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1 Introduction and main results

Let us consider the following second order Hamiltonian systems{
ü(t) +∇uF (t, u(t)) = 0, ∀t ∈ R,
u(0)− u(T ) = u̇(0)− u̇(T ) = 0, T > 0,

(1)

where F (t, u) = −K(t, u)+W (t, u) and K,W ∈ C2(R×Rn,R) with conditions
that K(t+ T, u) = K(t, u) and W (t+ T, u) = W (t, u) hold for all t and u.

In recent decades, the existence results for system (1) are obtained via
minimax methods in critical point theory, such as papers [3]-[10],[12]-[20] and
their references therein. For example, under the assumption that K(t, x) ≡ 0,
papers [5] and [18] considered the case that W (t, x) satisfies subquadratic po-
tential condition. Under the assumption that K(t, x) = 1

2(B(t)x, x), where
B(t) is a n× n symmetric matrix function, continuous and T -periodic, papers
[13] and [19] considered the case that W (t, x) satisfies superquadratic poten-
tial condition. Different from above papers [5, 13, 18, 19], papers [14] and [20]
considered the case that ∇W (t, x) satisfies an asymptotically linear condition.
And the multiplicity of periodic solutions for system (1) with symmetric as-
sumption for W (t, x) was proved in paper [6]. If K(t, x) is not a quadratic
form, there are also some results, such as papers [3], [14], [20], etc. Paper [20]
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obtained an existence result, if K(t, x) satisfies the “pinching” condition, that
is, q1|x|2 6 K(t, x) 6 q2|x|2, where constants q1, q2 > 0. In the sequence, paper
[14] generalized the result in paper [20] replacing the ”pinching” condition by
(K1) and (K2), that is,

(K1) there exist constants d1 > 0 and γ ∈ (1, 2] such that

K(t,0) = 0 and K(t, x) > d1|x|γ , (t, x) ∈ [0, T ]×Rn,

(K2) (∇K(t, x), x) 6 2K(t, x), (t, x) ∈ [0, T ]×Rn.
In this paper, we continue to discuss the case that ∇W (t, x) satisfies an

asymptotically linear condition. Different from paper [14], we replace conditions
(K1) and (K2) by

(K1∗) there exist a constant d > 0 and a function f1 ∈ L1([0, T ],R) such
that

K(t, x) > −d|x|2 + f1(t), (t, x) ∈ [0, T ]×Rn,

(K2∗) there exists a constant L1 > 0 such that

(∇K(t, x), x) 6 2K(t, x), t ∈ [0, T ] and |x| > L1.

Then we obtain the following existence result.

Theorem 1. Suppose that function K satisfies (K1∗), (K2∗) and function W
satisfies

(W1) there exist a constant 0 < a < 6−dT 2

T 2 and a function f2 ∈ L1([0, T ],R)
such that

W (t, x) 6 a|x|2 + f2(t), ∀x ∈ Rn and t ∈ [0, T ],

(W2) (∇W (t, x), x) − 2W (t, x) → +∞ uniformly for t ∈ [0, T ] as |x| →
+∞,
in addition, functions K and W also satisfy the following conditions (F1) and
(F2) ,

(F1) there exists a constant L3 > 0, for every c > L3,

max
|x|=c

K(t, x) < min
|x|=c

W (t, x) for all t ∈ [0, T ],

(F2) there exists a constant L4 > 0 such that ∇F (t, x) 6≡ 0 for all t ∈ [0, T ]
and |x| 6 L4 and∫ T

0
F (t, x)dt >

∫ T

0
[f2(t)− f1(t)]dt for all t ∈ [0, T ] and |x| > L4.

Then system (1) possesses a nontrivial T-periodic solution.

Here, we state three aspects which illustrate that Theorem 1 is different from
[[14], Theorem 1.1]. Firstly, paper [14] used Mountain Pass Lemma, however, we
use Saddle Point Theorem. Secondly, conditions (K1∗) and (K2∗) generalize the
conditions (K1) and (K2) respectively. For example, set K(t, x) = 1

2(B(t)x, x),



3

where B(t) is a n × n symmetric matrix function, continuous and T -periodic,
then K(t, x) satisfies (K1∗) and (K2∗), however, does not always satisfy (K1),
unless B(t) is positive definite for all t. Thirdly, paper [14] supposed that

lim sup
|x|→0

W (t,x)
|x|2 < d1 for all t ∈ [0, T ]. However, the limit condition at origin of

W (t, x) has been got rid of in our Theorem 1.1.
Functions satisfying Theorem 1 do really exist, but may not be covered by

[[14], Theorem 1.1] (see Example 3.1 in Section 3).

2 Proof of Theorem 1

Set H1
T =

{
u : [0, T ]→ Rn|u is absolutely continuous, u(0) = u(T ) and u̇ ∈

L2([0, T ],Rn)

}
, then H1

T is a Hilbert space with the norm defined by

‖u‖ =

[∫ T

0
(|u̇(t)|2 + |u(t)|2)dt

] 1
2

. (2)

Define a functional

ϕ(u) =
1

2

∫ T

0
|u̇(t)|2dt+

∫ T

0
K(t, u(t))dt−

∫ T

0
W (t, u(t))dt, ∀u ∈ H1

T . (3)

The Book [10] tells us that K and W ∈ C1(R×Rn,R) implies that the func-
tional ϕ is continuously differentiable in H1

T . Moreover, for every u, v in H1
T ,

one has

〈ϕ′(u), v〉 =

∫ T

0
(u̇(t), v̇(t))dt+

∫ T

0
(∇K(t, u(t)), v(t))dt−

∫ T

0
(∇W (t, u(t)), v(t))dt,

(4)
if u ∈ H1

T is a solution of the corresponding Euler-Lagrange equation ϕ′(u) = 0,
then u(t) satisfies the system (1).

Lemma 1. Suppose that W (t, x) satisfies (W2) and K(t, x) satisfies (K2∗),
then there exists a constant M > 0 large enough such that

W (t, x) >
|x|2

M2
· min
|x|=M

W (t, x), if |x| >M and t ∈ [0, T ], (5)

K(t, x) 6
|x|2

M2
· max
|x|=M

K(t, x), if |x| >M and t ∈ [0, T ]. (6)

Proof. For every fixed x ∈ Rn\{0} and t ∈ [0, T ], set functions f(s) = W (t, sx)
and g(s) = f ′(s)s− 2f(s). By (W2), there exists a constant M > 0 such that

g(s) > 0 as s >
M

|x|
and all t ∈ [0, T ].
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Solving the ordinary differential equation f ′(s)s− 2f(s)− g(s) = 0, we obtain

f(s) = exp (

∫ s

M
|x|

2

t
dt) ·

[ ∫ s

M
|x|

g(t)

t
exp

(
−
∫ t

M
|x|

2

r
dr

)
dt+ f(

M

|x|
)

]

=
s2|x|2

M2
f(
M

|x|
) + s2

∫ s

M
|x|

g(t)

t3
dt

>
s2|x|2

M2
f(
M

|x|
).

So

W (t, sx) >
s2|x|2

M2
·W (t,

Mx

|x|
) >

s2|x|2

M2
· min
|x|=M

W (t, x), ∀s > M

|x|
and t ∈ [0, T ],

which implies that (5) holds. Similar to the above process for K(t, x), we have
that (6) holds.

Recall the (C) condition (see definition in paper [2]), that is, a sequence
{um} ⊂ H1

T has a convergent sequence, if {ϕ(um)} is bounded and ‖ϕ′(um)‖(1+
‖um‖)→ 0, as m→ +∞.

Lemma 2. (see paper [9]) Suppose that E is a Lebesgue measurale subset of
R with meas(E) < +∞ (“meas” denotes the Lebesgue measure) and fn(t) is
a sequence of Lebesgue measurable functions such that fn(t) → +∞ as n →
+∞ for a.e. t ∈ E. Then there exists, for every δ > 0, a subset Eδ with
meas(E\Eδ)< δ such that fn(t)→ +∞ as n→ +∞ uniformly for all t ∈ Eδ.

Lemma 3. If the function K satisfies (K1∗) and (K2∗), the function W satisfies
(W1) and (W2), then the functional ϕ satisfies the (C) condition.

Proof. Let {um} be a (C)-sequence in H1
T , that is,

sup
m∈ N∗

{|ϕ(um)|} < +∞ and (1 + ‖um‖)‖ϕ′(um)‖ → 0, as m→ +∞.

Then, there exists a constant M0 > 0 such that

|ϕ(um)| 6M0, (1 + ‖um‖)‖ϕ′(um)‖ 6M0 for all m ∈ N∗.

Firstly, we will show that {um} is bounded.
Arguing in an indirect way, we may suppose that ‖umk‖ → +∞, as k →

+∞, we still denote {umk} by {um}.
Set zm = um

‖um‖ , then ‖zm‖ = 1, so there exists a z ∈ H1
T such that zm ⇀

z in H1
T , then ‖z‖ 6 1. By Sobolev’s Imbedding Theorem, we have zm →

z in C([0, T ],Rn) as m→ +∞.
The following discussion is divided into two cases.
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Case 1. z 6≡ 0. Set E := {t ∈ [0, T ] : |z(t)| > 0}, then meas(E) > 0 (meas
denotes the Lebesgue measure). By Lemma 2 and ‖um‖ → +∞, there exists a
set Eδ ⊂ E with meas(Eδ) > 0 such that

|um(t)| = ‖um‖ · |zm(t)| → +∞ uniformly for all t ∈ Eδ as n→ +∞. (7)

For every fixed m ∈ N∗ and λ > max{L1,M}, from (K2∗), we have

∫ T

0
[2K(t, um(t))− (∇K(t, um(t)), um(t))]dt

=

∫
{t∈[0,T ]:|um(t)|>λ}

[2K(t, um(t))− (∇K(t, um(t)), um(t))]dt

+

∫
{t∈[0,T ]:|um(t)|6λ}

[2K(t, um(t))− (∇K(t, um(t)), um(t))]dt

>
∫
{t∈[0,T ]:|um(t)|6λ}

[2K(t, um(t))− (∇K(t, um(t)), um(t))]dt

>−M1, (8)

where

M1 = T · max
t∈[0,T ]

{
max
|x|6λ
{2|K(t, x)|+ |∇K(t, x)| · |x|, 2|W (t, x)|+ |∇W (t, x)| · |x|}

}
.

Set Ecδ = [0, T ]\Eδ. Similar to (8), by (W2), we have

∫
Ecδ

[(∇W (t, um(t)), um(t))− 2W (t, um(t))]dt

>
∫
Ecδ∩{t∈[0,T ]:|um(t)|6λ}

[(∇W (t, um(t)), um(t))− 2W (t, um(t))]dt > −M1. (9)

By (W2) and (7), we have

∫
Eδ

[(∇W (t, um(t)), um(t))− 2W (t, um(t))]dt→ +∞, as m→ +∞. (10)
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By (3), (4), (8), (9) and (10), one has

3M0 >2ϕ(um)− 〈ϕ′(um), um〉

=

∫ T

0
[(∇W (t, um(t)), um(t))− 2W (t, um(t))]dt

+

∫ T

0
[2K(t, um(t))− (∇K(t, um(t)), um(t))]dt

=

∫
Eδ

[(∇W (t, um(t)), um(t))− 2W (t, um(t))]dt

+

∫
Ecδ

[(∇W (t, um(t)), um(t))− 2W (t, um(t))]dt

+

∫ T

0
[2K(t, um(t))− (∇K(t, um(t)), um(t))]dt

>
∫
Eδ

[(∇W (t, um(t)), um(t))− 2W (t, um(t))]dt− 2M1

→+∞, as m→ +∞,

which yields a contradiction.
Case 2. z ≡ 0. By (2) and (3), we have

∫ T

0
W (t, um(t))dt−

∫ T

0
K(t, um(t))dt =

1

2
‖um‖2 −

1

2

∫ T

0
|um(t)|2dt− ϕ(um).

Divided by ‖um‖2 on both sides, then we have

∫ T

0

W (t, um(t))−K(t, um(t))

‖um‖2
dt→ 1

2
as m→ +∞. (11)

By (W1), (K1∗), one has

∫ T

0

W (t, um(t))−K(t, um(t))

‖um‖2
dt 6

∫ T

0

(a+ d)|um(t)|2

‖um(t)‖2
dt+

∫ T
0 (f2(t)− f1(t))dt

‖um‖2

6(a+ d)T‖zm‖2∞ +
M2

‖um‖2
→ 0, as m→ +∞,

which contradicts to (11). Hence, {um} is bounded in H1
T .

In a similar way to Proposition 4.3 in book [10], there exists u ∈ H1
T such
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that um ⇀ u in H1
T . One has∫ T

0
|u̇m(t)− u̇(t)|2dt =〈ϕ′(um)− ϕ′(u), um − u〉

−
∫ T

0
(∇K(t, um)−∇K(t, u), um − u)dt

+

∫ T

0
(∇W (t, um)−∇W (t, u), um − u)dt

→ 0, as m→ +∞,

which implies that ‖u̇m − u̇‖L2 → 0. So we have um → u in H1
T . Hence ϕ

satisfies (C) condition.

Lemma 4. (Saddle Point Theorem, see book [11]) Let H be a real Banach
space with H = V

⊕
X, where V 6= {0} is finite dimensional. Suppose that

ϕ ∈ C1(H ,R) satisfies (PS) condition and
(i) there is a constant α and a bounded neighborhood D of 0 in V such that
ϕ|∂D 6 α and
(ii) there is a constant β > α such that ϕ|X > β.
Then ϕ possesses a critical value c > β which can be characterized as

c = inf
h∈τ

max
u∈D̄

ϕ(h(u)), where τ = {h ∈ C(D,H )|h = id on ∂D}.

Remark 1. As shown in paper [1], a deformation lemma can be proved with
condition (C) replacing the usual (PS) condition, and it turns out that Lemma
4 holds under condition (C).

Set ũ(t) = u(t) − ū with u = 1
T

∫ T
0 u(t)dt, then book [10] tells us that

H1
T = H̃1

T

⊕
Rn, where H̃1

T := {u ∈ H1
T |u = 0}. Page 9 of book [10] tells us

‖ũ‖2∞ 6
T

12

∫ T

0
|u̇(t)|2dt, ∀u ∈ H̃1

T . (Sobolev’s inequality) (12)

Proof of Theorem 1. Lemma 3 tells us that ϕ satisfies (C) condition. So, it
needs only to check (i) and (ii) in Lemma 4.

Step 1. Set V = Rn. We claim that (i) in Lemma 4 holds. In fact, by
Lemma 1 and (F1), for fixed x0 ∈ Rn with |x0| = 1, if s > max{M,L3}, then
we have

ϕ(sx0) =

∫ T

0
K(t, sx0)dt−

∫ T

0
W (t, sx0)dt

6
s2

M2

∫ T

0

[
max
|x|=M

K(t, x)− min
|x|=M

W (t, x)

]
dt

6
s2T

M2
max
t∈[0,T ]

{
max
|x|=M

K(t, x)− min
|x|=M

W (t, x)

}
→ −∞, as s→ +∞,
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which implies that there exist constant r > 0 large enough and constant α :=∫ T
0 [f1(t)− f2(t)]dt− 1 such that ϕ|∂Br(0)∩V 6 α.

Step 2. Set X = H̃1
T . We claim that (ii) in Lemma 4 holds. In fact, by

(K1∗), (W1) and (12), for u ∈ H̃1
T , we obtain

ϕ(u) =
1

2

∫ T

0
|u̇(t)|2dt+

∫ T

0
K(t, u)dt−

∫ T

0
W (t, u)dt

>
1

2

∫ T

0
|u̇(t)|2dt− (d+ a)

∫ T

0
|u(t)|2dt+

∫ T

0
(f1(t)− f2(t))dt

=

(
1

2
− (d+ a)T 2

12

)∫ T

0
|u̇(t)|2dt+

∫ T

0
(f1(t)− f2(t))dt

>
∫ T

0
(f1(t)− f2(t))dt, ∀u ∈ H̃1

T ,

which implies that there exists a constant β :=
∫ T

0 (f1(t) − f2(t))dt such that
ϕ |X> β.

So Lemma 4 tells us that ϕ possesses a critical value c > β, which can be
characterized as c = inf

h∈τ
max
u∈D̄

ϕ(h(u)), where τ = {h ∈ C(D,H )|h = id on ∂D}.

We suppose that ϕ(u) = c and ϕ′(u) = 0, then we know that u satisfies
∫ T

0 (u̇ ·
ḣ−∇F (t, u) · h)dt = 0 for ∀h ∈ H1

T .
Similarly to the proof in page 96 of book [8], under the assumption of

K,W ∈ C2(R×Rn,R), the weak solution of system (1) is classical solution.
Step 3. By (F2), the above u is a nontrivial solution.
This completes the proof. �

3 Example

Now, we give an example to illustrate an application of the Theorem 1 and
the difference between the Theorem 1 and [[14], Theorem 1.1].

Example 3.1 Set T = 1, define K,W : R × Rn → R with K(t, x) =

sin2(πt)
5 (B(t)x, x), where B(t) ≡


1 0 . . . 0
0 −1 . . . 0

. . .

0 0 . . . (−1)n+1


n×n

and

W (t, x) =
1 + sin2(πt)

4
|x|2

[
1− 1

ln(1010 + |x|2)

]
for all t ∈ [0, 1] and x ∈ Rn. Then functions K,W ∈ C2(R×Rn,R) hold and
are 1-periodic with respect to the variable t.

Obviously, K(t, x) satisfies (K1∗) with d ≡ 1
5 , f1(t) ≡ 0 and (K2∗). For

W (t, x), set a = 1
2 , f2(t) ≡ 0, then a+ d < 6, so (W1) holds. In addition,
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(∇W (t, x), x) − 2W (t, x) = (1+sin2(πt))|x|4
2 ln2(1010+|x|2)(1010+|x|2)

⇒ +∞, as |x| → +∞, so

(W2) holds. Lastly, for any c ∈ R+ large enough, we have

max
|x|=c

K(t, x) 6
1

5
c2 < min

|x|=c
W (t, x),

and
∫ T

0 F (t, x)dt >
∫ T

0 [f2(t) − f1(t)]dt for all t ∈ [0, T ]. Hence, (F1) and (F2)
hold. Hence, system (1) possesses a nontrivial 1-periodic solution for above
functions K and W .

However, above K(t, x) and W (t, x) can’t be covered by [[14], Theorem 1.1],
because K(t, x) does not satisfy (K1) and W (t, x) does not satisfy the condition

that lim sup
|x|→0

W (t,x)
|x|2 < d1 (where d1 appears in (K1)).
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