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Differences of integral-type operators from weighted
Bergman spaces to β-Bloch–Orlicz spaces

By YU-XIA LIANG (Tianjin) and ZE-HUA ZHOU (Tianjin)

Abstract. We found several characterizations for the boundedness of the differ-

ences of integral-type operators from weighted Bergman spaces to β-Bloch–Orlicz spaces

on the unit disk. In particular, their descriptions in terms of the n-th power of the in-

duced analytic self-maps were also found. After that we estimated their essential norms,

which can provide new compactness criteria. Finally, we completed this paper with anal-

ogous results for the differences of relevant integral-type operators acting from weighted

Bergman spaces to β-Bloch–Orlicz spaces, which extend and strengthen several existing

results in the literature.

1. Introduction

Let H(D) be the space of all holomorphic functions on the open unit disk D,

and S(D) the collection of all holomorphic self-maps on D, where D is the unit

disk in the complex plane C. Given a continuous linear operator T on a Banach

space X, its essential norm is the distance from the operator T to compact op-

erators on X, that is, ‖T‖e = inf{‖T − K‖ : K is compact}. It is trivial that

‖T‖e = 0 if and only if T is compact, see, e.g., [3]–[5], [10]–[11], [14], and their

references therein.
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For a ∈ D, let ϕa be the automorphism of D exchanging 0 for a, that is,

ϕa(z) = (a− z)/(1− āz). For z, w ∈ D, the pseudo-hyperbolic distance between

z and w is given by

ρ(z, w) = |ϕw(z)| =
∣∣∣∣ z − w1− w̄z

∣∣∣∣ .
In what follows, we will denote ρ(z) = ρ(φ(z), ψ(z)) for φ, ψ ∈ S(D).

For an analytic self-map φ : D→ D, the composition operator Cφ : H(D)→
H(D) is defined by

Cφf = f ◦ φ, f ∈ H(D).

The study of composition operators is a fairly active field. For general mo-

tivations on the theory of composition operators, see the excellent books [1]

by Cowen and MacCluer, and [16] by Shapiro, for more information. Based on

our previous work, we generalized the results in [8] to some extent. We concentrate

our attention on the boundedness, compactness and essential norm estimations

of the differences of integral-type operators acting from weighted Bergman spaces

to β-Bloch–Orlicz spaces, and then we list several similar characterizations for

other relevant integral-type operators. It is popular for the investigations on the

operator theoretic properties of integral-type operators expressed in terms of func-

tion theoretic conditions on symbols, which have been a subject of high interest.

Devoted readers can refer to the very recent papers [6]–[8], [11]–[12], [17], and

their reference therein. To begin with, we provided four integral-type operators,

which have close relationships.

(a) Given g ∈ H(D), the operator T g is defined by

T gf(z) =

∫ z

0

f(t)g(t)dt, f ∈ H(D), z ∈ D.

(b) Given g ∈ H(D), the operator Tg is defined by

Tgf(z) =

∫ z

0

f(t)g′(t)dt, f ∈ H(D), z ∈ D.

(c) Let φ ∈ S(D) and g ∈ H(D), then the operator P gφ is defined by

P gφf(z) =

∫ z

0

f(φ(t))g(t)dt, f ∈ H(D), z ∈ D.

(d) Let φ ∈ S(D) and g ∈ H(D), then the operator TgCφ is defined by

TgCφf(z) =

∫ z

0

f(φ(t))g′(t)dt, f ∈ H(D), z ∈ D.
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Indeed, these integral-type operators are closely related. On the one hand,

let φ = id the identity map in P gφ and TgCφ, then P gid = T g and TgCid = Tg.

That is, the operators T g and Tg are special cases of P gφ and TgCφ, respectively.

On the other hand, if we let g = k′ ∈ H(D) in P gφ , then P k
′

φ = TgCφ. Motivated

by the above observations, we will first collect some interesting consequences

about P gφ − Phψ acting from weighted Bergman space to β-Bloch–Orlicz space for

φ, ψ ∈ S(D) and g, h ∈ H(D). And then the analogous results for the differences

of another three integral-type operators will apparently follow. We refer the

readers to [6] and its references therein for some descriptions about integral-type

operators acting on several holomorphic function spaces. In what follows, the

definitions for holomorphic spaces we investigated were exhibited in details.

Let µ be a weight; that is, µ is a positive continuous function on D. We recall

that the µ-Bloch space Bµ = Bµ(D) consists of all f ∈ H(D) such that

‖f‖Bµ = |f(0)|+ sup
z∈D

µ(z)|f ′(z)| <∞.

It is a well-known fact that the µ-Bloch space Bµ is a Banach space under the

norm ‖f‖Bµ . In particular, if µ(z) = (1 − |z|2)α, it follows that Bµ = Bα (see

[14] and [21]). For α = 1, Bα = B, the classical Bloch space (see, e.g. [8]);

if 0 < α < 1, we have Bα = Lip1−α (see, e.g. [23]), the analytic Lipschitz space,

which consists of all f ∈ H(D) satisfying

|f(z)− f(w)| ≤ C|z − w|1−α,

for some constant C > 0 and all z, w ∈ D; when α > 1, Bα = H∞α−1, the α − 1-

weighted-type space of analytic functions that contains all f ∈ H(D) satisfying

sup
z∈D

(1− |z|2)α−1|f(z)| <∞.

More generally, let v be a strictly positive continuous and bounded function

(weight) on D. The weighted-type space H∞v is defined to be the collection of all

functions f ∈ H(D) that satisfy

‖f‖v = sup
z∈D

v(z)|f(z)| <∞,

provided we identify that differ by a constant, and then H∞v is a Banach space

endowed with the norm ‖.‖v, see, e.g. [2], [5], [22], and their references therein.

In particular, let v(z) = (1 − |z|2)α, then H∞(1−|z|2)α was denoted as H∞α , which

was called an α-weighted-type space endowed with the norm

‖f‖H∞
α

= sup
z∈D

(1− |z|2)α|f(z)|.
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Recently, Ramos-Fernández employed Young’s functions to define the

Bloch–Orlicz space Bϕ [15], which is a generalization of the classical Bloch space B.

More precisely, let ϕ : [0,+∞) → [0,+∞) be an N -function, that is, ϕ is

a strictly increasing convex function such that ϕ(0) = 0, which implies that

lim
t→∞

ϕ(t) = +∞. The Bloch–Orlicz space linked with the function ϕ, denoted by

Bϕ = Bϕ(D), is the collection of all f ∈ H(D) fulfilling

sup
z∈D

(1− |z|2)ϕ(λ|f ′(z)|) <∞,

for some λ > 0 depending on f . We can further suppose that ϕ−1 is continuously

differentiable. If ϕ−1 is not differentiable everywhere, we can define the function

ψ(t) =

∫ t

0

ϕ(x)

x
dx, t ≥ 0,

then ψ is differentiable, whence ψ−1 is differentiable everywhere on [0,∞). Since ϕ

is a strictly increasing, convex function satisfying ϕ(0) = 0, therefore the function

ϕ(t)/t, t > 0, is increasing and

ϕ(t) ≥ ψ(t) ≥
∫ t

t/2

ϕ(x)

x
dx ≥ ϕ

(
t

2

)
for all t ≥ 0.

As a consequence, Bϕ = Bψ. Because of the convexity of ϕ, we can show that the

Minkowski functional

‖f‖ϕ = inf

{
k > 0 : Sϕ

(
f ′

k

)
≤ 1

}
defines a seminorm for Bϕ, where

Sϕ(f) = sup
z∈D

(1− |z|2)ϕ(|f(z)|).

Furthermore, we can verify that Bϕ is a Banach space under the norm

‖f‖Bϕ = |f(0)|+ ‖f‖ϕ.

Observing that

Sϕ

(
f ′

‖f‖Bϕ

)
≤ 1,

we get the following lemma.
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Lemma 1.1. The Bloch–Orlicz space is isometrically equal to a µϕ1 -Bloch

space, where

µϕ1 (z) =
1

ϕ−1
(

1
1−|z|2

) , z ∈ D.

Whence for any f ∈ Bϕ,

‖f‖Bϕ = |f(0)|+ sup
z∈D

µϕ1 (z)|f ′(z)|.

As far as we all know, the readers can consult, e.g., [15], [19] and the refer-

ences therein, for the Bloch–Orlicz spaces. It is evident that Bloch–Orlicz spaces

generalize some other spaces. For example, if ϕ(t) = tp with p > 0, then Bϕ
coincides with an α-Bloch space Bα, where α = 1/p; if ϕ(t) = t log(1 + t), then

Bϕ coincides with the log-Bloch space (see, e.g. [20]). By a parallel generalization

of a β-Bloch space Bβ for β > 0, we define the β-Bloch–Orlicz space Bϕβ = Bϕβ (D)

[6], which is the class of all f ∈ H(D) satisfying

sup
z∈D

(1− |z|2)βϕ(λ|f ′(z)|) <∞,

for some λ > 0 depending on f . Besides, the β-Bloch–Orlicz space Bϕβ is also

a Banach space under the norm

‖f‖Bϕβ = |f(0)|+ ‖f‖ϕ,β ,

where

‖f‖ϕ,β = inf

{
k > 0 : Sϕ,β

(
f ′

k

)
≤ 1

}
,

and

Sϕ,β(f) = sup
z∈D

(1− |z|2)βϕ(|f(z)|).

It turns out that Bϕβ = Bϕ when β = 1. Furthermore, a standard fact is that

Sϕ,β

(
f ′

‖f‖Bϕβ

)
≤ 1,

which yields a lemma linking with Lemma 1.1.

Lemma 1.2. The β-Bloch–Orlicz space is isometrically equal to a µϕβ -Bloch

space, where

µϕβ (z) =
1

ϕ−1
(

1
(1−|z|2)β

) , z ∈ D.

Whence for any f ∈ Bϕβ ,

‖f‖Bϕβ = |f(0)|+ sup
z∈D

µϕβ (z)|f ′(z)|. (1.1)
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This norm allows us to define the little β-Bloch–Orlicz space, denoted by Bϕβ,0,
which consists of all f ∈ H(D) such that

lim
|z|→1

µβϕ(z)|f ′(z)| = 0.

Clearly, Bϕβ,0 is a closed subspace of Bϕβ .

Remark 1.3. For the sake of convenience in our writing, we will always use

µϕβ (z) to stand for 1/ϕ−1
(

1
(1−|z|2)β

)
. In the sequel, we will employ the norm given

in Lemma 1.2 to show our main results concerning differences of all integral-type

operators.

We recall that dA(z) = (1/π)drdθ is the normalized Lebesgue measure on D,

and let dAα(z) = (α+ 1)(1− |z|2)αdA(z) be the weighted Lebesgue measure for

−1 < α < ∞ such that Aα(D) = 1. The surface measure on ∂D (the boundary

of the unit disk) will be denoted by dσ satisfying σ(∂D) = 1. Interestingly,

[24, Lemma 1.8] showed that the measures dAα and dσ are related by the the

polar coordinates formula∫
D
f(z)dA(z) = 2

∫ 1

0

rdr

∫
∂D
f(rζ)dσ(ζ). (1.2)

We recall that the weighted Bergman space Apα = Apα(D) consisting of those

functions f ∈ H(D) satisfying

‖f‖p
Apα

=

∫
D
|f(z)|pdAα(z) <∞.

It is easy to check that if p ≤ q, then Aqα ⊂ Apα and Apα ⊂ A
p
α+1. Finally, H∞ is the

space of bounded analytic functions on D, with ‖f‖H∞ = sup{|f(z)| : z ∈ D}.
Then H∞ ⊂ Apα, and this inclusion is proper if p < ∞. Based on the polar

transformation and (1.2), we calculate that

‖zn‖p
Apα

=

∫
D
|zn|pdAα(z) =

∫
D
|z|np(α+ 1)(1− |z|2)αdA(z)

= 2(α+ 1)

∫ 1

0

rdr

∫
∂D
rnp(1− r2)αdσ(ζ)

= (α+ 1)

∫ 1

0

(r2)1+np/2−1(1− r2)α+1−1d(r2)

= (α+ 1)

∫ 1

0

t1+np/2−1(1− t)α+1−1dt = B(1 + np/2, α+ 1)

= (α+ 1)
Γ(1 + np/2)Γ(α+ 1)

Γ(2 + np/2 + α)
≈ (α+ 1)n−α−1, as n→∞,
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where the last equation is due to the Stirling’s formula. That is to say that

‖zn‖Apα ≈ n
−(α+1)/p, as n→∞. (1.3)

In 2009, a great interest was paid to describing some properties of the compo-

sition operator Cφ on Bloch-type spaces in terms of the n-th power of the analytic

self-map φ of the open unit disk D. For Bloch-type spaces, Zhao [21] obtained

that ‖Cφ‖e,Bα→Bβ ≈ lim sup
n→∞

nα−1‖φn‖β for 0 < α, β < ∞. Since then, many

mathematicians have contributed to the development of this new characteriza-

tions for some classical operators, interested readers can refer to [3]–[4], [9]–[11]

and [18]. As far as we all know, there has been no such new descriptions for

differences of classical linear operators, especially for differences of integral-type

operators acting from weighted Bergman spaces to β-Bloch–Orlicz spaces. Hence

these problems are in desired need for response, and we will start with these in-

vestigations. By constructing some more suitable test functions, we resolved this

problem partially. Of particular interest is that the Orlicz-type spaces Bϕβ are not

quite often used in the literature. The outline of the paper is organized as fol-

lows: the properties of P gφ −Phψ : Apα → B
ϕ
β were exhibited in Section 2, and then

the similar properties of P gφ − Phψ : Apα → B
ϕ
β,0 were investigated in Section 3.

Finally, some corollaries were presented in Section 4. In summary, this paper

provides a systematic exposition of equivalent conditions for the differences of

integral-type operators from weighted Bergman spaces to β-Bloch–Orlicz spaces.

We want to finish this introduction by mentioning that in what follows, for

two positive quantities A and B, the notations A ≈ B, A � B, A � B mean that

there may be different positive constants C such that B/C ≤ A ≤ CB, A ≤ CB,

CB ≤ A. Throughout this paper, constants are denoted by C, they are positive

and may differ from one occurrence to the other. Besides, we denote by N0 the

set of all nonnegative integers and denote γ = (2 + α)/p in order to simplify our

writings.

2. The properties of P gφ − P hψ : Apα → B
ϕ
β

2.1. The boundedness of P gφ − Phψ : Apα → B
ϕ
β . In this section, we will give

several characterizations for the boundedness of P gφ − Phψ : Apα → B
ϕ
β . For a ∈ D,

define two families test functions,

fa(z) =
(1− |a|2)γ

(1− āz)2γ
, f̂a(z) =

(1− |a|2)γ

(1− āz)2γ
· a− z

1− āz
. (2.1)
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By using a standard procedure, it turns out that

‖f̂a‖pApα�‖fa‖
p
Apα

=

∫
D

(1−|a|2)pγ

|1−āz|2pγ
dAα(z)=

∫
D
(α+1)

(1−|z|2)α(1−|a|2)2+α

|1−āz|2(2+α)
dA(z)�1,

which is due to [24, Theorem 1.12]. That is to say, sup
a∈D
‖fa‖Apα � 1 and

sup
a∈D
‖f̂a‖Apα � 1. For our further use, we denote two notations as below:

T βγ (gφ)(z) =
µϕβ (z)g(z)

(1− |φ(z)|2)γ
, T βγ (hψ)(z) =

µϕβ (z)h(z)

(1− |ψ(z)|2)γ
. (2.2)

Lemma 2.1 ([24, Theorem 2.1]). Suppose 0 < p <∞ and α > −1. Then

|f(z)| ≤
‖f‖Apα

(1− |z|2)γ
,

for all f ∈ Apα and z ∈ D.

Lemma 2.2. Let 1 < p <∞ and f ∈ Apα, then it holds that

|(1− |z|2)γf(z)− (1− |w|2)γf(w)| ≤ C‖f‖Apαρ(z, w),

for all z, w ∈ D.

Proof. By Lemma 2.1, it follows that if f ∈ Apα, then f ∈ H∞γ and ‖f‖H∞
γ
≤

‖f‖Apα . Then by [2, Lemma 3.2], there is a constant C > 0 such that

|(1− |z|2)γf(z)− (1− |w|2)γf(w)| ≤ C‖f‖H∞
γ
ρ(z, w) ≤ C‖f‖Apαρ(z, w),

for each f ∈ Apα and z, w ∈ D. This completes the proof. �

In the following lemma, we employ the test functions defined in (2.1) and the

notations given in (2.2).

Lemma 2.3. Let 1 < p <∞, α > −1, 0 < β <∞, and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D), then the following

three inequalities hold:

(i) sup
z∈D

∣∣T βγ (gφ)(z)
∣∣ ρ(z)≤sup

a∈D
‖(P gφ−P

h
ψ )fa‖Bϕβ +sup

a∈D
‖(P gφ−P

h
ψ )f̂a‖Bϕβ ; (2.3)

(ii) sup
z∈D

∣∣T βγ (hψ)(z)
∣∣ ρ(z)≤sup

a∈D
‖(P gφ−P

h
ψ )fa‖Bϕβ +sup

a∈D
‖(P gφ−P

h
ψ )f̂a‖Bϕβ ; (2.4)

(iii) sup
z∈D

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣

≤sup
a∈D
‖(P gφ − P

h
ψ )fa‖Bϕβ + sup

w∈D
‖(P gφ − P

h
ψ )f̂a‖Bϕβ . (2.5)

Proof. Firstly, we employ (1.1) and ((P gφ − Phψ )f)′ = f(φ(z))g(z) −
f(ψ(z))h(z) to express the norm ‖(P gφ − Phψ )fφ(a)‖Bϕβ as below:
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‖(P gφ − P
h
ψ )fφ(a)‖Bϕβ

= sup
z∈D

µϕβ (z)|fφ(a)(φ(z))g(z)− fφ(a)(ψ(z))h(z)|

≥ µϕβ (a)|fφ(a)(φ(a))g(a)− fφ(a)(ψ(a))h(a)| (2.6)

≥
µϕβ (a)|g(a)|

(1− |φ(a)|2)γ
− (1− |φ(a)|2)γ(1− |ψ(a)|2)γ

|1− φ(a)ψ(a)|2γ
µϕβ (a)|h(a)|

(1− |ψ(a)|2)γ

= |T βγ (gφ)(a)| − (1− |φ(a)|2)γ(1− |ψ(a)|2)γ

|1− φ(a)ψ(a)|2γ
|T βγ (hψ)(a)|. (2.7)

Similarly, it turns out that

‖(P gφ − P
h
ψ )f̂φ(a)‖Bϕβ ≥ µ

ϕ
β (a)|f̂φ(a)(φ(a))g(a)− f̂φ(a)(ψ(a))h(a)|

= µϕβ (a)|h(a)| (1− |φ(a)|2)γ

|1− φ(a)ψ(a)|2γ
ρ(a)

=
(1− |φ(a)|2)γ(1− |ψ(a)|2)γ

|1− φ(a)ψ(a)|2γ
µϕβ (a)|h(a)|

(1− |ψ(a)|2)γ
ρ(a)

=
(1− |φ(a)|2)γ(1− |ψ(a)|2)γ

|1− φ(a)ψ(a)|2γ
|T βγ (hψ)(a)|ρ(a). (2.8)

Putting (2.8) into (2.7), we deduce that∣∣T βγ (gφ)(a)
∣∣ ρ(a) ≤ ‖(P gφ − P

h
ψ )fφ(a)‖Bϕβ ρ(a)

+
(1− |φ(a)|2)γ(1− |ψ(a)|2)γ

|1− φ(a)ψ(a)|2γ
|T βγ (hψ)(a)|ρ(a)

≤ ‖(P gφ − P
h
ψ )fφ(a)‖Bϕβ + ‖(P gφ − P

h
ψ )f̂φ(a)‖Bϕβ , (2.9)

where the last inequality is due to the fact ρ(a) ≤ 1. Analogously, we deduce that∣∣T βγ (hψ)(a)
∣∣ ρ(a) ≤ ‖(P gφ − P

h
ψ )fψ(a)‖Bϕβ + ‖(P gφ − P

h
ψ )f̂ψ(a)‖Bϕβ . (2.10)

Taking the supremum about a ∈ D in (2.9) and (2.10), we arrive at

(i) sup
a∈D

∣∣T βγ (gφ)(a)
∣∣ ρ(a) ≤ sup

a∈D

(
‖(P gφ − P

h
ψ )fφ(a)‖Bϕβ + ‖(P gφ − P

h
ψ )f̂φ(a)‖Bϕβ

)
≤ sup

a∈D

(
‖(P gφ−P

h
ψ )fa‖Bϕβ +‖(P gφ−P

h
ψ )f̂a‖Bϕβ

)
; (2.11)
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(ii) sup
a∈D

∣∣T βγ (hψ)(a)
∣∣ ρ(a)≤sup

a∈D

(
‖(P gφ−P

h
ψ )fa‖Bϕβ +‖(P gφ−P

h
ψ )f̂a‖Bϕβ

)
. (2.12)

On the other hand, we change (2.6) into

‖(P gφ − P
h
ψ )fφ(a)‖Bϕβ ≥ µ

ϕ
β (a)

∣∣∣∣∣ g(a)

(1− |φ(a)|2)γ
− h(a)(1− |φ(a)|2)γ

(1− φ(a)ψ(a))2γ

∣∣∣∣∣
≥
∣∣T βγ (gφ)(a)− T βγ (hψ)(a)

∣∣− µϕβ (a)|h(a)|
(1− |ψ(a)|2)γ

×
∣∣(1− |φ(a)|2)γfφ(a)(φ(a))− (1− |ψ(a)|2)γfφ(a)(ψ(a))

∣∣
=
∣∣T βγ (gφ)(a)− T βγ (hψ)(a)

∣∣− ∣∣T βγ (hψ)(a)
∣∣

×
∣∣(1− |φ(a)|2)γfφ(a)(φ(a))− (1− |ψ(a)|2)γfφ(a)(ψ(a))

∣∣
�
∣∣T βγ (gφ)(a)− T βγ (hψ)(a)

∣∣− ∣∣T βγ (hψ)(a)
∣∣ ρ(a). (2.13)

The last inequality in (2.13) is due to Lemma 2.2. The above inequalities imply

(iii) sup
a∈D

∣∣T βγ (gφ)(a)− T βγ (hψ)(a)
∣∣

� sup
a∈D

(
‖(P gφ − P

h
ψ )fφ(a)‖Bϕβ +

∣∣T βγ (hψ)(a)
∣∣ ρ(a)

)
� sup

a∈D

(
‖(P gφ − P

h
ψ )fa‖Bϕβ + ‖(P gφ − P

h
ψ )f̂a‖Bϕβ

)
. (2.14)

(2.11), (2.12) together with (2.14) imply the statements (2.3)–(2.4). This com-

pletes the proof. �

Very interestingly, the next lemma includes the n-th power of the induced

analytic self-maps on D.

Lemma 2.4. Let 1 < p <∞, α > −1, 0 < β <∞, and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D), then the following

statements hold:

(i) sup
a∈D
‖(P gφ − P

h
ψ )fa‖Bϕβ � sup

n∈N0

nγ‖gφn − hψn‖µϕβ ;

(ii) sup
a∈D
‖(P gφ − P

h
ψ )f̂a‖Bϕβ � sup

n∈N0

nγ‖gφn − hψn‖µϕβ .

Proof. For γ = (α+ 2)/p > 0, we recall that

1

(1− āz)2γ
=

∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
(āz)k.
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Hence we can express the Maclaurin expansion of fa as

fa(z) =
(1− |a|2)γ

(1− āz)2γ
= (1− |a|2)γ

∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
(āz)k. (2.15)

It further yields that

f̂a(z) =
(1− |a|2)γ

(1− āz)2γ
· a− z

1− āz

= (1− |a|2)γ

( ∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
ākzk

)(
a(1− āz) + |a|2z − z

1− āz

)

= (1− |a|2)γ

( ∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
ākzk

)(
a− (1− |a|2)

z

1− āz

)

= (1− |a|2)γ

( ∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
ākzk

)(
a− (1− |a|2)

∞∑
k=0

ākzk+1

)

= a(1− |a|2)γ
∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
ākzk

− (1− |a|2)γ+1

( ∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
ākzk

)( ∞∑
k=0

ākzk+1

)

= a(1−|a|2)γ
∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
ākzk−(1−|a|2)γ+1

∞∑
k=1

(
k−1∑
l=0

Γ(l + 2γ)

Γ(2γ)l!

)
āk−1zk

= afa(z)− (1− |a|2)γ+1
∞∑
k=1

(
k−1∑
l=0

Γ(l + 2γ)

Γ(2γ)l!

)
āk−1zk. (2.16)

On the account of the Maclaurin expansion in (2.15), we verify

‖(P gφ − P
h
ψ )fa‖Bϕβ

≤ (1− |a|2)γ
∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k‖(P gφ − P

h
ψ )zk‖Bϕβ

= (1− |a|2)γ
∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k sup

z∈D
µϕβ (z)|g(z)φk(z)− h(z)ψk(z)|

= (1− |a|2)γ
∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k‖gφk − hψk‖µϕβ (2.17)
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� (1− |a|2)γ
∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k

(
2k

k + 1

)γ
‖gφk − hψk‖µϕβ

� (1− |a|2)γ
∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k(k + 1)−γ · sup

n∈N0

nγ‖gφn − hψn‖µϕβ . (2.18)

By Stirling’s formula, it follows that

Γ(k + γ)

k!Γ(γ)
≈ (k + 1)γ−1, as k →∞;

Γ(k + 2γ)

Γ(2γ)k!
(k + 1)−γ ≈ (k + 1)γ−1, as k →∞.

Therefore we conclude that

1

(1− |a|)γ
=

∞∑
k=0

Γ(k + γ)

k!Γ(γ)
|a|k

≈
∞∑
k=0

(k + 1)γ−1|a|k ≈
∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k(k + 1)−γ . (2.19)

Putting (2.19) into (2.18), we deduce that

‖(P gφ − P
h
ψ )fa‖Bϕβ ≤ (1− |a|2)γ

1

(1− |a|)γ
· sup
n∈N0

nγ‖gφn − hψn‖µϕβ

� sup
n∈N0

nγ‖gφn − hψn‖µϕβ . (2.20)

Using the Maclaurin expansion in (2.16), it turns out that

‖(P gφ − P
h
ψ )f̂a‖Bϕβ

� ‖(P gφ−P
h
ψ )fa‖Bϕβ +(1−|a|2)γ+1

∞∑
k=1

(
k−1∑
l=0

Γ(l + 2γ)

Γ(2γ)l!

)
|ā|k−1‖(P gφ−P

h
ψ )zk‖Bϕβ

= ‖(P gφ − P
h
ψ )fa‖Bϕβ + (1− |a|2)γ+1

∞∑
k=1

(
k−1∑
l=0

Γ(l + 2γ)

Γ(2γ)l!

)
|ā|k−1

× sup
z∈D

[
µϕβ (z)|g(z)φk(z)− h(z)ψk(z)|

]
= ‖(P gφ−P

h
ψ )fa‖Bϕβ +(1−|a|2)γ+1

∞∑
k=1

(
k−1∑
l=0

Γ(l+2γ)

Γ(2γ)l!

)
|ā|k−1 ·‖gφk−hψk‖µϕβ . (2.21)
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Furthermore by Stirling’s formula again, we obtain

k−1∑
l=0

Γ(l + 2γ)

Γ(2γ)l!
≈
k−1∑
l=0

(l + 1)2γ−1 ≈ k2γ , as k →∞.

The second equivalent display is due to the fact below. For simplicity, we denote

ak =
∑k−1
l=0 (l + 1)2γ−1, and employ the Binomial theorem to obtain

k2γ − (k − 1)2γ = (k − 1 + 1)2γ − (k − 1)2γ

= (k − 1)2γ + (2γ)(k − 1)2γ−1 + · · ·+ 1− (k − 1)2γ

= (2γ)(k − 1)2γ−1 + · · ·+ 1,

here we may observe that the sum on the right-hand is not necessarily finite if

γ is not an integer, which does not essentially affect the following estimates. And

then we deduce from the Stole–Cesáro formula that

lim
k→∞

ak
k2γ

= lim
k→∞

ak − ak−1

k2γ − (k − 1)2γ
= lim
k→∞

k2γ−1

k2γ − (k − 1)2γ

= lim
k→∞

k2γ−1

(2γ)(k − 1)2γ−1 + · · ·+ 1
=

1

2γ
.

The above facts entail (2.21) into

‖(P gφ − P
h
ψ )f̂a‖Bϕβ

� ‖(P gφ − P
h
ψ )fa‖Bϕβ + (1− |a|2)γ+1

∞∑
k=1

k2γ |ā|k−1‖gφk − hψk‖µϕβ (2.22)

≤ ‖(P gφ − P
h
ψ )fa‖Bϕβ + (1− |a|2)γ+1

∞∑
k=1

k2γ |ā|k−1k−γ · sup
n∈N0

nγ‖gφn − hψn‖µϕβ

� ‖(P gφ − P
h
ψ )fa‖Bϕβ + (1− |a|2)γ+1

∞∑
k=1

kγ |ā|k−1 · sup
n∈N0

nγ‖gφn − hψn‖µϕβ

� ‖(P gφ − P
h
ψ )fa‖Bϕβ + (1− |a|2)γ+1 1

(1− |a|)γ+1
· sup
n∈N0

nγ‖gφn − hψn‖µϕβ

� sup
n∈N0

nγ‖gφn − hψn‖µϕβ , (2.23)

here the second line from the bottom is due to

1

(1− |a|)γ+1
≈
∞∑
k=1

kγ |ā|k−1

by (2.19). After that, we take the supremum about a ∈ D in (2.20) and (2.23),

which completes the proof. �
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Following is one of our main results, which combines the previous lemmas.

Theorem 2.5. Let 1 < p <∞, α > −1, 0 < β <∞ and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D), then the following

statements are equivalent:

(i) P gφ − P
h
ψ : Apα → B

ϕ
β is bounded;

(ii) sup
z∈D
|T βγ (gφ)(z)|ρ(z) + sup

z∈D

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ <∞,

sup
z∈D
|T βγ (hψ)(z)|ρ(z) + sup

z∈D

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ <∞;

(iii) sup
a∈D
‖(P gφ − P

h
ψ )fa‖Bϕβ + sup

a∈D
‖(P gφ − P

h
ψ )f̂a‖Bϕβ <∞.

Moreover, if (iv) sup
n∈N0

nγ‖gφn − hψn‖µϕβ < ∞ holds, then (i) is true. Besides, if

(i) holds, it yields the statement (v) sup
n∈N0

nγ−1/p‖gφn−hψn‖µϕβ <∞. That is, the

following relationships hold: (iv)⇒ (iii)⇔ (ii)⇔ (i)⇒ (v).

Proof. The implications (iv) ⇒ (iii) ⇒ (ii) follow from Lemma 2.4 and

Lemma 2.3, respectively. It is easy to check that the implication (i) ⇒ (iii) can

be deduced from the facts sup
a∈D
‖fa‖Apα � 1, sup

a∈D
‖f̂a‖Apα � 1, and the boundedness

of P gφ − Phψ : Apα → B
ϕ
β . To be specific, it turns out that

sup
a∈D
‖(P gφ − P

h
ψ )fa‖Bϕβ + sup

a∈D
‖(P gφ − P

h
ψ )f̂a‖Bϕβ

� ‖(P gφ − P
h
ψ )‖Apα→Bϕβ sup

a∈D
(‖fa‖Apα + ‖f̂a‖Apα) < +∞.

In what follows, we will prove (i)⇒ (v) and (ii)⇒ (i).

(i) ⇒ (v). Suppose that P gφ − Phψ : Apα → B
ϕ
β is bounded. As we all know,

the monomial function zn ∈ Apα and ‖zn‖Apα ≈ n−(α+1)/p = n−γ+1/p, as n→∞,

from (1.3), we conclude that

∞ > ‖P gφ − P
h
ψ‖Apα→Bϕβ �

∥∥∥∥(P gφ − P
h
ψ )

zn

‖zn‖Apα

∥∥∥∥
Bϕβ

� nγ−1/p sup
z∈D

µϕβ (z)|g(z)φn(z)− h(z)ψn(z)| = nγ−1/p‖gφn − hψn‖µϕβ .

The above formulas imply

sup
n∈N0

nγ−1/p‖gφn − hψn‖µϕβ � ‖P
g
φ − P

h
ψ‖Apα→Bϕβ <∞,

which shows the statement (i)⇒ (v).
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(ii)⇒ (i). For any f ∈ Apα, we employ Lemma 2.2 to show that

‖(P gφ − P
h
ψ )f‖Bϕβ

= sup
z∈D

µϕβ (z)|g(z)f(φ(z))− h(z)f(ψ(z))|

� sup
z∈D

∣∣T βγ (gφ)(z)
∣∣ ∣∣(1− |φ(z)|2)γf(φ(z))− (1− |ψ(z)|2)γf(ψ(z))

∣∣
+ sup
z∈D

(1− |ψ(z)|2)γ |f(ψ(z))|
∣∣T βγ (gφ)(z)− T βγ (hψ)(z)

∣∣
� sup

z∈D
|T βγ (gφ)(z)|ρ(z) + sup

z∈D

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ <∞. (2.24)

Analogously to (2.24), we can also obtain that

‖(P gφ − P
h
ψ )f‖Bϕβ

� sup
z∈D
|T βγ (hψ)(z)|ρ(z) + sup

z∈D

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ <∞. (2.25)

The two inequalities (2.24) and (2.25) imply that each one of conditions (ii) can

ensure the boundedness of P gφ − Phψ : Apα → B
ϕ
β . This finishes the proof. �

2.2. The essential norm of P gφ − Phψ : Apα → B
ϕ
β . In this section, we deduce

several estimations for the essential norm of P gφ − Phψ : Apα → B
ϕ
β . Firstly, we

collect some parallel results from Lemma 2.3 as follows.

Lemma 2.6. Let 1 < p <∞, α > −1, 0 < β <∞, and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D), then the following

inequalities hold:

(i) lim
r→1

sup
|φ(z)|>r

∣∣T βγ (gφ)(z)
∣∣ ρ(z)

� lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ + lim sup

|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ ;

(ii) lim
r→1

sup
|ψ(z)|>r

∣∣T βγ (hψ)(z)
∣∣ ρ(z)

� lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ + lim sup

|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ ;

(iii) lim
r→1

sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣

� lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ + lim sup

|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ .

Proof. These results can be deduced from the inequalities (2.9), (2.10) and

(2.13) in Lemma 2.3. �
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Lemma 2.7. Let 1 < p <∞, α > −1, 0 < β <∞, and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D) such that the operator

P gφ − Phψ : Apα → B
ϕ
β is bounded, then the following statements hold:

(i) lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ � lim sup

n→∞
nγ‖gφn − hψn‖µϕβ ; (2.26)

(ii) lim sup
|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ � lim sup

n→∞
nγ‖gφn − hψn‖µϕβ . (2.27)

Proof. For any a ∈ D and each positive integer N , employing (2.17) we

obtain

‖(P gφ − P
h
ψ )fa‖Bϕβ ≤ (1− |a|2)γ

∞∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k‖gφk − hψk‖µϕβ

≤ (1− |a|2)γ
N∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k‖gφk − hψk‖µϕβ

+ (1− |a|2)γ
∞∑

k=N+1

Γ(k + 2γ)

Γ(2γ)k!
|ā|k‖gφk − hψk‖µϕβ . (2.28)

We denote

J1 := (1− |a|2)γ
N∑
k=0

Γ(k + 2γ)

Γ(2γ)k!
|ā|k‖gφk − hψk‖µϕβ ,

J2 := (1− |a|2)γ
∞∑

k=N+1

Γ(k + 2γ)

Γ(2γ)k!
|ā|k‖gφk − hψk‖µϕβ .

On the one hand, for k ∈ {0, · · · , N}, we can choose zk ∈ Apα. Using the

boundedness of P gφ − Phψ : Apα → B
ϕ
β , it turns out that ‖gφk − hψk‖µϕβ < ∞

for k = 0, 1, . . . , N . Hence

lim sup
|a|→1

J1 = 0. (2.29)

On the other hand, it follows from (2.19) that

J2 = (1− |a|2)γ
∞∑

k=N+1

Γ(k + 2γ)

Γ(2γ)k!
|ā|k‖gφk − hψk‖µϕβ

� (1− |a|2)γ
∞∑

k=N+1

Γ(k + 2γ)

Γ(2γ)k!
|ā|k(k + 1)−γ · sup

n≥N+1
nγ‖gφn − hψn‖µϕβ

� (1− |a|2)γ

(1− |a|)γ
· sup
n≥N+1

nγ‖gφn − hψn‖µϕβ � sup
n≥N+1

nγ‖gφn − hψn‖µϕβ .
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Furthermore, letting |a| → 1 in the above inequality, it leads to

lim sup
|a|→1

J2 � sup
n≥N+1

nγ‖gφn − hψn‖µϕβ . (2.30)

Putting (2.29) and (2.30) into (2.28) and letting n → ∞, we arrive at (2.26).

Similarly, by (2.22), we conclude that

‖(P gφ − P
h
ψ )f̂a‖Bϕβ

� ‖(P gφ − P
h
ψ )fa‖Bϕβ + (1− |a|2)γ+1

N∑
k=1

k2γ |ā|k−1‖gφk − hψk‖µϕβ

+ (1− |a|2)γ+1
∞∑

k=N+1

k2γ |ā|k−1‖gφk − hψk‖µϕβ

≤ ‖(P gφ − P
h
ψ )fa‖Bϕβ + (1− |a|2)γ+1

N∑
k=1

k2γ |ā|k−1‖gφk − hψk‖µϕβ

+ (1− |a|2)γ+1
∞∑

k=N+1

k2γ |ā|k−1k−γ · sup
n≥N+1

nγ‖gφn − hψn‖µϕβ .

Taking (2.19) into consideration, we deduce that

‖(P gφ−P
h
ψ )f̂a‖Bϕβ � ‖(P

g
φ−P

h
ψ )fa‖Bϕβ +(1−|a|2)γ+1

N∑
k=1

k2γ |ā|k−1‖gφk−hψk‖µϕβ

+ sup
n≥N+1

nγ‖gφn − hψn‖µϕβ .

In view of the condition ‖gφk − hψk‖µϕβ < ∞ for k = 0, 1, . . . , N , and letting

|a| → 1 in the above formulas, we get that

lim sup
|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ � lim sup

|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ + sup

n≥N+1
nγ‖gφn − hψn‖µϕβ .

We firstly let n→∞ in the above inequality and then combine with (2.26), which

can verify (2.27). This ends the proof. �

The proof of the lemma below can be shown by an argument similar to that

of [1, Proposition 3.11], consequently, we omit the details.

Lemma 2.8. Let 1 < p <∞, α > −1, 0 < β <∞, and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D). Then P gφ − Phψ : Apα →
Bϕβ is compact if and only if {fk}k∈N is a bounded sequence in Apα with fk → 0

uniformly on compact subsets of D, and then ‖(P gφ − Phψ )fk‖Bϕβ → 0 as k →∞.
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Suppose the operators P gφ : Apα → B
ϕ
β and Phψ : Apα → B

ϕ
β are bounded, then

sup
z∈D

µϕβ (z)|g(z)| <∞ and sup
z∈D

µϕβ (z)|h(z)| <∞.

It is trivial that if ‖φ‖∞ < 1 (or ‖ψ‖∞ < 1), then P gφ : Apα → B
ϕ
β (or Phψ :

Apα → B
ϕ
β ) is a compact operator. Indeed, for any bounded sequence {fk}k∈N in

Apα converging to zero on the compact subset of D, we arrive at lim
k→∞

‖P gφfk‖Bϕβ =

lim
k→∞

µϕβ (z)|g(z)||fk(φ(z))| = 0. Thus Lemma 2.8 tells the operator P gφ : Apα → B
ϕ
β

is compact. A similar case holds for the operator Phψ : Apα → B
ϕ
β . That is, the

difference operator P gφ −Phψ : Apα → B
ϕ
β is compact under the case ‖φ‖∞ < 1 and

‖ψ‖∞ < 1. Hence we are interested in the case when max{‖φ‖∞, ‖ψ‖∞} = 1.

The following is our main theorem in this section.

Theorem 2.9. Let 1 < p < ∞, α > −1, 0 < β < ∞ and ϕ : [0,∞) →
[0,∞) be an N -function. Suppose g, h ∈ H(D) and φ, ψ ∈ S(D) satisfying

max{‖φ‖∞, ‖ψ‖∞} = 1. If the operators P gφ , P
h
ψ : Apα → B

ϕ
β are bounded,

then the following displays hold:

lim sup
n→∞

nγ−1/p‖gφn − hψn‖µϕβ

� ‖P gφ − P
h
ψ‖e,Apα→Bϕβ ≈ lim

r→1
sup
|φ(z)|>r

∣∣T βγ (gφ)(z)
∣∣ ρ(z)

+ lim
r→1

sup
|ψ(z)|>r

∣∣T βγ (hψ)(z)
∣∣ ρ(z)

+ lim
r→1

sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣

≈ lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ + lim sup

|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ

� lim sup
n→∞

nγ‖gφn − hψn‖µϕβ .

Proof. Firstly, the boundedness of P gφ : Apα → B
ϕ
β and Phψ : Apα → B

ϕ
β imply

that Mg = sup
z∈D

µϕβ (z)|g(z)| < ∞ and Mh = sup
z∈D

µϕβ (z)|h(z)| < ∞. Lemma 2.6

together with Lemma 2.7 verify that

lim
r→1

sup
|φ(z)|>r

∣∣T βγ (gφ)(z)
∣∣ ρ(z) + lim

r→1
sup
|ψ(z)|>r

∣∣T βγ (hψ)(z)
∣∣ ρ(z)

+ lim
r→1

sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣

� lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ + lim sup

|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ

� lim sup
n→∞

nγ‖gφn − hψn‖µϕβ .
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In conclusion, we need to show the following inequalities:

‖P gφ − P
h
ψ‖e,Apα→Bϕβ

� lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ + lim sup

|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ ; (2.31)

lim sup
n→∞

nγ−1/p‖gφn − hψn‖µϕβ

� ‖P gφ − P
h
ψ‖e,Apα→Bϕβ � lim

r→1
sup
|φ(z)|>r

∣∣T βγ (gφ)(z)
∣∣ ρ(z)

+ lim
r→1

sup
|ψ(z)|>r

∣∣T βγ (hψ)(z)
∣∣ ρ(z)

+ lim
r→1

sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ . (2.32)

On the one hand, {fa}a∈D and {f̂a}a∈D are bounded sequences in Apα and converge

to 0 uniformly on compact subsets of D as |a| → 1, and it yields lim
|a|→1

‖Kfa‖Bϕβ =

lim
|a|→1

‖Kf̂a‖Bϕβ = 0 for any compact operator K : Apα → Bϕβ by Lemma 2.8.

Therefore, we deduce that

‖P gφ − P
h
ψ‖e,Apα→Bϕβ � lim sup

|a|→1

inf
K
‖(P gφ − P

h
ψ −K)fa‖Bϕβ

≥ lim sup
|a|→1

inf
K

(
‖(P gφ − P

h
ψ )fa‖Bϕβ − ‖Kfa‖Bϕβ

)
≥ lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ , (2.33)

which also holds for the function sequence {f̂a}. Hence (2.31) is true.

On the other hand, the first inequality in (2.32) is due to the bounded se-

quence {fn(z) = zn/‖zn‖Apα} in Apα converging to 0 uniformly on compact subsets

of D as n→∞. Hence replacing fa by fn in (2.33), we conclude that

‖P gφ − P
h
ψ‖e,Apα→Bϕβ � lim sup

n→∞
‖(P gφ − P

h
ψ )fn‖Bϕβ

= lim sup
n→∞

sup
z∈D

µϕβ (z)|g(z)φn(z)− h(z)ψn(z)|
‖zn‖Apα

� lim sup
n→∞

nγ−1/p‖gφn − hψn‖µϕβ ,

the last line follows from ‖zn‖Apα ≈ n−γ+1/p as n→∞. Next, we prove the second

inequality in (2.32). Consider the operators on H(D) defined by Pk(f)(z) =
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f( k
k+1z), k ∈ N. Denote Φk(z)=kz/(k+1). Since Φk∈S(D) with ‖Φk‖∞<1, the

composition operator CΦk(≡ Pk) can be proved compact on Apα by the analogous

ideas in Lemma 2.8. Furthermore, these operators are continuous on compact

open topology and Pk(f) → f on compact subsets of D as k → ∞. Since the

integral means Mp(f, r) =
( ∫

∂D |f(rζ)|pdσ(ζ)
)p

are nondecreasing in r, and by

the polar coordinates formula (1.2), it follows that

‖Pk(f)‖p
Apα

=

∫
D
|Pkf(z)|pdAα(z) =

∫
D

(α+ 1)

∣∣∣∣f ( k

k + 1
z

)∣∣∣∣p (1− |z|2)αdA(z)

= 2(α+ 1)

∫ 1

0

r(1− r2)αdr

∫
∂D

∣∣∣∣f (r k

k + 1
ζ

)∣∣∣∣p dσ(ζ)

≤ 2(α+ 1)

∫ 1

0

r(1− r2)αdr

∫
∂D
|f(rζ)|pdσ(ζ) = ‖f‖p

Apα
,

which is equivalent to saying that ‖Pk(f)‖Apα ≤ ‖f‖Apα for all k ∈ N. Conse-

quently,

sup
k∈N
‖Pk‖Apα→Apα ≤ 1.

Given a function f ∈Apα with ‖f‖Apα≤1, we set the notation Gk :=(I−Pk)f, k∈N,

and it is trivial to show that Gk ∈ Apα for all k ∈ N with sup
k∈N
‖Gk‖Apα ≤ 2. Since

the operator P gφ − Phψ : Apα → B
ϕ
β is bounded, and Pk : Apα → Apα is compact,

the operator (P gφ − Phψ )Pk : Apα → B
ϕ
β is also compact. As a consequence, by the

definition of essential norm, we arrive at

‖P gφ − P
h
ψ‖e,Apα→Bϕβ

≤ lim sup
k→∞

‖(P gφ−P
h
ψ )−(P gφ−P

h
ψ )Pk‖Apα→Bϕβ =lim sup

k→∞
‖(P gφ−P

h
ψ )(I −Pk)‖Apα→Bϕβ

= lim sup
k→∞

sup
‖f‖Apα≤1

‖(P gφ − P
h
ψ )(I − Pk)f‖Bϕβ = lim sup

k→∞
sup

‖f‖Apα≤1

‖(P gφ − P
h
ψ )Gk‖Bϕβ

= lim sup
k→∞

sup
‖f‖Apα≤1

sup
z∈D

µϕβ (z) |g(z)Gk(φ(z))− h(z)Gk(ψ(z))| . (2.34)

For an arbitrary r ∈ (0, 1), we denote

D1 = {z ∈ D : |φ(z)| ≤ r, |ψ(z)| ≤ r}, D2 = {z ∈ D : |φ(z)| ≤ r, |ψ(z)| > r},
D3 = {z ∈ D : |φ(z)| > r, |ψ(z)| ≤ r}, D4 = {z ∈ D : |φ(z)| > r, |ψ(z)| > r};
Ii := sup

z∈Di
µϕβ (z) |g(z)Gk(φ(z))− h(z)Gk(ψ(z))| , for i = 1, 2, 3, 4.
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Employing the estimate |f(z)| � ‖f‖Apα/(1− |z|)γ (Lemma 2.1) and the fact

(I − Pk)f converges to zero uniformly on compact subsets of (H(D), co), it turns

out that

lim
k→∞

sup
‖f‖Apα≤1

sup
|ζ|≤r

|(I − Pk)(f)(ζ)| = lim
k→∞

sup
‖f‖Apα≤1

sup
|ζ|≤r

|Gk(ζ)| = 0. (2.35)

By (2.35), it yields that

lim sup
k→∞

sup
‖f‖Apα≤1

I1 ≤ lim sup
k→∞

sup
‖f‖Apα≤1

sup
|φ(z)|≤r

(µϕβ (z)|g(z)|)|Gk(φ(z))|

+ lim sup
k→∞

sup
‖f‖Apα≤1

sup
|ψ(z)|≤r

(µϕβ (z)|h(z)|)|Gk(ψ(z))|

≤Mg lim sup
k→∞

sup
‖f‖Apα≤1

sup
|φ(z)|≤r

|Gk(φ(z))|

+Mh lim sup
k→∞

sup
‖f‖Apα≤1

sup
|ψ(z)|≤r

|Gk(ψ(z))| = 0. (2.36)

On the other hand, we formulate that

µϕβ (z) |g(z)Gk(φ(z))− h(z)Gk(ψ(z))|

�
µϕβ (z)|g(z)|

(1− |φ(z)|2)γ
|(1− |φ(z)|2)γGk(φ(z))− (1− |ψ(z)|2)γGk(ψ(z))|

+ (1− |ψ(z)|2)γ |Gk(ψ(z))|

∣∣∣∣∣ µϕβ (z)g(z)

(1− |φ(z)|2)γ
−

µϕβ (z)h(z)

(1− |ψ(z)|2)γ

∣∣∣∣∣
�
∣∣T βγ (gφ)(z)

∣∣ ρ(z)+(1−|ψ(z)|2)γ |Gk(ψ(z))|
∣∣T βγ (gφ)(z)−T βγ (hψ)(z)

∣∣ . (2.37)

Analogously, we can transform the above formula into

µϕβ (z) |g(z)Gk(φ(z))− h(z)Gk(ψ(z))|

�|T βγ (hψ)(z)|ρ(z)+(1−|φ(z)|2)γ |Gk(φ(z))|
∣∣T βγ (gφ)(z)−T βγ (hψ)(z)

∣∣ . (2.38)

Since the operators P gφ : Apα → B
ϕ
β and Phψ : Apα → B

ϕ
β are bounded, hence

P gφ −Phψ : Apα → B
ϕ
β is bounded. It turns out that

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ <∞

by Theorem 2.5. Employing (2.35), we can show that

lim sup
k→∞

sup
‖f‖Apα≤1

I2

≤ lim sup
k→∞

sup
‖f‖Apα≤1

sup
|ψ(z)|>r

|T βγ (hψ)(z)|ρ(z)

+ lim sup
k→∞

sup
‖f‖Apα≤1

sup
|φ(z)|≤r

(1−|φ(z)|2)γ |Gk(φ(z))|
∣∣T βγ (gφ)(z)−T βγ (hψ)(z)

∣∣
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� sup
|ψ(z)|>r

|T βγ (hψ)(z)|ρ(z) + lim sup
k→∞

sup
‖f‖Apα≤1

sup
|φ(z)|≤r

|Gk(φ(z))|

= sup
|ψ(z)|>r

|T βγ (hψ)(z)|ρ(z). (2.39)

Similarly, utilizing (2.35) and (2.37), we can prove that

lim sup
k→∞

sup
‖f‖Apα≤1

I3 � sup
|φ(z)|>r

|T βγ (gφ)(z)|ρ(z). (2.40)

Finally, we deduce from (2.37) that

lim sup
k→∞

sup
‖f‖Apα≤1

I4

� sup
|φ(z)|>r

|T βγ (gφ)(z)|ρ(z) + ‖Gk‖Apα sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣

� sup
|φ(z)|>r

|T βγ (gφ)(z)|ρ(z)+ sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)−T βγ (hψ)(z)
∣∣ . (2.41)

Similarly, (2.38) entails that

lim sup
n→∞

sup
‖f‖Apα≤1

I4 � sup
|ψ(z)|>r

|T βγ (hψ)(z)|ρ(z)

+ sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ . (2.42)

Consequently, we put (2.36), (2.39), (2.40) and (2.41), (2.42) into (2.34), and let

r → 1 on both sides to derive that

‖P gφ − P
h
ψ‖e,Apα→Bϕβ � lim

r→1
sup
|φ(z)|>r

∣∣T βγ (gφ)(z)
∣∣ ρ(z)+ lim

r→1
sup
|ψ(z)|>r

∣∣T βγ (hψ)(z)
∣∣ ρ(z)

+ lim
r→1

sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ .

This ends all the proof for essential norm estimation. �

Subsequently, Theorem 2.9 indicates several equivalent characterizations for

the compactness of P gφ − Phψ : Apα → B
ϕ
β .

Theorem 2.10. Let 1 < p < ∞, α > −1, 0 < β < ∞ and ϕ : [0,∞) →
[0,∞) be an N -function. Suppose g, h ∈ H(D) and φ, ψ ∈ S(D) satisfying

max{‖φ‖∞, ‖ψ‖∞} = 1. If the operators P gφ , P
h
ψ : Apα → B

ϕ
β are bounded,
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then P gφ −Phψ : Apα → B
ϕ
β is compact if and only if one of the following statements

hold:

(i) lim
r→1

sup
|φ(z)|>r

∣∣T βγ (gφ)(z)
∣∣ ρ(z) + lim

r→1
sup
|ψ(z)|>r

∣∣T βγ (hψ)(z)
∣∣ ρ(z)

+ lim
r→1

sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ = 0;

(ii) lim sup
|a|→1

‖(P gφ − P
h
ψ )fa‖Bϕβ + lim sup

|a|→1

‖(P gφ − P
h
ψ )f̂a‖Bϕβ = 0.

Moreover, if the condition lim sup
n→∞

nγ‖gφn − hψn‖µϕβ = 0 holds, then P gφ − Phψ :

Apα → B
ϕ
β is also compact.

3. The properties of P gφ − P hψ : Apα → B
ϕ
β,0

3.1. The boundedness of P gφ − Phψ : Apα → B
ϕ
β,0. In this section, we will use

the following three conditions:

lim
|z|→1

µϕβ (z)|g(z)− h(z)| = 0; (3.1)

lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||g(z)| = 0; (3.2)

lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||h(z)| = 0. (3.3)

Theorem 3.1. Let 1 < p <∞, α > −1, 0 < β <∞ and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D), then the following

statements are equivalent:

(i) P gφ − Phψ : Apα → B
ϕ
β,0 is bounded;

(ii) P gφ − Phψ : Apα → B
ϕ
β is bounded, (3.1) and (3.2) hold;

(iii) P gφ − Phψ : Apα → B
ϕ
β is bounded, (3.1) and (3.3) hold.

Proof. (i) ⇒ (ii). Suppose that P gφ − Phψ : Apα → B
ϕ
β,0 is bounded. It is

obvious that P gφ −Phψ : Apα → B
ϕ
β is bounded. Taking the function f(z) = 1 ∈ Apα,

we get

lim
|z|→1

µϕβ (z)|((P gϕ − Phψ )f)′(z)| = lim
|z|→1

µϕβ (z)|f(ϕ(z))g(z)− f(ψ(z))h(z)|

= lim
|z|→1

µϕβ (z)|g(z)− h(z)| = 0,
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which yields (3.1). Similarly, taking f(z) = z ∈ Apα, we verify that

lim
|z|→1

µϕβ (z)|((P gφ − P
h
ψ )f)′(z)| = lim

|z|→1
µϕβ (z)|f(φ(z))g(z)− f(ψ(z))h(z)|

= lim
|z|→1

µϕβ (z)|φ(z)g(z)− ψ(z)h(z)| = 0. (3.4)

The displays (3.1) together with (3.4) imply that

lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||g(z)|

= lim
|z|→1

µϕβ (z)|φ(z)g(z)− ψ(z)h(z) + ψ(z)h(z)− ψ(z)g(z)|

≤ lim
|z|→1

µϕβ (z)|φ(z)g(z)− ψ(z)h(z)|+ lim
|z|→1

µϕβ (z)|ψ(z)||h(z)− g(z)| = 0.

Thus equation (3.2) holds.

(ii)⇒ (iii). We need to show (3.3) holds. By (3.1) and (3.2), it yields that

lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||h(z)|

= lim
|z|→1

µϕβ (z)|φ(z)h(z)−φ(z)g(z)+φ(z)g(z)−ψ(z)g(z)+ψ(z)g(z)−ψ(z)h(z)|

≤ lim
|z|→1

µϕβ (z) (|φ(z)||g(z)− h(z)|+ |φ(z)− ψ(z)||g(z)|+ |ψ(z)||g(z)− h(z)|)

≤ lim
|z|→1

2µϕβ (z)|g(z)− h(z)|+ lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||g(z)| = 0.

The above inequalities imply (3.3), and then the statement (iii) holds.

(iii)⇒ (i). Suppose that P gϕ −Phψ : Apα → B
ϕ
β is bounded, (3.1) and (3.3) are

true. Then we choose a monomial fm = zm ∈ Apα for m ∈ N, we conclude that

lim
|z|→1

µϕβ (z)|((P gφ − P
h
ψ )fm)′(z)|

= lim
|z|→1

µϕβ (z)|fm(φ(z))g(z)−fm(ψ(z))h(z)|= lim
|z|→1

µϕβ (z)|φm(z)g(z)−ψm(z)h(z)|

≤ lim
|z|→1

µϕβ (z)|φm(z)− ψm(z)||h(z)|+ lim
|z|→1

µϕβ (z)|φ(z)|m|g(z)− h(z)|

≤ lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||h(z)||φm−1(z) + φm−2(z)ψ(z) + · · ·+ ψm−1(z)|

+ lim
|z|→1

µϕβ (z)|φ(z)|m|g(z)− h(z)|

≤ m lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||h(z)|+ lim
|z|→1

µϕβ (z)|g(z)− h(z)| = 0,

where the last equation follows from the formulas in (iii). That is equivalent

to saying that P gφ − Phψ maps all monomials zm into Bϕβ,0 for m ∈ N. Thus
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(P gϕ −Phψ )p ∈ Bϕβ,0 for any polynomial p. Since the set of all polynomials is dense

in Apα, for any f ∈ Apα, there is a sequence of polynomials {qk}k∈N satisfying

‖f − qk‖Apα → 0 as k →∞. Thus by the boundedness of P gφ − Phψ : Apα → B
ϕ
β , it

turns out that

‖(P gφ − P
h
ψ )(f − qk)‖Bϕβ,0 ≤ ‖P

g
φ − P

h
ψ‖Apα→Bϕβ,0‖f − qk‖Apα → 0, k → 0.

Due to the boundedness of P gφ − Phψ : Apα → B
ϕ
β and that Bϕβ,0 is a closed subset

of Bϕβ , we validate that (P gφ − Phψ )(Apα) ⊂ Bϕβ,0. That is, P gφ − Phψ : Apα → B
ϕ
β,0 is

bounded. This completes the proof. �

The following lemma can be proved analogously to [13, Lemma 1], so we omit

the details.

Lemma 3.2. A closed set K in Bϕβ,0 is compact if and only if it is bounded

and

lim
|z|→1

sup
f∈K

µϕβ (z)|f ′(z)| = 0.

Theorem 3.3. Let 1 < p <∞, α > −1, 0 < β <∞ and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D), with max{‖φ‖∞, ‖ψ‖∞} = 1 and g, h ∈
H(D) such that P gφ − Phψ : Apα → B

ϕ
β,0 is bounded, then the following statements

are equivalent:

(i) P gφ − P
h
ψ : Apα → B

ϕ
β,0 is compact;

(ii) lim sup
|z|→1

T βγ (gφ)(z)ρ(z) + lim sup
|z|→1

T βγ (hψ)(z)ρ(z)

+ lim sup
|z|→1

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣ = 0. (3.5)

Proof. (i) ⇒ (ii). Suppose that P gφ − Phψ : Apα → B
ϕ
β,0 is compact. Choose

a sequence {zk}k∈N such that |zk| → 1 as k →∞. Define the function

f̂k(z) =
(1− |φ(zk)|2)γ

(1− φ(zk)z)2γ
· ψ(zk)− z

1− ψ(zk)z
.

It is clear that f̂k ∈ Apα, then (P gφ − Phψ )f̂k ∈ Bϕβ,0. That means that

0 = lim
k→∞

µϕβ (zk)|((P gφ − P
h
ψ )f̂k)′(zk)|

= lim
k→∞

µϕβ (zk)|f̂k(φ(zk))g(zk)− f̂k(ψ(zk))h(zk)| = lim
k→∞

µϕβ (zk)|g(zk)|
(1− |φ(zk)|2)γ

ρ(zk),
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which implies

lim sup
|z|→1

T βγ (gφ)(z)ρ(z) = lim sup
|z|→1

µϕβ (z)|g(z)|
(1− |φ(z)|2)γ

ρ(z) = 0. (3.6)

Analogously, we can deduce that

lim sup
|z|→1

T βγ (hψ)(z)ρ(z) = lim sup
|z|→1

µϕβ (z)|h(z)|
(1− |ψ(z)|2)γ

ρ(z) = 0. (3.7)

On the other hand, we define

fk(z) =
(1− |φ(zk)|2)γ

(1− φ(zk)z)2γ
,

then fk ∈ Apα and (P gφ − Phψ )fk ∈ Bϕβ,0. Moreover, fk(φ(zk)) = 1/(1− |φ(zk)|2)γ .

Hence we formulate that

µϕβ (zk)|((P gφ − P
h
ψ )fk)′(zk)|

= µϕβ (zk)|fk(φ(zk))g(zk)− fk(ψ(zk))h(zk)|

= µϕβ (zk)

∣∣∣∣ g(zk)

(1− |φ(zk)|2)γ
− h(zk)

(1− |ψ(zk)|2)γ
+

h(zk)

(1− |ψ(zk)|2)γ
− fk(ψ(zk))h(zk)

∣∣∣∣
≥ µϕβ (zk)

∣∣∣∣ g(zk)

(1− |φ(zk)|2)γ
− h(zk)

(1− |ψ(zk)|2)γ

∣∣∣∣
−

µϕβ (zk)|h(zk)|
(1− |ψ(zk)|2)γ

∣∣(1− |φ(zk)|2)γfk(φ(zk))− (1− |ψ(zk)|2)γfk(ψ(zk))
∣∣

� µϕβ (zk)

∣∣∣∣ g(zk)

(1− |φ(zk)|2)γ
− h(zk)

(1− |ψ(zk)|2)γ

∣∣∣∣− µϕβ (zk)|h(zk)|
(1− |ψ(zk)|2)γ

ρ(zk),

which verifies

µϕβ (zk)

∣∣∣∣ g(zk)

(1− |φ(zk)|2)γ
− h(zk)

(1− |ψ(zk)|2)γ

∣∣∣∣
�

µϕβ (zk)|h(zk)|
(1− |ψ(zk)|2)γ

ρ(zk) + µϕβ (zk)|((P gφ − P
h
ψ )fk)′(zk)|.

The above displays together with (3.7) justify that

lim sup
|z|→1

∣∣T βγ (gφ)(z)− T βγ (hψ)(z)
∣∣

= lim sup
|z|→1

µϕβ (z)

∣∣∣∣ g(z)

(1− |φ(z)|2)γ
− h(z)

(1− |ψ(z)|2)γ

∣∣∣∣ = 0. (3.8)

The formulas (3.6)–(3.8) entail the statement (ii).
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(ii) ⇒ (i). We recall that the operator P gφ − Phψ : Apα → B
ϕ
β,0 is compact if

and only if it maps any bounded subset B ⊂ Apα into a relatively compact subset

in Bϕβ,0. Since P gφ −Phψ : Apα → B
ϕ
β,0 is bounded, hence the norm closure of the set

(P gφ − Phψ )(B) is also bounded and closed in Bϕβ,0. Furthermore, by Lemma 3.2,

we only need to show lim
|z|→1

sup
f∈B

µϕβ (z)|[(P gφ − Phψ )f ]′(z)| = 0. The above display

implies

lim
|z|→1

sup
f∈B

µϕβ (z)

∣∣∣∣∣
[
(P gφ − P

h
ψ )

f

‖f‖Apα

]′
(z)

∣∣∣∣∣ = 0,

for f 6= 0. It is clear that for f = 0 the previous equation holds. Therefore, it is

enough to show that

lim
z→1

sup{µϕβ (z)|((P gφ − P
h
ψ )f)′(z)| : f ∈ Apα, ‖f‖Apα ≤ 1} = 0.

Now, given f ∈ Apα with ‖f‖Apα ≤ 1, analogously to (2.24), we have that

µϕβ (z)|((P gφ − P
h
ψ )f)′(z)|

= µϕβ (z)|f(φ(z))g(z)− f(ψ(z))h(z)|

� |T βγ (gφ)(z)|ρ(z) + |T βγ (gφ)(z)− T βγ (hψ)(z)| → 0, |z| → 1.

That means the operator P gφ−Phψ : Apα→B
ϕ
β,0 is compact. The proof is finished. �

4. Some corollaries

In this section, we employed the above theorems to provide some character-

izations for the difference TgCφ − ThCψ acting from weighted Bergman spaces to

β-Bloch–Orlicz spaces.

Replacing g, h ∈ H(D) by g′, h′ ∈ H(D) in P gφ − Phφ , it turns out that

P g
′

φ − Ph
′

ψ = TgCφ − ThCψ, which is defined as

(TgCφ−ThCψ)f(z) =

∫ z

0

f(φ(t))g′(t)dt−
∫ z

0

f(ψ(t))h′(t)dt, f ∈ H(D), z ∈ D.

In addition, we denote the two notations below for the next two corollaries,

T βγ (g′φ)(z) =
µϕβ (z)g′(z)

(1− |φ(z)|2)γ
, T βγ (h′ψ)(z) =

µϕβ (z)h′(z)

(1− |ψ(z)|2)γ
.
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Corollary 4.1. Let 1 < p <∞, α > −1, 0 < β <∞ and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D), then the following

statements are equivalent:

(i) TgCφ − ThCψ : Apα → B
ϕ
β is bounded;

(ii) sup
z∈D
|T βγ (g′φ)(z)|ρ(z) + sup

z∈D

∣∣T βγ (g′φ)(z)− T βγ (h′ψ)(z)
∣∣ <∞,

sup
z∈D
|T βγ (h′ψ)(z)|ρ(z) + sup

z∈D

∣∣T βγ (g′φ)(z)− T βγ (h′ψ)(z)
∣∣ <∞;

(iii) sup
a∈D
‖(TgCφ − ThCψ)fa‖Bϕβ + sup

a∈D
‖(TgCφ − ThCψ)f̂a‖Bϕβ <∞.

Morever, if sup
n∈N0

nγ‖g′φn − h′ψn‖µϕβ <∞ holds, then (i) is true.

Corollary 4.2. Let 1 < p < ∞, α > −1, 0 < β < ∞ and ϕ : [0,∞) →
[0,∞) be an N -function. Suppose g, h ∈ H(D) and φ, ψ ∈ S(D) satisfying

max{‖φ‖∞, ‖ψ‖∞} = 1. If the operators TgCφ, ThCψ : Apα → B
ϕ
β are bounded,

then the following relationships hold:

‖TgCφ − ThCψ‖e,Apα→Bϕβ
≈ lim
r→1

sup
|φ(z)|>r

∣∣T βγ (g′φ)(z)
∣∣ ρ(z) + lim

r→1
sup
|ψ(z)|>r

∣∣T βγ (h′ψ)(z)
∣∣ ρ(z)

+ lim
r→1

sup
min{|φ(z)|,|ψ(z)|}>r

∣∣T βγ (g′φ)(z)− T βγ (h′ψ)(z)
∣∣

≈ lim sup
|a|→1

‖(TgCφ − ThCψ)fa‖Bϕβ + lim sup
|a|→1

‖(TgCφ − ThCψ)f̂a‖Bϕβ

� lim sup
n→∞

nγ‖g′φn − h′ψn‖µϕβ .

In what follows, we will use the below conditions:

lim
|z|→1

µϕβ (z)|g′(z)− h′(z)| = 0; (4.1)

lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||g′(z)| = 0; (4.2)

lim
|z|→1

µϕβ (z)|φ(z)− ψ(z)||h′(z)| = 0. (4.3)

Corollary 4.3. Let 1 < p <∞, α > −1, 0 < β <∞ and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) and g, h ∈ H(D), then the following

statements are equivalent:
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(i) TgCφ − ThCψ : Apα → B
ϕ
β,0 is bounded;

(ii) TgCφ − ThCψ : Apα → B
ϕ
β is bounded, (4.1) and (4.2) hold;

(iii) TgCφ − ThCψ : Apα → B
ϕ
β is bounded, (4.1) and (4.3) hold.

Corollary 4.4. Let 1 < p <∞, α > −1, 0 < β <∞ and ϕ : [0,∞)→ [0,∞)

be an N -function. Suppose φ, ψ ∈ S(D) with max{‖φ‖∞, ‖ψ‖∞} = 1 and

g, h ∈ H(D) such that TgCφ − ThCψ : Apα → B
ϕ
β,0 is bounded, then the following

statements are equivalent:

(i) TgCφ − ThCψ : Apα → B
ϕ
β,0 is compact;

(ii) lim sup
|z|→1

T βγ (g′φ)(z)ρ(z) + lim sup
|z|→1

T βγ (h′ψ)(z)ρ(z)

+ lim sup
|z|→1

∣∣T βγ (g′φ)(z)− T βγ (h′ψ)(z)
∣∣ = 0.

Using the above theorems, we can also easily deduce similar descriptions for

the differences T g − Th and Tg − Th acting from weighted Bergman spaces to

β-Bloch–Orlicz spaces, hence we omitted them.
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