x) : ρ > 0}, i = 1, · · · , p, {hjρ(x) :16

ρ > 0}, j = p + 1, · · · , q holds at x̄ provided that the following conditions hold. For any17

K0 ⊆ K ⊆ N such that lim
k→∞,k∈K

xk = x̄ and any18

vi = lim
k→∞,k∈K0

∇giρk(xk), i = 1, · · · , p,

vj = lim
k→∞,k∈K0

∇hiρk(xk), j = p+ 1, · · · , q,

(i) vp+1, · · · , vq are linearly independent;19

(ii) there exists a nonzero direction d ∈ int TΩ(x̄) nonzero such that20

gi(x̄) + vTi d < 0, for all i = 1, · · · , p,

hj(x̄) + vTj d = 0, for all j = p+ 1, · · · , q.

10



The equivalence between the EWGMFCQ and EWNNAMCQ is an extension of Theorem1

2.1 and [45, Theorem 2.2].2

3 An augmented Lagrangian method for problem (P)3

In this section, we use smoothing functions with gradient property to approximate the4

Lipschitz functions in problem (P), and then we introduce an augmented Lagrangian5

algorithm. We establish the convergence theorem of the algorithm under the WNNAMCQ.6

We define the PHR augmented Lagrangian function as follows:7

Gλ,c
ρ (x) := fρ(x) +

1

2c

p∑
i=1

(
max{0, λi + cgiρ(x)}2 − λ2

i

)
+

q∑
j=p+1

(
λjh

j
ρ(x) +

c

2
(hjρ(x))2

)
,

for each smoothing parameter ρ > 0 and thus we consider the following penalized problem:8

(Pλ,c
ρ ) min

x∈Ω
Gλ,c
ρ (x),

for each ρ > 0, c > 0, λ ∈ Rq. In the algorithm, we denote a robust residual function9

measuring the infeasibility and the complementarity by10

σλρ (x) := max
{
|hjρ(x)|, j = p+ 1, · · · , q, |min{λi,−giρ(x)}|, i = 1, · · · , p

}
.

Recently, Lu and Zhang [29] proposed a feasible augmented Lagrangian method where11

the values of the augmented Lagrangian functions along the approximated solution se-12

quence are bounded above, and the magnitude of penalty parameters outgrows that of13

Lagrangian multipliers. Such procedures will derive feasible accumulation points.14

Since (Pλ,c
ρ ) is a smooth optimization problem for any fixed ρ > 0, c > 0, λ ∈ Rq,15

we first develop an augmented Lagrangian method to deal with the problem. Then we16

update the iteration by increasing the smoothing parameter ρ, updating the multiplier λ17

and increasing the penalty parameter c provided that σλρ (x) has an enough decrease.18

Note that in the algorithm, we do not require the upper bound of augmented La-19

grangian functions along the approximated solution sequence exists since many problems,20

such as the bilevel problems, the upper bound may not easy to obtain. We will show that21

any sequence of iteration points generated by the algorithm converges to some stationary22

point of problem (P) when ρ goes to infinity and the penalty parameter c is bounded.23

Furthermore, the EWNNAMCQ guarantees the boundedness of the sequence of the La-24

grangian multiplier λ and any iteration sequence converge to a stationary point. Finally,25

we assume at least one feasible point of problem (P) exists, denoted by xfeas, and thus26

the upper bound of the augmented Lagrangian functions along the approximated solution27

11



sequence exists. In this case, any accumulation point will be a feasible point and the1

WNNAMCQ guarantees a stationary point.2

We now describe the smoothing augmented Lagrangian algorithm as follows.3

Algorithm 3.1 Let τ be a constant in (0, 1) Let {εk} be a positive sequence converging to4

0 and σ be a constant in (1,+∞). Choose an initial point x0 = x1 ∈ Ω, an initial smooth-5

ing parameter ρ0 > 0, an initial penalty parameter c0 > 0 and initial multipliers λ0
i ≥ 0,6

i = 1, · · · , q. Let λ1
i = max{0, λ0

i + c0g
i
ρ0

(x1)}, i = 1, · · · , p;λ1
j = λ0

j + c0h
j
ρ0

(x1), j =7

p+ 1, · · · , q. Set k := 0.8

1. If dist(0,∇Gλk,ck
ρk

(xk+1)+NΩ(xk+1)) = 0 and σλ
k+1

ρk
(xk+1) = 0, terminate. Otherwise,9

set k = k + 1, and go to Step 2.10

2. Compute an approximate solution xk+1 ∈ Ω for the subproblem (P λ,c
ρ ) with ρ = ρk,11

λ = λk, c = ck such that12

dist(0,∇Gλk,ck
ρk

(xk+1) +NΩ(xk+1)) < η̂ρ−1
k . (3.1)

Set ρk+1 := σρk, go to Step 3.13

3. Set14

λk+1
i = max{0, λki + ckg

i
ρk

(xk+1)}, i = 1, · · · , p; (3.2)

λk+1
j = λkj + ckh

j
ρk

(xk+1), j = p+ 1, · · · , q. (3.3)

and go to Step 4.15

4. If16

σλ
k+1

ρk
(xk+1) < εk, (3.4)

go to Step 1. Otherwise, set17

ck+1 := max{σck, ‖λk+1‖1+τ},

k = k + 1 and go to Step 2.18

The quantity dist(0,∇Gλk,ck
ρk

(xk+1) +NΩ(xk+1)) is generally convenient as a measure19

of how near xk+1 is to being a minimizer of (P λk,ck
ρk

). To calculate a distance function to20

a normal cone seems not easy. However, from the discussion in [39], we derive that21

dist(0,∇Gλk,ck
ρk

(xk+1) +NΩ(xk+1)) = ‖PTΩ(xk+1)(−∇Gλk,ck
ρk

(xk+1))‖, (3.5)

12



where PC(·) denotes the projection to set C. From the preliminaries in Section 2, the1

tangent cone is calculable.2

Many researchers assumed that certain constraint qualifications hold at all feasible3

and infeasible accumulation points such that the parameters are bounded. In this paper,4

we do not need such assumption since the magnitude of {ck} outgrows that of {λk}; see5

Step 4.6

We now establish the convergence of Algorithm 3.1.7

Theorem 3.1 Suppose the Algorithm 3.1 does not terminate within finite iterations. Let8

x∗ be an accumulation point of the sequence {xk} generated by Algorithm 3.1. If {ck} is9

bounded, then x∗ is a stationary point of problem (P).10

Proof. Without loss of generality, assume that lim
k→∞

xk = x∗. From Step 4, the bound-11

edness of {ck} is equivalent to saying that condition (3.4) holds for sufficiently large k12

and thus lim
k→∞

σλ
k+1

ρk
(xk+1) = 0, i.e., |hjρk(x

k+1)| = 0, j = p + 1, · · · , q and giρk(x
k+1) ≤ 0,13

i = 1, · · · , p for sufficiently large k from the definition of σλρ (·). Thus {λk} is bounded14

from the updating rule (3.2)− (3.3).15

Since {giρ : ρ > 0}, i = 1, · · · , p, {hjρ : ρ > 0}, j = p+1, · · · , q are families of smoothing16

functions of gi, i = 1, · · · , p, hj, j = p + 1, · · · , q, taking limits as k → ∞, we have17

hj(x
∗) = 0, j = p+ 1, · · · , q, gi(x∗) ≤ 0, i = 1, · · · , p and thus x∗ is a feasible point. Let18

µλ,cρ,i (x) := max{0, λi + cgiρ(x)}, i = 1, · · · , p,

µλ,cρ,j(x) := λj + chiρ(x), j = p+ 1, · · · , q.

By calculation, we have19

∇Gλk,ck
ρk

(xk+1) = ∇fρk(xk+1) +

p∑
i=1

µλ
k,ck
ρk,i

(xk+1)∇giρk(x
k+1) +

q∑
j=p+1

µλ
k,ck
ρk,j

(xk+1)∇hjρk(x
k+1)

= ∇fρk(xk+1) +

p∑
i=1

λk+1
i ∇giρk(x

k+1) +

q∑
j=p+1

λk+1
j ∇hjρk(x

k+1). (3.6)

Since {λk} is bounded, we assume there exists a subsequence K0 ⊆ N and λ∗ such that20

λ∗ := lim
k→∞, k∈K0

λk.21

By the gradient consistency property of fρ(·), giρ(·), i = 1, · · · , p and hjρ(·), j = p +22

1, · · · , q, there exists a subsequence K̄0 ⊆ K0 such that23

lim
k→∞, k∈K̄0

∇fρk(xk+1) ∈ ∂f(x∗),

lim
k→∞, k∈K̄0

∇giρk(x
k+1) ∈ ∂gi(x∗), i = 1, · · · , p,

lim
k→∞, k∈K̄0

∇hjρk(x
k+1) ∈ ∂hj(x∗), j = p+ 1, · · · , q.

13



From condition (3.1), we know that there exists ξk+1 ∈ Rn such that1

ξk+1 ∈ ∇Gλk,ck
ρk

(xk+1) +NΩ(xk+1), (3.7)

where ‖ξk+1‖ ≤ η̂ρ−1
k and thus ξk → 0 follows by ρk → ∞ as k → ∞. Taking limits in2

(3.7) as k →∞, k ∈ K̄0, by the gradient consistency properties, we have3

0 ∈ ∂f(x∗) +

p∑
i=1

λ∗i∂gi(x
∗) +

q∑
j=p+1

λ∗j∂hj(x
∗) +NΩ(x∗). (3.8)

It follows from (3.2) that λ∗i ≥ 0, i = 1, · · · , p. We now show that the complementary4

slackness condition holds. If gi(x
∗) < 0 for certain i ∈ {1, . . . , p}, we have giρk(x

k+1) < 0 for5

sufficiently large k since {giρ : ρ > 0} are families of smoothing functions of gi, i = 1, · · · , p.6

Then λ∗i = lim
k→∞, k∈K̄0

λk+1
i = 0 since σλ

k+1

ρk
(xk+1) = 0 for sufficiently large k. Therefore x∗7

is a stationary point of problem (P) and the proof of the theorem is complete.8

Theorem 3.2 Suppose that the Algorithm 3.1 does not terminate within finite iterations9

and {xk, ρk, λk, ck} is a sequence generated by Algorithm 3.1. If EWNNAMCQ holds10

at any accumulation point x∗ for the problem (P), then the parameter sequence {λk} is11

bounded and thus x∗ is a stationary point of problem (P).12

Proof. From Theorem 3.1, if ck is bounded, the conclusions hold automatically. We13

consider the case where {ck} is unbounded. Since x∗ is an arbitrary accumulation point,14

we assume there exist K ⊆ N and x∗ such that lim
k→∞,k∈K

xk = x∗, and a set K̃ ⊆ K such15

that condition (3.4) fails for every k ∈ K̃ sufficiently large. From the update rule, we16

have ck+1 := max{σck, ‖λk+1‖1+τ} for all large k ∈ K̃, thus17

0 ≤ ‖λ
k‖
ck
≤ (ck)

− τ
1+τ → 0, as k →∞. (3.9)

Without loss of generality, we assume there exists a subset K̃0 ⊆ K̃ such that18

lim
k→∞, k∈K̃0

fρk(x
k+1) = f(x∗),

lim
k→∞, k∈K̃0

giρk(x
k+1) = gi(x

∗), i = 1, · · · , p,

lim
k→∞, k∈K̃0

hjρk(x
k+1) = hj(x

∗), j = p+ 1, · · · , q.

By the gradient consistency property of fρ(·), giρ(·), i = 1, · · · , p and hjρ(·), j = p +19

1, · · · , q, there exists a subsequence K̄ ⊆ K̃0 such that20

v := lim
k→∞, k∈K̄

∇fρk(xk+1) ∈ ∂f(x∗),

vi := lim
k→∞, k∈K̄

∇giρk(x
k+1) ∈ ∂gi(x∗), i = 1, · · · , p,

vj := lim
k→∞, k∈K̄

∇hjρk(x
k+1) ∈ ∂hj(x∗), j = p+ 1, · · · , q.

14



We now assume for a contradiction that λk is unbounded. By the definition of µλ,cρ (·), we1

have ‖λk+1‖ = ‖µλk,ckρk
(xk+1)‖ → ∞. There exists a subsequence K̄0 ⊆ K̄ and nonzero2

vector µ ∈ Rq nonzero such that3

lim
k→∞,k∈K̄0

µλ
k,ck
ρk

(xk+1)

‖µλk,ckρk (xk+1)‖
= µ.

It follows from the definition of µ(·) that µi ≥ 0, i = 1, · · · , p.4

Similarly as in Theorem 3.1, (3.7) holds. Dividing by ‖µλk,ckρk
(xk+1)‖ in both sides of5

(3.7) and letting k →∞ in K̄0, we have6

0 ∈
p∑
i=1

µivi +

q∑
j=p+1

µjvj +NΩ(x∗). (3.10)

If gi(x
∗) < 0 for certain i ∈ {1, . . . , p}, we have giρk(x

k+1) < 0 for sufficiently large k,7

respectively, since {giρ : ρ > 0} are families of smoothing functions of gi, i = 1, · · · , p.8

Thus µi = lim
k→∞, k∈K̄0

µλ
k,ck
ρk,i

(xk+1) = 0 by the definitions µλ,cρ (·) and the unboundedness of9

{ck}. Consequently we have µi = 0 if gi(x
∗) < 0, for i ∈ {1, · · · , p}.10

For each j = p + 1, · · · , q such that hj(x
∗) 6= 0. We only consider when hj(x

∗) < 011

which also implies that hjρk(x
k+1) < 0 for sufficiently large k. From the definition of12

µλ,cρ (·), for sufficiently large k ∈ K̄0, j = p+ 1, · · · , q, we have13

µλ
k,ck
ρk,j

(xk+1)hjρk(x
k+1) = (λkj + ckh

j
ρk

(xk+1))hjρk(x
k+1)

= λkjh
j
ρk

(xk+1) + ck(h
j
ρk

(xk+1))2 > 0. (3.11)

Otherwise, assume for a contrary there exists a subsequence K1 ⊆ K̄0 such that for14

k ∈ K1,15

λkjh
j
ρk

(xk+1) + ck(h
j
ρk

(xk+1))2 ≤ 0.

Dividing ck in both sides of the above inequality and letting k →∞, k ∈ K1, from (3.9),16

‖λk‖
ck
→ 0 and thus h2

j(x
∗) ≤ 0, which contradicts with hj(x

∗) < 0. Therefore, (3.11) holds17

for sufficiently large k ∈ K̄0.18

From the definition of µ(·),

µj = lim
k→∞,k∈K̄0

µλ
k,ck
ρk,j

(xk+1)

‖µλk,ckρk (xk+1)‖

for j = p+1, · · · , q. Thus the limit of
µ
λk,ck
ρk,j

(xk+1)

‖µλ
k,ck
ρk

(xk+1)‖
hjρk(x

k+1) exists for k ∈ K̄0 and followed19

by (3.11),20

µjhj(x
∗) = lim

k→∞,k∈K̄0

µλ
k,ck
ρk,j

(xk+1)

‖µλk,ckρk (xk+1)‖
hjρk(x

k+1) ≥ 0. (3.12)

15



Similarly, µjhj(x
∗) ≥ 0 if hj(x

∗) > 0. Therefore,1

p∑
i=1

µigi(x
∗) +

q∑
j=p+1

µjhj(x
∗) ≥ 0. (3.13)

Conditions (3.10) and (3.13) contradict with the EWNNAMCQ assumption. Thus λk is2

bounded. From the update rule of λk, x∗ should be a feasible point since the unbounded-3

ness of ck. Similarly with the proof of Theorem 3.1, x∗ is a stationary point of problem4

(P).5

We now discuss the situation if a feasible point of problem (P) is known, denotes by6

xfeas ∈ Ω, then the values of the augmented Lagrangian functions along the approximated7

solution sequence are bounded above, i.e., for any k,8

Gλk,ck
ρk

(xk+1) ≤ Υ, (3.14)

for a constant Υ > f(xfeas) + 1.9

In this case, choosing a proper initial point is important. For any k, we denote the10

initial point for solving the subproblem (Pλ,c
ρ ) with ρ = ρk, λ = λk, c = ck as follows:11

xk+1
int =

{
xfeas, if Gλk,ck

ρk
(xk) > Υ

2
,

xk, otherwise,

where xk is an approximate stationary point of the kth subproblem (Pλ,c
ρ ) satisfying12

condition (3.14).13

Since xfeas is a feasible point of problem (P),Gλk,ck
ρk

(xfeas) would approximate to f(xfeas)14

when k is sufficiently large. The above inequality together with the choice of xkint implies15

that Gλk,ck
ρk

(xk+1
int ) ≤ Υ. Additionally, the objective values at all subsequent iterates gen-16

erated by the non-monotone gradient method are bounded above by the one at the initial17

point. That is18

Gλk,ck
ρk

(xk+1) ≤ Gλk,ck
ρk

(xk+1
int ) ≤ Υ,

and thus the condition (3.14) holds at xk+1.19

Theorem 3.3 Suppose that the Algorithm 3.1 does not terminate within finite iterations20

and {xk, ρk, λk, ck} is a sequence generated by Algorithm 3.1. Assume a feasible point of21

problem (P) is known. If WNNAMCQ holds at any accumulation point x∗ for the problem22

(P), then23

(i) x∗ is a feasible point of (P).24

(ii) The parameter sequence {λk} is bounded and thus x∗ is a stationary point of problem25

(P).26

16



Proof. Assume that there exists K ⊆ N and x∗ such that lim
k→∞,k∈K

xk = x∗. Similarly as1

in Theorem 3.2, we consider the case where {ck} is unbounded and for all large k ∈ K,2

(3.9) holds.3

(i) Without loss of generality, we assume there exists a subset K̃0 ⊆ K such that4

lim
k→∞, k∈K̃0

fρk(xk) = f(x∗),

lim
k→∞, k∈K̃0

giρk(xk) = gi(x
∗), i = 1, · · · , p,

lim
k→∞, k∈K̃0

hjρk(xk) = hj(x
∗), j = p+ 1, · · · , q.

From the condition (3.14), we have5

fρk(x
k+1) +

1

2ck

p∑
i=1

(
max{0, λki + ckg

i
ρk

(xk+1)}2 − (λki )
2
)

+

q∑
j=p+1

λkjh
j
ρk

(xk+1) +
ck
2

(hjρk(x
k+1))2 ≤ Υ.

It follows that6

1

2

p∑
i=1

(
max{0, λ

k
i

ck
+ giρk(x

k+1)}2 − (
λki
ck

)2

)
+

q∑
j=p+1

(
λkj
ck
hjρk(x

k+1) +
1

2
(hjρk(x

k+1))2

)

≤ 1

ck
(Υ− fρk(xk+1)).

Taking limits on both sides as k →∞, k ∈ K̃0 and using (3.9), we have7

1

2

p∑
i=1

max{0, gi(x∗)}2 +
1

2

q∑
j=p+1

h2
j(x
∗) = 0

from the definition of smoothing function. Therefore x∗ is a feasible point of problem (P).8

(ii) The second conclusion follows from Theorem 3.2.9

4 Applications and numerical examples10

In this section, we first test our algorithm on two general nonsmooth and nonconvex11

constrained optimization problems. Then we apply the algorithm to the bilevel programs.12

In numerical practise, it is impossible to obtain an exact ‘0’, thus we select some small13

enough ε > 0, ε1 > 0 and terminate the algorithm when14

‖PTΩ(xk+1)(−∇Gλk,ck
ρk

(xk+1))‖ < ε and σλ
k+1

ρk
(xk+1) < ε1.

The former terminate condition is derived by (3.5).15

17



4.1 Illustrative examples for general problems1

In this subsection, we illustrate the Algorithm 3.1 by two general nonsmooth and non-2

convex constrained optimization problems.3

Example 4.1 [22, Example 5.1] Consider the nonsmooth constrained optimization pro-4

gram of minimizing a nonsmooth Rosenbrock function subject to an inequality constraint5

on a weighted maximum value of the variables:6

min f(x, y) := 8|x2 − y|+ (1− x)2

s.t. g(x, y) := max{
√

2x, 2y} − 1 ≤ 0.

The unique optimal solution of the problem is (x̄, ȳ) = (
√

2
2
, 1

2
).7

From easily calculation,the NNAMCQ is satisfied at every point in R2 and a feasible8

point (xfeas, yfeas) = (0.5, 0.3) is known. Our convergent theorem guarantees that any9

accumulation point of the iteration sequence must be a stationary point from Theorem10

3.3.11

Rewrite the objective function and the constraint function as12

F (x, y) = 8
(
(x2 − y)+ + (−x2 + y)+

)
+ (1− x)2

g(x, y) =
√

2x+ (2y −
√

2x)+ − 1.

We use the following functions to approximate the Lipchitz functions:13

Fρ(x, y) := 8
√

(x2 − y)2 + ρ−1 + (1− x)2,

gρ(x, y) :=
1

2

(√
2x+ 2y +

√
(2y −

√
2x)2 + ρ−1

)
− 1.

In our test, we choose the initial point (x0, y0) = (0.5, 0.3) and the parameters ρ0 =14

100, c0 = 100, η̂ = 103, σ = 10,Γ = 2, τ = 0.5, λ = 100 and ε = 10−5, ε1 = 10−6. The15

stopping criteria16

dist(0,∇Gλk,ck
ρk

(xk+1) +NΩ(xk+1)) < ε and σλ
k+1

ρk
(xk+1) < ε1

hold with (xk+1, yk+1) = (0.70708, 0.49996), which is a good approximation of the true17

optimal solution.18

Example 4.2 [7, Example 5.1] Consider the nonsmooth constrained optimization pro-19

gram of minimizing a nonsmooth Rosenbrock function subject to one nonsmooth inequal-20

ity constraint and one linear equality constraint:21

min f(x, y) := 8|x2 − y|+ (1− x)2

s.t. g(x, y) := x2 + |y| − 4 ≤ 0,

h(x, y) := x−
√

2y = 0.

18



The unique optimal solution of the problem is (x̄, ȳ) = (
√

2
2
, 1

2
).1

From easily calculation,the NNAMCQ is satisfied at every point in R2 and a feasible2

point (xfeas, yfeas) = (0.5,
√

2
4

) is known. Our convergent theorem guarantees that any3

accumulation point of the iteration sequence must be a stationary point from Theorem4

3.3.5

We use the following functions to approximate F (x, y) and g(x, y):6

Fρ(x, y) := 8ψ3
ρ(x

2 − y) + (1− x)2,

gρ(x, y) := x2 + ψ3
ρ(y)− 4.

In our test, we choose the initial point (x0, y0) = (0.8, 0.6), and the parameters ρ0 =7

20, c0 = 100, η̂ = 5 ∗ 103, σ = 10,Γ = 4, τ = 0.5, λ = 100 and ε = 10−3, ε1 = 10−6. The8

stopping criteria9

dist(0,∇Gλk,ck
ρk

(xk+1) +NΩ(xk+1)) < ε and σλ
k+1

ρk
(xk+1) < ε1

hold with (xk+1, yk+1) = (0.70710, 0.5000), which is a good approximation of the true10

optimal solution.11

4.2 Applications to the bilevel program12

In this subsection, we consider the simple bilevel program13

(SBP) min F (x, y)

s.t. gi(x, y) ≤ 0, i = 1, · · · , l,

x ∈ X, y ∈ S(x),

where S(x) denotes the set of solutions of the lower level program14

(Px) min
y∈Y

f(x, y),

where X ⊆ Rn and Y ⊆ Rm are compact subsets, f, F, gi, i = 1, · · · , l : Rn ×Rm → R are15

continuously differentiable functions and f is twice continuously differentiable in variable16

y. When the lower level constraint set Y is depend on the variable x, (SBP) turns to a17

general bilevel program. Applications and recent developments of general bilevel programs18

can be found in [5, 23, 24, 41, 43].19

A general practice to solve the bilevel program is to replace the lower level program20

by its first order conditions and thus the problem reduces to a MPEC problem. While21

when the lower level problem is not convex on variable y, Mirrlees [30] pointed out that22

the true optimal solution may not be found by such approach.23

19



By defining V (x) := inf
y∈Y

f(x, y) as the value function of the lower level program,1

(SBP) equivalents to a single level problem [34, 47, 48]:2

(VP) min F (x, y)

s.t. f(x, y)− V (x) = 0, (4.1)

gi(x, y) ≤ 0, i = 1, · · · , l,

x ∈ X, y ∈ Y.

However, the optimal solution may not be a stationary point of (VP). To overcome such3

difficulty, Ye and Zhu [49] proposed to consider a combined program with both the first4

order condition and the value function constraint involved. By assuming that every opti-5

mal solution of the lower level problem is an interior point of set Y , the combined program6

takes the form:7

(CP) min F (x, y)

s.t. f(x, y)− V (x) ≤ 0,

gi(x, y) ≤ 0, i = 1, · · · , l,

∇yf(x, y) = 0,

x ∈ X, y ∈ Y.

It is already shown that the value function V (x) is usually nonsmooth, even when the8

function f(x, y) is smooth, Lin, Xu and Ye [28] proved that the integral entropy function:9

γρ(x) := −ρ−1 ln

(∫
Y

exp[−ρf(x, y)]dy

)
= V (x)− ρ−1 ln

(∫
Y

exp[−ρ(f(x, y)− V (x))]dy

)
is a smoothing function of V (x) and satisfies the gradient consistency property. Based10

on the smoothing method, many algorithms were proposed to solve the bilevel program11

[28, 44, 45, 46].12

In the rest of this subsection, we apply Algorithm 3.1 to (CP), and verify that the13

EWNNAMCQ holds and thus the solution of the algorithm is a stationary point of the14

bilevel problem. Furthermore, we also compare the Algorithm 3.1 with some existing algo-15

rithms to solve the bilevel program. Since the method in [28] is an approximated method,16

we only consider the smoothing sequential quadratic programming (SQP) algorithm in17

[45] and the smoothing augmented Lagrangian method (SAL) in [46].18

Example 4.3 (Mirrlees’ problem) [30] Consider Mirrlees’ problem19

min F (x, y) := (x− 2)2 + (y − 1)2

s.t. x ∈ X := [−1, 1], y ∈ S(x),

20



where S(x) is the solution set of the lower level program1

min f(x, y) := −x exp[−(y + 1)2]− exp[−(y − 1)2]

s.t. y ∈ Y := [−1, 1].

It was shown in [30] that the unique optimal solution is (x̄, ȳ) with x̄ = 1, ȳ ≈ 0.9575 .2

In our test, we choose the initial point (x0, y0) = (0.7, 0.5) and the parameters ρ0 =

100, c0 = 100, η̂ = 103, σ = 10, τ = 0.5, λ = (100, 100) and ε = 10−3, ε1 = 10−5.

The stopping criteria hold with (xk+1, yk+1) ≈ (1, 0.957504). Since TX×Y (xk+1, yk+1) ={
(d1, d2)T : d1 ≤ 0, d2 ∈ R

}
. From calculation,

∇Gλk,ck
ρk

(xk+1, yk+1)) = 10−3 × (−0.5038, 0.8099)T ,

thus

‖PTX×Y (xk+1,yk+1)(−∇Gλk,ck
ρk

(xk+1, yk+1))‖ = ‖10−3 × (0, 0.8099)T‖ = 8.099× 10−4 < ε.

It seems that the sequence converges to (x̄, ȳ).3

Since4

∇f(xk+1, yk+1)− (∇γρk(xk+1), 0) = (0.0188, 0)T ,

∇(∇yf)(xk+1, yk+1) = (0.08484, 1.7004)T ,

it is easy to see that the vectors ∇f(x̄, ȳ)− ( lim
k→∞
∇γρk(xk+1), 0) and ∇(∇yf)(x̄, ȳ) are lin-5

early independent. Thus the EWNNAMCQ holds at (x̄, ȳ) and our algorithm guarantees6

that (x̄, ȳ) is a stationary point of (CP) from Theorem 3.2.7

We now compare the Algorithm 3.1 with the SQP algorithm and the SAL algorithm.

Let (x∗, y∗) be the point generated by certain algorithm which is approximated to the

accumulation point. The results are reported in Table 1, in which d(x∗, y∗) means the

distance between (x∗, y∗) and the optimal point (x̄, ȳ) defined by

d(x∗, y∗) ≈ |x∗ − 1|+ |y∗ − 0.9575| .

Table 1: Mirrlees’ problem

(x∗, y∗) d(x∗, y∗)

Algorithm 3.1 (0.999996,0.957504) 5.73e-006

SQP algorithm (1.000002,0.957598) 9.79e-005

SAL algorithm (1.000905,0.957459) 9.06e-004

8
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Example 4.4 [31, Example 3.20] The bilevel program1

min F (x, y) := (x− 0.25)2 + y2

s.t. y ∈ S(x) := argmin
y∈[−1,1]

f(x, y) := 1
3
y3 − x2y,

x, y ∈ [−1, 1]

has the optimal solution point (x̄, ȳ) = (1
2
, 1

2
) with an objective value of 5

16
.2

In our test, we choose the initial point (x0, y0) = (0.7, 0.2) and the parameters ρ0 =3

100, c0 = 100, η̂ = 103, σ = 10, τ = 0.5, λ = (100, 100) and ε = 6 ∗ 10−4, ε1 = 5× 10−6.4

The stopping criteria hold with (xk+1, yk+1) ≈ (0.500003, 0.500003). It seems that the5

sequence converges to (x̄, ȳ).6

Since7

∇f(xk+1, yk+1)− (∇γρk(xk+1), 0) = (−0.0151,−0)T ,

∇(∇yf)(xk+1, yk+1) = (−1, 1)T ,

it is easy to see that the vectors ∇f(x̄, ȳ)− ( lim
k→∞
∇γρk(xk+1), 0) and ∇(∇yf)(x̄, ȳ) are lin-8

early independent. Thus the EWNNAMCQ holds at (x̄, ȳ) and our algorithm guarantees9

that (x̄, ȳ) is a stationary point of (CP) from Theorem 3.2.10

We now compare the Algorithm 3.1 with the SQP algorithm and the SAL algorithm.

Let (x∗, y∗) be the point generated by certain algorithm which is approximated to the

accumulation point. The results are reported in Table 2, in which d(x∗, y∗) means the

distance between (x∗, y∗) and the optimal point (x̄, ȳ) defined by

d(x∗, y∗) := |x∗ − x̄|+ |y∗ − ȳ| .

Table 2: Example 4.4

(x∗, y∗) d(x∗, y∗)

Algorithm 3.1 (0.500003,0.500003) 4.08e-006

SQP algorithm (0.499996,0.499996) 5.85e-006

SAL algorithm (0.500000,0.499995) 2.89e-005

11

Examples 4.3 and 4.4 show that the Algorithm 3.1 succeeds in solving the bilevel12

problems. The algorithm derives a sequence of points converging to the solution. What13

is more, the accumulation point seems more accurate than the SQP algorithm in [45] and14

SAL algorithm in [46].15
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