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Abstract

For many practical face recognition problems, such as law enforcement, e-

passport, ID card identification, and video surveillance, there is usually only

a single sample per person enrolled for training, meanwhile the probe samples

can usually be captured on the spot, it is possible to collect multiple face images

per person. This is a new face recognition problem with many challenges, and

we name it as the single-image-to-image-set face recognition problem (ISFR). In

this paper, a customized dictionary-based face recognition approach is proposed

to solve this problem using the extended joint sparse representation. We first

learn a customized variation dictionary from the on-location probing face im-

ages, and then propose the extended joint sparse representation, which utilizes

the information of both the customized dictionary and the gallery samples, to

classify the probe samples. Finally we compare the proposed method with the

related methods on several popular face databases, including Yale, AR, CMU-

PIE, Georgia, Multi-PIE and LFW databases. The experimental results show

that the proposed method outperforms most of these popular face recognition

methods for the ISFR problem.
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dictionary, dictionary learning, extended joint sparse representation.

1. Introduction

Face recognition (FR) is an active research topic in computer vision and

pattern recognition [1, 2, 3, 4, 5, 6]. Various demands of applications, such as

law enforcement, e-passport, ID card identification, video surveillance, access

control, social network, photo management, criminal investigation, etc., lead

to a wide range of solutions for FR. Over the past decades, many appearance-

based methods were proposed to improve the performance of face recognition.

With the increasing attention from researchers, many methods have been pro-

posed in the literature, such as principle component analysis (PCA)[7, 8], linear

discriminant analysis (LDA) [9], independent component analysis (ICA) [10],

sparse representation classification (SRC) [11], kernel sparse representation (K-

SR) [12], linear regression (LR) [13], collaborative representation classification

(CRC) [14], locality-constrained collaborative representation (LCCR) [15], man-

ifold constraints transfer (MCT) [16] and so on. All these methods are in one

framework that many face samples per person are used for training and a face

sample is used for testing. These approaches can achieve state-of-the-art results

when the training samples are as large as possible, especially with deep learn-

ing technique. We call this category as the image-set-to-image face recognition

(SIFR).

With the rapid development of digital imaging and communication technolo-

gies, the image-set-to-image-set face recognition (SSFR) becomes a very impor-

tant research topic for video surveillance and has attracted much intention in re-

search community. Recently, a number of approaches [17, 18, 19, 20, 4, 21, 22, 23]

were proposed to solve the SSFR problem. Different from conventional SIFR

where the probe is single, SSFR assumes that the gallery set and the probe set

both have multi samples. All the samples are captured with different poses,

illuminations and expressions. These face nuisances will affect the classification

in the SSFR problem. Therefore, the key issues in SSFR include how to model
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a set and compute the distance/similarity between probe and gallery sets effec-

tively. Researchers have proposed subspace [24, 25, 26], manifold [17, 19, 22],

affine or convex hull [20, 4, 21] and dictionary learning [27, 28] with attempt to

achieve a satisfactory solution.

Unfortunately, sometimes there is only a single sample per person (SSPP)

for training due to difficulty of collecting the sample with ID information. And

in this case, many existing face recognition methods (both SIFR and SSFR

methods) may fail to work because there are not sufficient samples for training.

For the conventional SSPP face recognition [29, 30], there is one sample per per-

son for training and one sample per person for probing. We call this category

as single-image-to-single-image face recognition (IIFR). This IIFR problem has

attracted much attention in computer vision community due to its difficulty and

several kinds of efficient methods [31, 32, 33, 34, 35, 36, 37, 38] were proposed in

the past. These methods are based on the generic learning, which assumes that

the generic training set and the gallery set share similar variation information

of both inter-class and intra-class. Especially, the dictionary learning method-

s, such as extended sparse representation-based classification (ESRC) [33, 34],

sparse variation dictionary learning (SVDL) [35], sparse illumination learning

and transfer (SILT) [36], variational feature representation-based classification

(VFRC)[37], would learn a dictionary from an additional generic set to offer the

extra information, including illumination, expression, occlusion, and pose.

What may be less obvious is that, in the real world, the probe samples usu-

ally can be captured easily on the spot, and it is possible to collect multiple face

images per person. The IIFR methods ignore the collection of the multiple probe

samples, which would have potentially useful information to improve the per-

formance of FR. This is a special SSPP face recognition problem, named as the

single-image-to-image-set face recognition (ISFR). In this case, there are multi-

ple probe samples per person in the testing phase, and only one gallery sample

per person in the training phase. This framework is new and more suitable for

many practical applications. In the case of ISFR, it arises an essential question

for this application scenario: how can we use the multiple testing face images
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to improve the performance in ISFR? In 2013, Lu et. al. [39] proposed the

locality repulsion projections and sparse reconstruction-based similarity mea-

sure (LRP-SRSM) method to solve it. From the metric learning perspective,

Zhu et. al. [5] proposed the point-to-set distance metric learning method to

learn a proper metric between a single image and image set in Euclidean space

with an aim to achieve more accurate classification. From the manifold learning

perspective, Huang et. al. [40] proposed the learning Euclidean-to-Riemannian

metric method. They think the single image is a point lying in Euclidean space,

and the image set reside on certain Riemannian manifolds, and build a bridge

between them. But all the above methods ignore the specific contents (the var-

ious uncontrolled variations, such as pose, illumination and expression) of the

face images on the shot. They do not make full use of the information in the

observation data.

Inspired by the works of the sparse representation methods and the dictio-

nary learning methods, we propose a new method, named customized dictionary-

based face recognition with extended joint sparse representation (CD-EJSR), to

solve the ISFR problem. First, each customized dictionary is obtained on the

shot by using the samples corresponding the same probe subject. In other word-

s, every probe subject would have a special dictionary. The learned dictionary

contains the variation features about the uncontrolled variations (pose, illumina-

tion and expression). Then, we propose the extended joint sparse representation

(EJSR), which utilizes the information of both the customized dictionary and

the gallery samples to classify the probe samples. In summary, we can highlight

the contributions of this work as follows:

• Different from the conventional dictionary learning methods [33, 35, 36]

for the SSPP problem (e.g. IIFR), in which the dictionaries are learned

from the gallery samples and generic samples, the variation dictionary in

CD-EJSR is learned directly from the observed probe samples without

identity information.

• The variation dictionary is learned by using a new optimization model,
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which can be solved by the alternating direction method of multipliers

(ADMM) approach. Also the closed-form solution is obtained in each

step, which makes the proposed algorithm converge fast.

• We propose the extended joint sparse representation (EJSR) model. The

EJSR model not only takes advantage of the learned variation dictionary

which represents the intra-class variation between the gallery and probe

samples, but also utilizes the group structure to enhance the performance

for recognition.

The rest of this paper is organized as follows. Section 2 discusses the pro-

posed customized dictionary learning and the extended joint sparse represen-

tation in detail. In Section 3, the experiments on several face databases are

presented. The final section gives our conclusions for this paper.

2. Models

For the ISFR problem, there is only one single image for training and mul-

tiple samples for testing per person. The great difference (intra-class variation)

between one training image and variational testing images becomes a huge bar-

rier to recognize the identity of testing set. In order to reduce the barrier, we

firstly propose a novel dictionary learning model to represent the intra-class

variations of each probe subject. In fact, the dictionary just relies on the ob-

servation data (the probe face images of a subject on the shot), and it doesn’t

need to learn the additional auxiliary information from another face set. Fur-

thermore, we do not need the ID information in this stage. Secondly, we propose

a model with l2,1-norm for fitting the probe samples and hope the group struc-

ture is still retained in the learned dictionary to enhance the performance for

recognition. The overview of our approach is shown in Fig 1.

Next we will explain the framework in detail. For such purpose, we first list

the notations.
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Fig. 1. The basic idea of our proposed ISFR approach. In the first stage,

the variation dictionaries are learned, by using the proposed dictionary learning

model, to encode the pose, illumination, expression and occlusion information in

the probe images. Then in the second stage, this customized dictionary is used

in the EJSR model to supply the intra-class variation. The reconstructed images

are represented by the variation dictionary and the gallery samples. Finally, we

recognize its label by using the smallest reconstruction error.

2.1. Notations

Let A = [a1, a2, · · · , aL] be a gallery set, where al (l = 1, 2 · · · , L) is a

single gallery sample of the l-th person. Assume that {Y1, · · · , YL} denotes the

collected probe face data of L different persons, where Yl = [yl1, · · · , ylnl
] ∈

R
d×nl is the face data including nl images of the l-th person, yli ∈ R

d (i =

1, 2, · · · , nl) denotes a probe face image, d is the dimension of an image, and

n =
∑L

l=1 nl. The set {D1, · · · , DL} is a variation dictionary set learned from

L probe persons, where Dl ∈ R
d×ml is a dictionary corresponding to the l-th

probe person. Vectorization of all the samples is used in this paper.
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2.2. The Customized Dictionary Learning Model

Based on the idea of linear representation, a face image I can be represented

as three parts,

I = N + V + ε

where N denotes the normal face feature, V denotes the variation feature on the

face, and ε denotes the error term. Fig. 2 illustrates the above representation.

For the ISFR problem, the probe face data Yl of the l-th person is captured

original image normal image variation image

= +

Fig. 2. The linear representation of a face image in the AR database, The original

image contains the variation of occlusion. The key idea of linear representation

is that this original image is the combination of the normal image and variation

image.

on the spot. It is well known that the appearance of the captured face images

are affected by many face images nuisances, including illumination, pose, and

facial corruption/disguise (such as makeup, beard and glasses). Those noisy

appearance would affect the recognition performance in testing phase. Inspired

by the work [11], any face image can be linearly represented by the other face

images in the same subspace (the same ID). Intuitively speaking, we can obtain

an assumption that the variations on the face are located in a common variation

subspace, and a face image in fact belongs to the sum of face subspace and

the variation subspace. Based on the above analysis, there is a similar linear

representation for the probe set Yl of l-th person in the following:

Yl = DlXl +Nl ⊗ 1+ El,
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where Xl is the coefficient matrix corresponding the variation dictionary Dl,

El is the error matrix, Nl denotes the normal face data (an ideal face or the

average face of the probe face images) of the l-th person, ⊗ is kronecker product

and 1 is full-one row vector. For brevity, Nl ⊗ 1 denotes still by Nl in the rest

of this article. A key problem is how to obtain a suitable variation dictionary

Dl to remove the face images nuisances. To solve the problem, we design a new

model to learn a customized dictionary from the given probe samples instead of

generic face set. The model is written as the following optimization problem:

min
Dl,Xl,El

λ
2 ‖Xl‖

2
F + ‖El‖

2
F

s.t. Yl = DlXl +Nl + El,
(1)

where λ is a regularization parameter. We omit the subscripts such as l in the

above model for notational simplicity, then the simplified version is as follows

min
D,X,E

λ
2 ‖X‖2F + ‖E‖2F

s.t. Y = DX +N + E.
(2)

Note that this problem is a non-convex optimization problem. However,

when E is fixed, this problem is convex forX , and there exists a global minimum.

The situation is similar for E when X is fixed. Therefore, we can utilize the

alternating direction method of multipliers (ADMM) framework [41] to solve

(2). For variable separation, we introduce an additional variable C, then the

problem (2) can be expressed as follows

min
D,C,X,E

λ
2 ‖C‖2F + ‖E‖2F

s.t. Y −DX−N−E = 0, C−X = 0.

In this case, we can consider the augmented Lagrangian

L = λ
2 ‖C‖2F + ‖E‖2F

+tr[Λ⊤
1 (C−X)] + µ1

2 ‖C−X‖2F

+tr[Λ⊤
2 (Y−DX−N−E)]+µ2

2 ‖Y−DX−N−E‖2F ,

where tr[·] denotes the trace of a matrix. The updates for the variables can be

easily derived under the ADMM framework. The complete process consists of

the following five steps:
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step 1. For variable C, we have the updated form

Ck+1=argmin
C

λ

2
‖C‖2F+tr

[

Λk
1

⊤

(C−Xk)
]

+
µ1

2

∥

∥C−Xk
∥

∥

2

F
.

We consider the partial derivative of the object function of the above problem,

and can obtain the following,

λC + Λk
1 + µ1(C −Xk) = 0,

which gives the explicit iterative formula as

Ck+1 = (µ1X
k − Λk

1)/(λ+ µ1). (3)

step 2. For variable D, consider the following optimization problem,

Dk+1=argmin
D

tr
[

Λk
2

⊤

(P k−DXk)
]

+
µ2

2

∥

∥P k−DXk
∥

∥

2

F
.

where P k = Y −N−Ek. Similarly, by the first-order necessary conditions for

unconstrained optimization problem, we have

−Λk
2X

k⊤− µ2

(

P k−DXk
)

Xk⊤ = 0.

Then, the iterative formula of the variable D is given by

Dk+1 =

[

1

µ2
Λk
2 + P k

]

Xk⊤
(

XkXk⊤
)−1

. (4)

step 3. For variable X , we consider the following optimization problem

Xk+1=argmin
X







tr
[

Λk
1
⊤(

Ck+1−X
)

]

+µ1

2

∥

∥Ck+1−X
∥

∥

2

F
+

tr
[

Λk
2
⊤(

P k−Dk+1X
)

]

+µ2

2

∥

∥P k−Dk+1X
∥

∥

2

F







,

where P k = Y −N−Ek. We use the first-order necessary conditions for uncon-

strained optimization problem to obtain the following equation

−Λk
1−µ1

(

Ck+1−X
)

−Dk+1⊤Λk
2−µ2D

k+1⊤
(

P k−Dk+1X
)

=0.

Furthermore, the update formula is derived as

Xk+1=
(

µ1I+µ2D
k+1⊤Dk+1

)−1(

Λk
1+Dk+1⊤Λk

2+ µ1C
k+1+µ2D

k+1⊤P k
)

, (5)
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where I denotes an identity matrix.

step 4. For the final variable E, we give the following iterative formula

Ek+1=argmin
E

‖E‖2F+tr
[

Λk
2

⊤

(Qk+1−E)
]

+
µ2

2

∥

∥Qk+1−E
∥

∥

2

F
,

where Qk+1 = Y −Dk+1Xk+1 −N . By solving the following equation

2E − Λk
2 − µ2

(

Qk+1 − E
)

= 0,

we can obtain the following closed-form iterative formula for E:

Ek+1 =
(

Λk
2 + µ2Q

k+1
)

/(2 + µ2). (6)

step 5. The updates for dual variables are as follows:

Λk+1
1 = Λk

1 + µ1

(

Ck+1 −Xk+1
)

,

Λk+1
2 = Λk

2 + µ2

(

Y −Dk+1Xk+1 −N − Ek+1
)

.
(7)

The above process is a Gauss-Seidel based ADMM Algorithm. We summa-

rize it in the following Algorithm 1.

Algorithm 1 Customized dictionary learning

Input: Probe face data Y ∈ R
d×n, penalty parameters µ1 and µ2, regulariza-

tion parameter λ, dictionary scale m;

Initialization: X = [1/m]i,j ∈ R
m×n, E = O ∈ R

d×n, Λ1 = O ∈ R
m×n,

Λ2 = O ∈ R
d×n;

for k = 0,1,2, ...

1. update C by (3);

2. update D by (4);

3. update X by (5);

4. update E by (6);

5. update the dual variables Λ1 and Λ2 by (7);

end for

Output: the dictionary D.

In Algorithm 1, we have the closed-form update formula in each iteration

and this will make the process of learning the customized variation dictionary

10



be rapidly implemented online. The computation time for dictionary learn-

ing will be discussed in Subsection 3.4. Fig. 3 shows that the original images

and the learned variation dictionaries of the first probe subject on LFW and

CMU-PIE databases. It is shown that the dictionaries contain the intra-class

variations, and two different scale dictionaries have the obvious differences. We

will show how the different dictionaries have impact on the performance for FR

in Subsection 3.5.

normal images

probe images

dictionary size 6

dictionary size 9

(a) the LFW database

normal images

probe images

dictionary size 16

dictionary size 23

(b) the CMU-PIE database

Fig. 3. Examples of the customized variation dictionaries of two subjects on

LFW and CMU-PIE databases. The left images in each sub-figure contain a

normal image and a group of probe images from the same subject. The right

images in each sub-figure are the customized dictionaries which are learned from

the left probe images. These customized dictionaries have the different sizes.

2.3. The Extended Joint Sparse Representation Model

In the classical SRC [11], determining the identity of L probe samples needs

to solve L sparse representation problems. In this paper, we have access to

multiple samples of the same subject in the probing phase, and our aim is to
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identifying a group of image samples in the testing stage. As an extension of

SRC under the multi-task situation, the joint sparse representation classification

(JSRC) [42] exploits the shared information from all the samples to make a joint

decision for recognition task and it can be used in this paper. The JSRC model

is in the following form

min
S

‖Y −AS‖2F + µ‖S‖2,1, (8)

where Y ∈ R
d×n is a group of the samples from a probe subject, A ∈ R

d×L

denotes the gallery set, each column of A denotes a normal face vector (in

general, an ideal face), and ‖ · ‖2,1 is defined by the sum of the l2-norm of

all rows of a matrix. For the SSPP problem, there is still a gap between a

normal gallery sample and any probe samples for the same person. Inspired

by the ESRC model [33], we insert the customized variation dictionary into the

JSRC model, and then obtain a novel model, named the extended joint sparse

representation (EJSR) model, which is rewritten as follows:

min
X,S

‖Y −DX −AS‖2F + τ‖X‖2,1 + µ‖S‖2,1

or

min
X,S

∥

∥

∥

∥

∥

∥

Y − [D A]





X

S





∥

∥

∥

∥

∥

∥

2

F

+

∥

∥

∥

∥

∥

∥





τX

µS





∥

∥

∥

∥

∥

∥

2,1

, (9)

where X and S denote the representation coefficient on D and A, respectively;

The customized variation dictionary D obtained in (2) represents the intra-

class variation between the gallery and probe samples. It joints with the gallery

sample to confront the complex variation on the face in the probe phase. For

integration of the variables, we denote D̄ = γ
τ
D, Ā = γ

µ
A, X̄ = τ

γ
X , and

S̄ = µ
γ
S, where γ = τ + µ, and express the model (9) as

min
X̄,S̄

∥

∥

∥

∥

∥

∥

Y − [D̄ Ā]





X̄

S̄





∥

∥

∥

∥

∥

∥

2

F

+ γ

∥

∥

∥

∥

∥

∥





X̄

S̄





∥

∥

∥

∥

∥

∥

2,1

.

Again, let B =
[

D̄ Ā
]

and H =
[

X̄⊤ S̄⊤
]⊤

, we obtain a simplified model

min
H

‖Y −BH‖2F + γ‖H‖2,1. (10)
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So, by a simple transform, one can see that the EJSR model would degenerate

into the JSRC model. Next, we would like to use some existing optimization

methods to solve this EJSR problem. In this paper, we use the ADMM frame-

work to solve the problem. For details, we introduce the additional variable V

and T , and the model can be transformed into

min
H,V,T

‖V ‖2F + γ‖T ‖2,1

s.t. BH − Y − V = 0, H − T = 0.

The augmented Lagrangian function is as follows:

L = ‖V ‖2F + γ‖T ‖2,1

+tr
[

W⊤
1 (BH−Y −V )

]

+ η1

2 ‖BH−Y −V ‖2F

+tr
[

W⊤
2 (H−T )

]

+ η2

2 ‖H−T ‖2F .

We now can scale dual variables Ui = Wi/ηi, i = 1, 2, and obtain an explicit

form

L = ‖V ‖2F + γ‖T ‖2,1+
η1

2 ‖U1‖
2
F

+ η1tr
[

U⊤
1 (BH−Y −V )

]

+ η1

2 ‖BH−Y −V ‖2F

+ η2

2 ‖U2‖
2
F+η2tr

[

U⊤
2 (H−T )

]

+ η2

2 ‖H−T ‖2F

− η1

2 ‖U1‖
2
F−

η2

2 ‖U2‖
2
F

= ‖V ‖2F + γ‖T ‖2,1

+ η1

2 ‖BH−Y −V +U1‖
2
F

+ η2

2 ‖H−T+U2‖
2
F+const,

where the constant is independent of the primal variables H,V, T . We perform

the following steps to obtain the solution of the model (10).

step 1. For the variables H and V , the iterative schemes are obtained by

solving the following two problems as

Hk+1=argmin
H

η1

2

∥

∥BH−Y−V k+Uk
1

∥

∥

2

F
+ η2

2

∥

∥H−T k+Uk
2

∥

∥

2

F
,

V k+1=argmin
V

‖V ‖2F + η1

2

∥

∥BHk−Y −V +Uk
1

∥

∥

2

F
.

By the first-order necessary conditions for unconstrained optimization problem,
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we can easily get these two updates of H and V

Hk+1=
(

η1B
⊤B+η2I

)−1 [
η1B

⊤(Y +V k−Uk
1 )+η2(T

k−Uk
2 )
]

,

V k+1= η1

2+η1

(

BHk − Y + Uk
1

)

,
(11)

where I denotes an identity matrix.

step 2. For the last primal variable T , the update steps are only slightly

different. Firstly, we have

T k+1 = argmin
T

γ‖T ‖2,1 +
η2
2

∥

∥Hk − T + Uk
2

∥

∥

2

F
. (12)

Let Hk + Uk
2 = Zk, and ti and zki denote the i-th row vectors of T and Zk,

respectively. Then we decompose the problem (12) as

T k+1= arg min
ti,i=1,2,...

∑

i

[

γ ‖ti‖2 +
η2
2

∥

∥zki −ti
∥

∥

2

2

]

.

Thus, we can find each row of T separately by exploiting the following result.

The optimal solution of the problem

min
t

γ‖t‖2 +
η2
2
‖z − t‖22

is t = κz, where κ = max{1 − γ
η2

‖z‖2, 0} if ‖z‖2 > 0, and κ = 0 if ‖z‖2 = 0.

Hence, the update formula of T is given by

T k+1 =
[

tk+1
1

⊤

, tk+1
2

⊤

, · · · , tk+1
m+L

⊤
]⊤

, (13)

where

tk+1
i =







max{1− γ
η2

‖zki ‖2, 0} · z
k
i , if ‖zki ‖2 > 0,

0, if ‖zki ‖2 = 0.

step 3. The updates for dual variables are

Uk+1
1 = Uk

1 +BHk−Y −V k,

Uk+1
2 = Uk

2 +Hk−T k.
(14)

Through the above updates, H can be found. Accordingly, the solution of

model (9) can be achieved from the following formulas.

X = γ
τ
[Im×m Om×n] ·H,

S = γ
µ
[On×m In×n] ·H.

(15)

The method described above is summarized the following Algorithm 2.
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Algorithm 2 Representation

Input: Probe face data Y ∈ R
d×n, variation dictionary D ∈ R

d×m, gallery set

A ∈ R
d×L, regularization parameters τ and µ, penalty parameters η1 and η2;

Initialization: V = O ∈ R
d×n, T = O ∈ R

(m+L)×n, U1 = O ∈ R
d×n,

U2 = O ∈ R
(m+L))×n, γ = τ + µ, B =

[

γ
τ
D γ

µ
A
]

;

for k = 0,1,2, ...

1. update H,V by (11);

2. update T by (13);

3. update the dual variables U1 and U2 by (14);

end for

Output: X and S by (15).

2.4. Classification

Given the probe face data Y of the same subject, we can indirectly get

the corresponding variation dictionary D∗ from the model (2), and obtain the

optimal solutionX∗, S∗ of the model (9). Then, the identity of the probe subject

is obtained via

identity(Y ) = argmin
i

‖Y −D∗X∗ − ais
∗

i ‖
2
F ,

where ai is the i-th column of the gallery set A, and s∗i is the i-th row of the

coefficient matrix S∗.

3. Experiments

In this section, we evaluate the effectiveness of our method on different

datasets, including AR [43], Yale [9], CMU-PIE [44], Georgia [45], Multi-PIE[46]

and LFW [47]. Some images in these datasets are shown in Fig. 4. Our experi-

ments are conducted on a PC platform with 64-bit win 8 operating system with

Intel Core i5-3550S CPU, and 8 G memory.

3.1. Experiment Setup

As we focus on ISFR in this paper, we will establish a standard for fair com-

parison with other approaches. For such purpose, all images are cropped into the
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(a) the AR database

(b) the Yale database

(c) the CMU−PIE database

(d) the Georgia database

(e) the LFW database

(e) the Multi−PIE database

Fig. 4. Face image samples in the AR, Yale, CMU-PIE, Georgia, LFW and

Multi-PIE databases.

size 32× 32. On each database, the first image per person is used as the gallery

sample, and the rest images are used as the probe samples in our experiments,

except for Multi-PIE. We will detail the experiment setup on the Multi-PIE

database separately in subsection 3.7. In the subsequent experiments, we first

select suitable parameters of the proposed model, and investigate the conver-

gence, computation time of our algorithm, and the influence of the dictionary

size. After that, we will compare the proposed method with several related

sparse coding based methods, including JSRC [42], MNSRC [26], LRP SRSM

[39], SRC [11], LCCR [15], and related dictionary learning methods, including

ESRC [33, 34], SVDL [35], SILT [36], VFRC [37]. The l1-regularized mini-

mization in SRC, SVDL and LRP-SRSM is solved by l1-ls algorithm [48]; the
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l1-regularized minimization in ESRC and SILT is solved by Homotopy algorith-

m [49]; the ADMM framework is used to solve JSRC, MNSRC and our method.

The final recognition results for SRC, ESRC, SVDL, SILT and VFRC are ob-

tained by the majority voting strategy, except for the single-image-to-image-set

methods: LRP-SRSM, JSRC and MNSRC. In the following experiments, the

parameters of these related methods are the same as those in their original

papers.

3.2. Parameter Tuning

Cross validation is a popular method to select parameters. We used the

five-fold cross validation to find the optimal combination schemes of relevant

parameters for our method. In order to present the complete experimental

process of parameters tuning, the CD-EJSR is implemented on LFW database.

The parameters of the EJSR model is the same as those of the JSRC model.

Here we only consider the customized dictionary learning model with the case

(µ1 = µ2 = µ). The mean recognition rates are recorded in Table 1. We can

Table 1. Parameter setting of the customized dictionary learning model

λ

µ
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

0.0500 47.47 44.94 45.57 45.57 47.47 46.84 45.57 45.57 43.67 48.10 44.94 48.10

0.0100 44.94 46.84 43.67 44.94 44.30 44.30 48.10 45.57 45.57 44.94 44.94 44.30

0.0050 46.84 44.94 46.20 44.30 48.10 45.57 46.20 44.94 47.47 46.20 44.30 43.67

0.0010 47.47 46.84 44.94 45.57 44.94 45.57 46.20 46.20 46.20 44.94 46.20 48.10

0.0005 44.30 42.41 47.47 50.00 44.94 46.84 46.20 44.30 46.84 46.20 43.67 44.30

0.0001 48.10 48.10 44.30 46.20 45.57 44.30 43.67 45.57 47.47 45.57 45.57 45.57

see from this table that the best choice is λ = 0.0005, µ = 0.4. So we will use

these parameters in the following experiments.

3.3. Illustration of Algorithm Convergence

In this subsection, we will illustrate the convergence of Gauss-Seidel based

ADMM algorithm for the customized dictionary learning model (2). Two face

databases (LFW and CMU-PIE) are used in these experiments. On each face
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database, different sizes of dictionaries are considered, such as the sizes 5, 10,

· · ·, 40. The convergence threshold ǫ is set as 0.001 for all the dictionary sizes.

Fig. 5 shows the convergence of the Gauss-Seidel based ADMM algorithm. It
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Fig. 5. Illustration of the convergence of the proposed Gauss-Seidel based AD-

MM algorithm for the customized dictionary learning model.

is clear to see from above figures that one can reach the convergence threshold

after 23 iterations in all cases. When the dictionary sizes are 5, 15 and 20, the

convergence threshold is reached after 14 iterations on the LFW database. When

the dictionary sizes are 5 and 15, the convergence threshold can be reached after

14 iterations on the CMU-PIE database. These figures show that our algorithm

always converges rapidly regardless of the dictionary size.

3.4. Computation Time

Based on the requirements that the process of learning variation dictionary

needs to be implemented online, we design the model with Frobenius norm and

employ the Gauss-Seidel based ADMM algorithm to solve the proposed mod-

el. Fortunately, the closed-form solutions have been derived in each iteration.

Therefore, it is possible to rapidly learn variation dictionary online. In addi-

tion, the time of recognition process is also an important indicator for a face

recognition system. In the sequent section, we would show the computation

time of learning dictionary and recognition process with respect to the various
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dictionary sizes on the databases (LFW, Georgia, CMU-PIE). These databas-

es have different number of persons, and the number of images per person is

also different. Each person has 10 images on the LFW database, 15 images

on the Georgia database and 24 images on the CMU-PIE database. For a fair

and thorough comparisons, we would record the time of dictionary learning and

recognition per 100 persons. We implement the proposed method with respect

to the various dictionary sizes on each database. The computation time of the

dictionary learning and recognition processes are recorded on each database,

respectively.

The final results are shown in Fig. 6. We can see that the recognition time
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Fig. 6. Illustration of the time costs of the proposed dictionary learning and

recognition processes with testing 100 persons on each face database.

is always longer than the time of learning dictionary regardless of the used
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databases. With the increasing of dictionary size, the time of the dictionary

learning gradually increases, and the recognition time first increases and then

decreases on each database. Furthermore, the computation time in the dic-

tionary learning phase is less than 10s for each database, which implies that

the computation time of learning a dictionary from a probe subject is about

0.1s. Overall, it takes about 0.4s to identify each person, which is reasonable

for practical applications.

3.5. Size of Variation Dictionary

In this subsection, we discuss how the dictionary size will affect the recog-

nition rate. The experimental setup is the same as the those in the previous

subsection. The results on the three databases (LFW, Georgia, CMU-PIE) are
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Fig. 7. Illustration how the dictionary size effects on the recognition rate.

20



presented in Fig. 7. We can see that the recognition rates increase rapidly when

the dictionary size is small. Nevertheless, the recognition rates will not increase

anymore when the dictionary size is large enough. As shown in Fig. 7, the recog-

nition rates will be stable when the size of the dictionary size is larger than 8, 8

and 12 on LFW, CMU-PIE and Georgia databases, respectively. We will take

the size around 8 in our experiments.

3.6. Evaluations on Different Databases

3.6.1. Yale Database

The Yale database has 165 images of 15 adults, 11 images per person. The

face images have variations with respect to facial expressions (as normal, sad,

happy, sleepy, surprised, and winking) and illuminations (where the position

of the light source is at the center, left and right). We conduct two groups of

tests on this database. In the first group, all the probe samples (10 samples per

person) are used. In the second one, we choose randomly half part of the probe

samples to evaluate the performance of the related methods, including JSRC,

MNSRC, LRP SRSM, SRC, LCCR and our proposed CD-EJSR method. The

recognition rates of the second test are the average values of ten times results.

The experimental results of the related methods are shown in Fig. 8. It is clear

that our method outperforms all other related methods on this database. In

particular, the proposed CD-EJSR method possesses the excellent performance

in the case with 10 probe images per person. Our method obtains the best

recognition rates 100%, while the recognition rate of the other methods are less

than 90%. For the case with 5 probe images per person, the CD-EJSR is also

better than other methods.

3.6.2. CMU-PIE database

In this subsection, we will evaluate the robustness of the proposed method

for variational illumination on the CMU-PIE database. The database consists

of 41368 images of 68 people. Each person has many images captured under

13 poses and 43 illumination conditions and with 4 expressions. We select 24
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Fig. 8. The recognition rates on the Yale database

frontal images per person from the camera No. 05 for the experiments in this

subsection. These images involve abundant illumination changes. The first

image per person is selected for the gallery set, and the rest images consist of

the probe set. We randomly choose k (k = 5, 10, 15, 20, 23) images per person

as the probe samples. For each k, the experiments are repeated for 10 times

to obtain the average results. As shown in Table 2, the proposed CD-EJSR

method outperforms all other related methods regardless of the number of the

probe images. In details, for each number of the probe samples, the results of

Table 2. The recognition rates (%) about the different numbers of the probe

images on the CMU-PIE databases

Method 23 20 15 10 5

CD-EJSR 50.00 48.97 45.74 34.56 24.26

JSRC 17.65 17.06 17.94 17.94 17.06

MNSRC 17.65 17.06 17.94 17.94 17.06

LRP SRSM 10.29 9.71 9.56 9.56 9.71

SRC 10.29 10.15 10.00 9.85 9.12

LCCR1 14.71 14.71 15.88 14.71 13.38
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Fig. 9. The recognition rates on the Georgia database

CD-EJSR are higher than all other methods by 7%− 40%. Particularly, when

the number of the probe samples is 23, the advantage of the proposed method

is the most outstanding. The experimental results on the CMU-PIE database

show that our method is much more effective than other related methods on

variational illumination conditions.

3.6.3. Georgia Database

The Georgia database contains 750 images of 50 people taken at the Center

for Signal and Image Processing at Georgia Institute of Technology. Each people

in the database has 15 color images with cluttered background taken in two or

three sessions within half a year at resolution 640 × 480 pixels. The images

of this database have abundant changes of illumination, expression and pose.

Particularly, many of these pictures are rotated clockwise or anticlockwise. For

each person, we consider three cases with 5, 10, 14 probe samples. For the

first two cases, ten groups of samples are randomly selected to test from all

probe samples per person. The experimental results are shown in Fig. 9. We

can see that the proposed method obtains higher performance rates than all
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Fig. 10. The recognition rates on the LFW database

other methods for all cases. In particular, for the case with 14 probe samples

per person, the CD-EJSR has the obvious advantage. In a word, the proposed

method is also effective on the Georgia database.

3.6.4. LFW Database

The LFW database contains images of 5749 different individuals in uncon-

strained environments. We create a sub-database which includes the subjects

no less than ten samples. It contains 158 individuals and each person has just

10 different images. The variances in illumination, pose, occlusion, and expres-

sion between these images make SSPP face recognition extremely challenging.

We also make two groups of tests. The first one is that all the probe sam-

ples are used. The other is that five samples randomly selected per person are

recognized. The results of 10 trials are recorded and the average values are

calculated. Fig. 10 shows the compared results with related methods. For the

first test with 9 probe samples per person, the proposed method obtains the

highest recognition rate 50% among all compared methods. Our method gets

better results than the related methods in the case with 5 probe samples per
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person, except for the LRP SRSM method with slightly difference. In addition,

by observing the results of all compared methods, we have the following con-

clusion: the more the probe samples per person we have, the higher recognition

rates we can obtain for the concerned methods.

3.6.5. AR Database

The AR database contains over 4000 color face images of 126 people (70

men and 56 women). All images are frontal views of faces with different facial

expressions, lighting conditions and occlusions. In our experiments, we choose

120 individuals (65 men and 55 women) with 26 images and convert them into

grayscale images for verifying the occlusions testing. We choose the first front

image for training and the rest images for testing. We randomly choose k (k =

20, 25) images per person as the probe samples. The experimental results about

different probe number are shown in Table 3.

Table 3. The recognition rates (%) about the different probe number on the AR

database

Method
25 20

rate(%) time(s) rate(%) time(s)

CD-EJSR 99.17 28.3 99.08 24.8

JSRC 98.33 5.4 97.75 4.6

MNSRC 98.33 22.1 97.75 19.2

LRP SRSM 99.17 2000.1 99.08 1915.1

SRC 97.50 166.6 96.83 133.2

LCCR 98.33 8.4 98.17 6.8

From Table 3, all the selected methods achieve the state-of-the-art results

for the experiments with occlusions. Nonetheless, our method achieves the best

recognition rates as LRP SRSM. From another point of view, LRP SRSM takes

lots of time to get the same best recognition rates. It takes 2000s to identify

25 samples per person, and 1915s to identify 20 samples per person. However,

our method takes less than 30s to achieve the best recognition. It saves about

70 times to identify the probe samples than LRP SRSM. Considering these two
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factors, our method is the best of all approaches for the experiments on the AR

database.

3.7. Multi-PIE Database

The final database used in our experiment is the Multi-PIE database. The

Multi-PIE database contains 755370 images from 337 different subjects. These

images were taken from four different seasons with 15 different poses under 20

illumination conditions. In order to evaluate the performance of our CD-EJSR

method under the different illumination and the multi-view (or the different

poses) conditions, we select two subsets of the Multi-PIE database, denoted

by sub-M1 and sub-M2. Sub-M1 collects all frontal images (from the camera

05 1) with 20 illumination conditions from the first seasons. In the illumination

experiment, we use the sub-M1 database to investigate the effect of different

illumination conditions on the gallery samples. So there should be 20 groups

of sub-experiment. For each group, all gallery samples are with the same illu-

mination condition, and the the rest images are used for probe. The average

value of 20 recognition rates is calculated. In the multi-view experiment, we

use the Sub-M2 database which contains 9 images per person from the cameras

(05 1, 05 0, 14 0, 04 1, 13 0, 19 0 and 08 0) which are located at head height

and spaced in ±15◦ intervals. Simultaneously, two additional cameras (08 1,

19 1), which were located above the subject, simulating a typical surveillance

camera view, are also selected. All the images are with the same illumination

condition (without flash). For each subject, the image recorded by the camera

05 1 is used for training, and other rest images are used for testing. We also

implement several related methods on the sub-M1 and sub-M2 databases. All

the experiment results are listed in the Table 4.

From Table 4, we can see that the proposed method achieves better per-

formance than all other compared methods in terms of recognition rate and

cost time. On two sub-M1 and sub-M2 databases, the recognition rates of the

CD-EJSR and LRP SRSM methods are higher than those with other methods.

Particularly, in the case with multi-view (using sub-M2), these two methods

26



Table 4. The recognition rates (%) about the different probe number on the

Multi-PIE database

Method
sub-M1 sub-M2

rate(%) time(s) rate(%) time(s)

CD-EJSR 99.96 733.7 73.29 284.1

JSRC 95.13 246.8 17.51 107.7

MNSRC 95.13 251.5 17.51 108.0

LRP SRSM 99.88 23027.8 73.89 14561.8

SRC 52.92 2541.1 38.58 288.5

LCCR 75.37 28.5 57.57 12.5

have the obvious advantage. In details, the recognition rates of the CD-EJSR

and LRP SRSM methods are higher about 20% ∼ 50% than those with other

methods. Both the CD-EJSR and LRP SRSM method have the outstanding

performance with respect to the recognition accuracy rate. However, the pro-

posed CD-EJSR method takes much less time than the LRP SRSM method.

Accurately speaking, the latter spends 50 times time of the former. From the

perspective of both recognition rate and time, our CD-EJSR method is the best

one of these related methods on the multi-PIE database.

3.8. Comparisons with other Dictionary Learning Methods

In this subsection, we will discuss the performance of dictionary learning

methods for the SSPP problem (ISFR is a special case of SSPP problem). For

most of the dictionary learning methods, the training set needs to be as suf-

ficient large as possible. However, the training set is the same as the gallery

set for the SSPP problem. Generally, people will take a generic set to extract

useful variation information. Some related methods about dictionary learning

for SSPP problem, such as SILT [36], SVDL [35], ESRC [33] with the basic

variation dictionary (BVD) and VFRC[37], are selected for comparison with

our proposed CD-EJSR method on several databases (LFW, Georgia, AR, Yale

and CMU-PIE databases). For each database, the first sample for each person

is selected to be as gallery set, all the rest samples is selected to be the probe
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set.

In order to demonstrate the effectiveness of each related approach, we pro-

vide two generic sets in the experiments of the subsection. The first one is

LFWs which contains 250 persons with 3 to 9 face images per person from the

LFW database. The second one is FRGCs which consists of 30 persons with 20

images per person from the whole FRGC database [2]. Note that the dictionary

learning methods with SILT and SVDL demand the same number of images per

person in the generic set. Therefore, the SILT and SVDL methods use only the

generic set FRGCs. The experimental results are shown in Table 5.

Table 5. The recognition rates (%) about the different dictionary learning meth-

ods on several different databases

GenericSet Method LFW Georgia AR Yale PIE

LFWs IS-ESRC 37.34 54.00 98.33 80.00 17.65

FRGCs IS-ESRC 32.91 62.00 97.50 53.33 16.18

LFWs IS-SILT – – – – –

FRGCs IS-SILT 36.71 58.00 97.50 80.00 13.24

LFWs IS-SVDL – – – – –

FRGCs IS-SVDL 28.48 56.00 96.67 46.67 13.24

LFWs BVD-JSRC 21.52 36.00 96.67 26.67 23.53

FRGCs BVD-JSRC 19.62 46.00 96.67 40.00 20.59

LFWs SILT-JSRC – – – – –

FRGCs SILT-JSRC 37.34 64.00 98.33 93.33 25.00

LFWs BVD-VFRC 43.67 54.00 98.33 60.00 20.59

FRGCs BVD-VFRC 30.38 56.00 96.67 60.00 16.18

CD-EJSR 50.00 74.00 99.17 100.0 48.53

For each database, one can see that our method achieves the best results

among these dictionary learning methods. One of the reasons is that all the

conventional dictionary learning methods need a generic set to obtain a variation

dictionary. Their performance of recognition is sensitive to the selections of the

generic set. Another reason is that the facial information of the generic set

will have residue errors in the dictionary, which may have negative influence

for the recognition results. Usually, if the variation dictionary contains more

related variation feature information, the performance will be more accurate.
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As the customized dictionary of the proposed method is learned directly from

the observation data (the probe samples), the inference information (such as ID

information of the generic samples) from the generic set does not possess. In

other words, the extra information from the generic set can affect the recognition

in ESRC, SILT, SVDL and VFRC. However, our CD-EJSR method learns the

customized dictionary from the current probe subject and avoids naturally the

interference of the extra information. Thus, the performance of CD-EJSR is

better than others in this group of experiments.

4. Conclusion

In this paper, we propose a new customized dictionary-based face recogni-

tion approach with the extended joint sparse representation (CD-EJSR). The

proposed CD-EJSR has two phases. In the first phase, the customized varia-

tion dictionary is learned directly from the observation data (probe samples)

instead of a generic set such that it avoids the interference information (such

as ID information of the generic samples) from the generic set. The customized

dictionary, which contains the uncontrolled variation feature (pose, illumination

and expression) corresponding to the intra-class variation of the current probe

subject, is learned by using a new model. The alternating direction method of

multipliers (ADMM) is employed to solve the optimization problem, and the

closed-form solution can be found in each iteration. In the second phase, we

present the extended joint sparse representation (EJSR), which utilizes the in-

formation of both the customized dictionary and the gallery samples to classify

the probe samples. The new EJSR model not only takes advantage of the cus-

tomized variation dictionary, which represents the intra-class variation between

the gallery and probe samples, but also utilizes the group structure to enhance

the recognition performance.

The convergence, computation time and size of the customized variation

dictionary are discussed in this paper. Extensive numerical experiments are

implemented on six databases to verify the performance of CD-EJSR for single-
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image-to-image-set face recognition under the complication conditions in illumi-

nation, pose and expressions, respectively. Our approach surpasses the related

methods in terms of accuracy and computational cost.
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