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Abstract In this paper, we study quadratic complementarity problems (QCP-

s), which form a subclass of nonlinear complementarity problems (NCPs) with

the nonlinear functions being quadratic polynomial mappings. QCPs serve as

an important bridge linking linear complementarity problems and NCPs. Vari-

ous properties on the solution set for a QCP, including existence, compactness

and uniqueness are studied. The results are established from assumptions giv-
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en in terms of the comprising matrices of the underlying tensor, henceforth

easily checkable. Examples are given to demonstrate that the results improve

or generalize the corresponding QCP counterparts of the well-known NCP

theory, and broaden the boundary knowledge of NCPs as well.

Keywords Quadratic complementarity problem · Tensor · Copositivity ·

Uniqueness
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1 Introduction

The classical linear complementarity problems (LCPs) (cf. [1]) have wide range

of applications in applied science and technology, such as operations research,

economics, engineering, to just name a few. The nonlinear complementarity

problems (NCPs) are generalizations of LCPs by considering general nonlinear

mappings (cf. [2]). Likewise, the so dubbed quadratic complementarity prob-

lems (QCPs) that will be studied in this article are generalizations of LCPs

by considering quadratic polynomial mappings on one hand, and on the other

hand more concrete realizations of NCPs.

One motivation for studying QCPs is the three person non-cooperative

games [3,4]; another is a generalized Markowitz portfolio problem whose first

order optimality condition is a QCP [5]. The generalized Markowitz portfolio

problem is in general NP-hard, and therefore properties on its KKT points are

helpful and would be guidelines to design efficient algorithms to solve it.
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Though QCPs form a subclass of NCPs [2], they deserve particular in-

vestigations with at least twofold reasons: (i) they would serve as a bridge

between the LCPs and the general NCPs, a very first step towards the non-

linear cases, and of which a concrete case; and (ii) they give a unified model

for several classes of optimization problems (e.g., the cubic polynomial min-

imizations over the nonnegative orthant, the generalized Markowitz portfolio

problems, three person non-cooperative games, etc.) which should have their

own specifically developed theory and numerical methodologies. Actually, our

research will show that the study on QCPs can even broaden the boundary of

the knowledge for NCPs (cf. Sections 3.2 and 4).

This study also comes from the recent trend on tensor complementarity

problems (TCPs). QCPs encompass the third order TCPs in which the non-

linear mappings are the sum of quadratic forms and constant vectors [6]. In

this field, Song and Qi [6] showed the existence of solutions for TCPs under

(strict) semi-positivity; and presented some relations among several classes of

tensors. (cf. [7]). Che, Qi and Wei [8] studied properties of TCPs with posi-

tive definite tensors. Song and Yu further studied S-tensors and properties of

the solution sets of the corresponding TCPs [9]. Bai, Huang and Wang [10]

showed that solution sets of TCPs with P tensors are nonempty and compact.

Huang and Qi [3] reformulated a class of multilinear games as TCPs, provid-

ing examples for TCPs and establishing a bridge between these two classes of

problems. For more research in this field and related, please refer to [6–8,11,12]

and references therein.
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This article will give a study on solution sets of QCPs using various tools

from classical NCPs, tensor analysis, as well as some particularly designed

techniques. We will organize the rest of this article as follows.

Basic notation and concepts will be presented in Section 2. A generalized

Frank-Wolfe theorem for cubic polynomial optimization problems will be given

in Section 3.1, which involves R0 tensors. With this, existence of solutions

to QCPs is given under mild assumptions. The compactness of the solution

sets will be discussed in Section 3.2. C-strict copositivity of a tensor and K-

positive semidefinite plus of a matrix will be introduced there, based on which a

compactness result will be given. The result generalizes, actually broadens, the

well known ones in the literature (cf. [2, Proposition 2.2.12]); and it is proven

under a regularity condition (i.e., (15)), which is formulated geometrically. This

regularity condition combines information on all of the tensor, the matrix and

the vector. Examples will be presented to show these promised novelties.

Uniqueness of the solution set will be investigated in Section 4 in terms of

the null spaces of a collection of matrices. The uniqueness theorem involves the

above regularity condition. The result generalizes and broadens the literature–

it can handle a tensor which is not strictly copositive. An example is given

there. Final remarks is given in the last section to conclude this article.

2 Preliminaries

A (real) third order n-dimensional tensor (a.k.a. hypermatrix [13])A = [ai1i2i3 ] ∈

Rn×n×n is a third-way array, where ij ∈ {1, . . . , n} and j = 1, 2, 3. The set
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of all third order n-dimensional tensors is denoted by T(Rn, 3), and the set

of all n× n (symmetric) matrices is denoted by (S(Rn, 2)) T(Rn, 2). A tensor

A ∈ T(Rn, 3) can be viewed as a concatenation of n matrices of size n × n.

More precisely, for i ∈ {1, . . . , n}, the i-th slice Ai,·,· of A refers to the matrix

[aijk]nj,k=1.

Given vectors x, y and z ∈ Rn, x⊗y⊗z refers to a rank one tensor whose

(i, j, k)-th component is xiyjzk. x⊗3 simplifies the symmetric rank one tensor

x⊗ x⊗ x. x⊗2 is defined similarly.

Let A ∈ T(Rn, 3) and x ∈ Rn, Ax2 is a vector with its ith component as

(Ax2)i :=

n∑
i2,i3=1

aii2i3xi2xi3 , for i ∈ {1, . . . , n}.

A tensor A ∈ T(Rn, 3) is copositive, if Ax3 := xT(Ax2) ≥ 0 for all x ∈ Rn+.

It is called strictly copositive, if Ax3 > 0 for all x ∈ Rn+ \ {0}.

The QCP refers to finding a vector x ∈ Rn such that

(QCP) x ≥ 0, Ax2 +Bx + c ≥ 0 and xT(Ax2 +Bx + c) = 0, (1)

in which A ∈ T(Rn, 3) a given third order tensor, B ∈ Rn×n a given matrix,

and c ∈ Rn a given vector; x ≥ 0 means xi ≥ 0 for all i ∈ {1, . . . , n}.

For QCP (1), sometimes it is without loss of any generality to consider

tensors in the subspace Rn⊗S(Rn, 2) of T(Rn, 3). It is the set of tensors which

have symmetric elements with respect to the second and the third indices, i.e.,

A ∈ Rn ⊗ S(Rn, 2) means Ai,·,· ∈ S(Rn, 2) for all i ∈ {1, . . . , n}. Denote by

Ai := Ai,·,· for i = 1, . . . , n. Then, with F (x) := Ax2 +Bx + c, we have

∇(xTF (x)) = (xTA1x, . . . ,x
TAnx)T + 2

n∑
i=1

xiAix + (B +BT)x + c. (2)
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Given a tensor A ∈ T(Rn, 3), we define its transpose AT as the tensor in

T(Rn, 3) with entries

(AT)ijk = ajik for all i, j, k ∈ {1, . . . , n}.

Denote by Di :=
(
AT
)
i,·,· ∈ Rn×n for i = 1, . . . , n, and define ATx :=∑n

i=1 xiDi for all x ∈ Rn.

3 Nonemptiness and Compactness

In the following, we will denote the solution set of QCP (1) by sol(A, B, c).

3.1 Nonemptiness via a Frank-Wolfe Type Theorem

A tensor A ∈ T(Rn, 3) is called an R0 tensor if the system (cf. [7])

xTAix ≥ 0, if xi = 0, and xTAix = 0, if xi > 0 for all i ∈ {1, . . . , n}

does not have a solution in Rn+ \ {0}.

Proposition 3.1 Let A ∈ T(Rn, 3) be an R0 tensor. Then, whenever QCP (1)

is feasible, the minimization problem

inf xTF (x) s.t. x ≥ 0, F (x) ≥ 0 (3)

has an optimal solution.

Proof Let the feasible solution set be S := {x | x ≥ 0, F (x) ≥ 0}. By

assumption, S 6= ∅. Denote by v∗ = inf{xTF (x) | x ∈ S}. Let Bρ := {x ∈ Rn |
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‖x‖ ≤ ρ} be the ball centered at zero with radius ρ. Thus, there exists κ > 0

such that S ∩Bρ 6= ∅ for all ρ ≥ κ. Let

vρ := min{xTF (x) | x ∈ S ∩Bρ} for all ρ ≥ κ. (4)

The optimal solution set sρ of (4) is obvious compact. Thus, we define

xρ ∈ argmin{‖x‖ | x ∈ sρ} for all ρ ≥ κ

as a minimum norm optimal solution. We claim that there exists γ > κ such

that

‖xρ‖ < ρ for all ρ ≥ γ. (5)

Suppose on the contrary that there exists a sequence {ρk} such that

‖xρk‖ = ρk with ρk →∞.

Taking subsequence if necessary, we may assume without loss of generality

that
xρk
ρk
→ x. Obviously, the feasibility and the normalization imply that

x ≥ 0 and x 6= 0. (6)

Dividing each defining polynomial of F by ρ2k, we get with the feasibility that

xTAix ≥ 0 for all i = 1, . . . , n. (7)

By the nonemptiness of S, we conclude that vρ ↓ v∗. Thus,

vρk = xT
ρk
F (xρk) =

n∑
i=1

(xρk)ix
T
ρk
Aixρk + xT

ρk
Bxρk + cTxρk

should be bounded. Dividing the equation by ρ3k, we get that Ax3 = 0. This,

together with (6) and (7), violates the hypothesis that A is an R0 tensor.

Therefore, the claim (5) is proved.
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In the next, we claim that there exists τ > γ such that

vρ = v∗ for all ρ ≥ τ. (8)

Suppose on the contrary that vρ > v∗ for all ρ ≥ κ. As vρ ↓ v∗, we can find

γ < ρ1 < ρ2 such that vρ1 > vρ2 . By the claim (5), we have that ‖xρ2‖ < ρ2.

Since vρ1 > vρ2 , we have ‖xρ2‖ > ρ1. Let ρ3 = ‖xρ2‖. Then, γ < ρ1 < ρ3 < ρ2,

and ‖xρ3‖ < ρ3 = ‖xρ2‖. ρ3 < ρ2 implies that vρ2 ≤ vρ3 .

If vρ2 = vρ3 , then xρ3 is an optimal solution to vρ2 with a strictly smaller

norm than xρ2 , which is a contradiction to the definition. If vρ2 < vρ3 , then

it, together with ρ3 = ‖xρ2‖, gives a contradiction to xρ3 being an optimal

solution. As a consequence, the claim (8) is proved. Thus, the proposition

follows immediately. ut

Proposition 3.1 is a generalization of the classical Frank-Wolfe theorem [14].

Definition 3.1 (Co-Semidefinite Pair) A tensor A ∈ T(Rn, 3) and a ma-

trix B ∈ T(Rn, 2) is called a co-semidefinite pair if the matrix pencil ATx+B

is positive semidefinite for all x ∈ Rn+.

Obviously, A and B form a co-semidefinite pair if and only if B, D1, . . . , Dn

are all positive semidefinite matrices. Actually, the sufficiency is immediate.

For the necessity, the matrix B should be positive semidefinite is apparent.

For the positive semidefiniteness of the matrices Di’s, we can drive a proof by

contradiction. Suppose D1 is not positive semidefinite, then with sufficiently

large t, the matrix AT(te1) +B would not be positive semidefinite.
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Proposition 3.2 Let x∗ be an optimal solution of (3) with A ∈ Rn⊗S(Rn, 2).

If a constraint qualification is satisfied at x∗ to ensure at which the Karush-

Kuhn-Tucker condition holds, and A and B form a co-semidefinite pair, then

x∗ ∈ sol(A, B, c).

Proof It follows from the Karush-Kuhn-Tucker condition hypothesis that there

exists u∗ ≥ 0 such that (cf. (2) for gradients)
xT
∗A1x∗

...

xT
∗Anx∗

+2

n∑
i=1

(x∗)iAix∗+(B+BT)x∗+c−2

n∑
i=1

(u∗)iAix∗−BTu∗ ≥ 0 (9)

xT
∗

(


xT
∗A1x∗

...

xT
∗Anx∗

+ 2

n∑
i=1

(x∗)iAix∗ + (B +BT)x∗

+ c− 2

n∑
i=1

(u∗)iAix∗ −BTu∗

)
= 0 (10)

uT
∗F (x∗) = 0, x∗ ≥ 0, u∗ ≥ 0. F (x∗) ≥ 0. (11)

Thus, multiplying (9) by u∗ and using the complementarity of u∗ (cf. (11)),

we have

uT
∗

(
− 2

n∑
i=1

(x∗)iAix∗ −BTx∗ + 2

n∑
i=1

(u∗)iAix∗ +BTu∗

)
≤ 0,

and, using the feasibility of x∗, we have from (10) that

xT
∗

(
2

n∑
i=1

(x∗)iAix∗ +BTx∗ − 2

n∑
i=1

(u∗)iAix∗ −BTu∗

)
≤ 0 (12)
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Therefore,

2〈A,u∗⊗u∗⊗x∗−x∗⊗u∗⊗x∗+x⊗3∗ −u∗⊗x∗⊗x∗〉+ 〈B, (u∗−x∗)
⊗2〉 ≤ 0,

which is equivalent to

2〈ATx∗, (x∗ − u∗)
⊗2〉+ 〈B, (u∗ − x∗)

⊗2〉 ≤ 0.

Since A and B form a co-semidefinite pair, we have

2〈ATx∗, (x∗ − u∗)
⊗2〉+ 〈B, (u∗ − x∗)

⊗2〉 = 0.

Thus, (12) should be an equality, which together with (10), further implies

that xT
∗F (x∗) = 0. Thus, x∗ ∈ sol(A, B, c). ut

Whenever the optimal value of (3) is zero, we have complementarity of x∗

and F (x∗). Recall that ∇F (x) = 2[A1x, . . . , Anx]T +B. Therefore, the linear

independence constraint qualification (LICQ) holds generically.

If A ∈ Rn ⊗ S(Rn, 2) is an R0 tensor, then Proposition 3.1 guarantees an

optimal solution for (3) whenever (1) is feasible. The following example comes

from Propositions 3.1 and 3.2.

Example 3.1 Let A ∈ R2⊗S(R2, 2) with a111 = a222 = 1 and all other ai1i2i3 =

0, and B =

0 0

0 1

. It is easy to verify that A is an R0 tensor, D1 =

1 0

0 0

,

D2 =

0 0

0 1

 and B =

0 0

0 1

 are all positive semidefinite matrices, and hence A

and B form a co-semidefinite pair. It is also easy to see that the corresponding

QCP (1) is feasible for any c ∈ R2. The LICQ holds at any optimal solution

in this case. By Proposition 3.1, the solution set is nonempty.
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For this example, the nonemptyness can also be checked by direct calcula-

tion. Actually, if c1 ≥ 0, then we can take x1 = 0; otherwise, x1 =
√
−c1 > 0.

If c2 ≥ 0, then we can take x2 = 0 as well; otherwise, x2 =
√
1−4c2−1

2 > 0.

3.2 Compact Solution Sets

In this section, we will study the compactness/existence of the solution set

sol(A, B, c). Obviously, the set sol(A, B, c) is closed by continuity.

Definition 3.2 (C-strict copositivity) Let C ⊆ Rn+ be a nonempty closed

cone. A tensor A ∈ T(Rn, 3) is called C-strictly copositive, if A is copositive

and strictly copositive on the cone C, i.e.,

Ax3 ≥ 0 for all x ∈ Rn+, and Ax3 > 0 for all x ∈ C \ {0}.

Obviously, {0}-strict copositivity is the copositivity, and Rn+-strict coposi-

tivity is the strict copositivity in the usual sense respectively. There are plenty

of examples of C-strictly copositive tensors with C being a face of Rn+, i.e.,

C = {x ∈ Rn+ | xi = 0 for all i ∈ I}

for some subset I ⊆ {1, . . . , n}. In the following, we give an example with C

being not a face of Rn+.

Example 3.2 Let A = (ai1i2i3) ∈ T(R2, 3) and a111 = 1, a112 = −1, a211 = 1

and ai1i2i3 = 0 for all the other i1, i2, i3 ∈ {1, 2}. Let C := R2
≥ = {x ∈ R2

+ |

x1 ≥ x2} be the cone of vectors with nonincreasing components. Then A is

C-strictly copositive. Actually, Ax3 = x31. Clearly, A is copositive and strictly

copositive on the cone C, while A is not strictly copositive.
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Definition 3.3 (K-positive semidefinite plus) Let K ⊆ Rn be a nonemp-

ty closed cone. A matrix B ∈ Rn×n is called K-positive semidefinite plus, if B

is positive semidefinite plus on K, i.e.,

xTBx ≥ 0, for all x ∈ K, and

whenever xTBx = 0 for x ∈ K, it follows Bx = 0. (13)

In Definition 3.3, the subset K can be a linear subspace. If K = Rn, we call

B simply positive semidefinite plus. Given a point x ∈ Rn, R+x is the cone

{αx : α ∈ R+}, and

(R+x)� :=


(R+x)∗, if x 6= 0,

{0}, otherwise,

(14)

where K∗ means the dual cone of a given cone K.

Proposition 3.3 (Compact Solution Set) Let A ∈ T(Rn, 3) be C-strictly

copositive for a nonempty closed cone C ⊆ Rn+, B ∈ Rn×n a K-positive

semidefinite plus matrix for a nonempty closed cone K ⊆ Rn, and c ∈ Rn

a vector. Let the intersection of the kernel of B and the linear subspace lin(K)

generated by K be L ⊆ Rn. Suppose that K{ ∩ Rn+ ⊆ C, and

L ∩ Rn+ ⊆ C ∪
[

int
(
(R+c)�

)
∩ Rn+

]
. (15)

Then, the QCP (1) has a nonempty bounded solution set.

Proof It is sufficient to show that the set

L≤ := {x ∈ Rn+ | xT(c +Bx +Ax2) ≤ 0}
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is bounded, by [2, Proposition 2.2.3]. In the following, we assume on the con-

trary that the set L≤ is unbounded and from which we will derive a contra-

diction.

Suppose that {xk} ⊆ L≤ is an unbounded sequence. Without loss of gen-

erality, we assume that

lim
k→∞

‖xk‖ =∞, lim
k→∞

xk

‖xk‖
= d ∈ Rn+.

Obviously, 0 6= d ≥ 0. Further taking subsequence if necessary, we can assume

that either

{xk} ⊂ K, or {xk} ⊂ K{.

Since C is closed, it follows from K{∩Rn+ ⊆ C that if {xk} ⊂ K{, then d ∈ C.

On the other hand, it follows from

(xk)T(c +Bxk +A(xk)2) ≤ 0, (16)

and the copositivity of A that Ad3 = 0. Thus,

d /∈ C (17)

by the C-strict copositivity of A. Consequently,

{xk} ⊂ K, (18)

and henceforth

d ∈ K ∩ Rn+. (19)

It follows from (16) and the copositivity of A that

(xk)T(c +Bxk) ≤ 0, for all k. (20)
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Therefore, by dividing the inequality by ‖xk‖2 and taking limitation, we con-

clude that dTBd ≤ 0, which, together with (19) and the fact that B is K-

positive semidefinite plus, implies that

Bd = 0, or equivalently d ∈ L.

Thus,

d ∈ L ∩ Rn+. (21)

By (18) and (20), as well as the K-positive semidefiniteness plus of B, we

have that cTd ≤ 0, which implies that d /∈ int
(
(R+c)�

)
.

This, together with (17) and (21), gives a contradiction to (15). ut

Condition (15) is called a regularity for QCP (1).

Proposition 3.4 Let B ∈ Rn×n be a positive semidefinite plus matrix with the

kernel being L ⊆ Rn, and c ∈ Rn be a vector. Then, the following statements

are equivalent:

1. There exists a y ∈ Rn such that

c +By ∈ Rn++. (22)

2. The following regularity holds

L ∩ Rn+ ⊆ {0} ∪
[

int
(
(R+c)�

)
∩ Rn+

]
. (23)

Proof Suppose that there exists a y ∈ Rn such that c +By ∈ Rn++. Then,

c ∈ L⊥ + Rn++,
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since the range space of B is L⊥. Thus (cf. [15])

c ∈ int((L ∩ Rn+)∗) = int(L⊥ + Rn++) = L⊥ + Rn++,

which implies

〈c,d〉 > 0 for all d ∈ L ∩ Rn+ \ {0}.

Therefore, either L ∩ Rn+ = {0} or

L ∩ Rn+ \ {0} ⊆
[

int
(
(R+c)�

)
∩ Rn+

]
.

While, both cases are covered by (23).

If L ∩ Rn+ = {0}, then we have (cf. [15])

Rn = (L ∩ Rn+)∗ = L⊥ + Rn+.

We must have a point z ∈ Rn such that Bz ∈ Rn−−. For any c ∈ Rn, we can

find a y ∈ Rn such that c +By ∈ Rn+. Therefore,

c +B(y − z) ∈ Rn++.

So, (22) follows.

Suppose in the following that L ∩ Rn+ has dimension being strictly larger

than zero. The condition (23) is equivalent to

〈c,d〉 > 0 for all d ∈ L ∩ Rn+ \ {0}.

Therefore,

c ∈ int((L ∩ Rn+)∗) = int(L⊥ + Rn++) = L⊥ + Rn++.

Consequently, we have that there exists a y ∈ Rn such that c+By ∈ Rn++. ut
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We know from Proposition 3.4 that (22) is equivalent to a special case

(23) of (15). Thus, Proposition 3.3 generalizes [2, Proposition 2.2.12]; and [8,

Theorem 4.5(b)] for TCPs with third order tensors:

(i) Taking C = {0} in Proposition 3.3, together with Proposition 3.4, Propo-

sition 3.3 generalizes [2, Proposition 2.2.12(a)].

(ii) Taking C = Rn+ in Proposition 3.3, A is then strictly copositive, which im-

plies that the coercivity condition in [2, Proposition 2.2.12(b)] is satisfied,

then Proposition 3.3 generalizes [2, Proposition 2.2.12(b)].

(iii) Taking C = Rn+ and B = 0 in Proposition 3.3, we recover [8, Theo-

rem 4.5(b)] for TCPs with third order tensors, since (15) is satisfied for

any given c.

Whenever C is a nontrivial proper subcone in Rn+, the standard NCP and

TCP theory is helpless. While, Proposition 3.3 may provide a solution.

Example 3.3 Let A = (ai1i2i3) ∈ T(R2, 3) and a122 = −1, a221 = 1, a222 = 1

and ai1i2i3 = 0 for all the other i1, i2, i3 ∈ {1, 2}, B =

2 0

0 0

. Let C = {x ∈

Rn+ | x1 ≤ x2} and K = R2
+. It can be checked that A is C-strictly copositive,

but fails to be strictly copositive; and B is K-positive semidefinite plus. With

the notation as in Proposition 3.3, L = {x ∈ R2 | x1 = 0}, and L ∩ R2
+ ⊂ C.

Thus, for any c ∈ R2, sol(A, B, c) is nonempty and compact.

We shall show the nonemptiness and compactness through direct calcula-

tion. If c2 ≥ 0, then x2 = 0, and hence 2x21 + c1x1 = 0. Thus, the solution

set is nonempty (x1 = 0 is a solution) and always compact. If c2 < 0, there
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is a solution with x1 = 0 and x2 > 0 for any c1. On the other hand, in this

case, solutions must be with x2 > 0. So, x22 + x1x2 + c2 = 0. Since x1 ≥ 0,

x2 cannot go to infinity. Thus, x2 is always bounded. If x1 goes to infinity,

then x2 should go to zero to maintain the equality x22 + x1x2 + c2 = 0, while

−x22 + 2x1 + c1 = 0 as x1 > 0, which is a contradiction for any fixed c1.

The next example is a modification of Example 3.3 in which c plays a role.

Example 3.4 Let A = (ai1i2i3) ∈ T(R2, 3) and a122 = −1, a221 = 1, and

ai1i2i3 = 0 for all the other i1, i2, i3 ∈ {1, 2}, the matrix B is as the previous

one, and c = (c1, c2)T with some c2 > 0. Let C = {0}, K = R2
+.

In this case, L ∩ R2
+ = {x ∈ R2 | x1 = 0, x2 ≥ 0} as well. While, it is

easy to see pictorially that L ∩ Rn+ ⊂ int
(
(R+c)�

)
∩ R2

+. Thus, the regularity

(15) holds as well and hence the solution set is nonempty and compact by

Proposition 3.3. It can also be checked that the corresponding solution set is

nonempty and compact in this case as Example 3.3.

In the following, we note a connection between the regularity (15) and the

existence for QCP (1) via a generalized Frank-Wolfe theorem by Andronov,

Belousov, and Shironin [16]. A tensor is symmetric if the entries are invariant

when permuting their indices.

The existence for QCP (1) with symmetric A and B satisfying (15) fol-

lows from this generalized Frank-Wolfe theorem for cubic polynomial objective

under linear constraints. In this case, we consider the optimization problem

min

{
1

3
Ax3 +

1

2
xTBx + cTx | x ≥ 0

}
. (24)



18 Jie Wang et al.

It is proved in [16] that whenever the objective function is bounded below

over the feasible set, there is an optimal solution. Obviously, the LICQ holds

at any optimal solution, which further implies the existence of a KKT point.

It is straightforward to write down the KKT system for (24) and it is the

same as QCP (1). Whenever the regularity (15) is satisfied, an almost the

same proof as that for Proposition 3.3 will show that the objective function is

indeed bounded from below.

4 Uniqueness

If A ∈ Rn×n is positive semidefinite, we define the null null(A) of A as the set

of vectors in Rn such that xTAx = 0, i.e.,

null(A) := {x ∈ Rn | xTAx = 0}.

It is easy to see that null(A) is a linear subspace. Whenever furthermore A ∈

S(Rn, 2), i.e., A is symmetric, then null(A) is the kernel of A, i.e.,

null(A) = {x ∈ Rn | Ax = 0},

while in general this is not true.

Let {D1, . . . , Dn} ⊂ Rn×n be a collection of n matrices. If each Di is

positive semidefinite, then the nulls of the matrix pencils

x1D1 + · · ·+ xnDn for x ∈ Rn+

form a partially ordered finite set W(D1, . . . , Dn). Actually, whenever each Di

is positive semidefinite, the null of the matrix x1D1 + · · ·+ xnDn for x ∈ Rn+
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is equal to the null of the matrix

sign(x1)D1 + · · ·+ sign(xn)Dn,

where

sign(α) = 1 if α > 0; or sign(α) = 0 if α = 0; or sign(α) = −1 if α < 0.

In fact, the null of sign(x1)D1 + · · ·+ sign(xn)Dn is equal to

n⋂
i=1

null
(

sign(xi)Di

)
.

Therefore, with respect to the set inclusion, W(D1, . . . , Dn) is a set with the

maximal elements being {null(Di) | i ∈ {1, . . . , n}}, and the unique minimum

element being
⋂n
i=1 null(Di). A pseudo-maximal element in W(D1, . . . , Dn) is

defined as an element of the form

null(Di) ∩ null(Dj) for some 1 ≤ i < j ≤ n.

Given a tensor A ∈ T(Rn, 3), recall AT is the tensor by transposing the

first and the second indices. Recall that Di :=
(
AT
)
i,·,· for i = 1, . . . , n are the

slices of AT.

Lemma 4.1 Let A ∈ T(Rn, 3) and B ∈ Rn×n. Under either of the following

conditions, the mapping F (x) := Ax2 + Bx + c is strictly monotone on Rn+

for an arbitrary c ∈ Rn:

1. A is C-strictly copositive for a nonempty closed cone C ⊆ Rn+, B ∈ Rn×n a

positive semidefinite matrix which is positive definite on a nonempty cone
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P ⊆ Rn such that Rn+ ⊆ P ∪ C, and the matrices D1, . . . , Dn are positive

semidefinite with

null(B) ∩W = {0}

for every pseduo-maximal element W ∈W(D1, . . . , Dn);

2. the matrices D1, . . . , Dn and B are positive semidefinite with

null(B) ∩W = {0}

for every maximal element W ∈W(D1, . . . , Dn).

Proof We have for any x,y ∈ Rn+

〈F (x)− F (y),x− y〉 = 〈Ax2 −Ay2,x− y〉+ 〈B(x− y),x− y〉

= 〈AT(x + y) +B, (x− y)(x− y)T〉. (25)

It is easy to see that under either hypothesis, the tensor A is copositive.

Suppose, without loss of generality, that y = 0 at first. Then, (25) becomes

〈ATx +B,xxT〉. (26)

If the hypothesis 1 is satisfied, then (26) is nonnegative since A is copositive

and B is positive semidefintie. If xTBx = 0, then x /∈ P , and hence x ∈ C,

which further implies 〈ATx,xxT〉 > 0. If the other hypothesis 2 is satisfied

and xTBx = 0, then x ∈ null(B). Since x 6= 0 and null(B) ∩W = {0} for

every maximal element W ∈W(D1, . . . , Dn), it follows that 〈ATx,xxT〉 > 0.

In the following, we suppose that both x 6= 0 and y 6= 0, and at least two

elements of x+y are nonzero, since the case when x+y has only one nonzero

component can be proved similarly as the previous argument. Then, at least
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two matrices Di’s are involved in AT(x + y). Thus, the null of the matrix

AT(x + y) is contained in a pseduo-maximal element W ∈ W(D1, . . . , Dn).

Since x 6= y, and null(B) ∩ W = {0} for every pseduo-maximal element

W ∈W(D1, . . . , Dn) under either hypothesis, (25) is positive. ut

Proposition 4.1 If F (x) = Ax2 +Bx + c is strictly monotone on Rn+, then

the solution set sol(A, B, c) of QCP (1) has at most one element.

Proof The proof is by contradiction. Suppose that x,y ∈ sol(A, B, c) and

x 6= y. Then,

xTF (x) = yTF (y) = 0.

Therefore, it follows from x,y, F (x), F (y) ∈ Rn+ that

(x− y)T(F (x)− F (y)) = −yTF (x)− xTF (y) ≤ 0.

However, the strict monotonicity of F implies that

(x− y)T(F (x)− F (y)) > 0,

since x 6= y. Thus, a promised contradiction is derived. ut

The next theorem on the uniqueness follows from Propositions 3.3 and 4.1,

and Lemma 4.1.

Theorem 4.1 Let A ∈ T(Rn, 3) and B ∈ Rn×n. Suppose that A is C-strictly

copositive for a nonempty closed cone C ⊆ Rn+, B a K-positive semidefinite

plus matrix for a nonempty closed cone K ⊆ Rn. Let the intersection of the



22 Jie Wang et al.

kernel of B and the linear subspace lin(K) generated by K be L ⊆ Rn. Suppose

that K{ ∩ Rn+ ⊆ C, and

L ∩ Rn+ ⊆ C ∪
[

int
(
(R+c)�

)
∩ Rn+

]
.

Then, under either of the following conditions:

1. B ∈ Rn×n a positive semidefinite matrix which is positive definite on a

cone P ⊆ Rn such that Rn+ ⊆ P ∪ C, and the matrices D1, . . . , Dn are

positive semidefinite with

null(B) ∩W = {0}

for every pseduo-maximal element W ∈W(D1, . . . , Dn);

2. the matrices D1, . . . , Dn and B are positive semidefinite with

null(B) ∩W = {0}

for every maximal element W ∈W(D1, . . . , Dn),

the QCP (1) has a unique solution.

The next example utilizes the second hypothesis in Theorem 4.1.

Example 4.1 Let A ∈ T(R2, 3) and a111 = a121 = 1 and ai1i2i3 = 0 for all the

other i1, i2, i3 ∈ {1, 2}. B =

0 0

0 1

.

From the given data, D1 = D2 =

1 0

0 0

. It is easy to verify that D1, D2, B

are positive semidefinite. Let C = {x ∈ R2
+ | x1 ≥ x2}. Then, A is C-

strictly copositive, and B is K = R2
+-positive semidefinite plus. Similar as
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Example 3.3, the regularity condition holds for any c ∈ R2. It is easy to see

that any maximal element of W(D1, D2) is {x ∈ R2 | x1 = 0}, which intersects

null(B) trivially. Therefore, the corresponding QCP has a unique solution.

We shall show the uniqueness by direct calculation. The system is
0 ≤ x21 + x1x2 + c1 ⊥ x1 ≥ 0,

0 ≤ x2 + c2 ⊥ x2 ≥ 0.

If c2 ≥ 0, then x2 = 0. Consequently, x1 = 0 when c1 ≥ 0; and x1 =
√
−c1

when c1 < 0. If c2 < 0, then x2 = −c2. Consequently, x1 = 0 when c1 ≥ 0;

and x1 =
c2+
√
c22−4c1
2 . Thus, we have uniqueness for each case.

The next example is a modification of Example 4.1 in which the first hy-

pothesis in Theorem 4.1 is conducted.

Example 4.2 Let A ∈ T(R2, 3) and a111 = 1 and ai1i2i3 = 0 for all the other

i1, i2, i3 ∈ {1, 2}. Then D1 =

1 0

0 0

 and D2 = 0. Let B =

0 0

0 1

. We can

take P = {x ∈ R2 | x2 6= 0}. All the other settings are similar to the previous

example. The unique pseduo-maximal element in W(D1, D2) is {x ∈ R2 |

x1 = 0}. All the hypotheses in Theorem 4.1 are satisfied then. Likewise, the

uniqueness follows.

5 Conclusion

In this article, we studied existence, compactness and uniqueness of the so-

lution sets of QCPs. Assumptions to guarantee these results are mostly p-

resented in terms of matrices, which should be more tractable. Interestingly,
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the results in this article generalize the well-known ones in the literature and

even broaden the boundary of known knowledge (e.g., Sections 3.2 and 4).

These demonstrate that research on QCPs shall be interesting and meaningful

for both QCPs and general NCPs. In particular, the study on QCPs would

provide fruitful insights on investigations for NCPs.

We conclude this article with remarks that the proposed C-strictly copos-

itivity of a tensor and K-positive semidefiniteness plus of a matrix can be

applied to the generalized Markowitz portfolio problem. Actually, the matrix

in the QCP reformulation of its optimality condition is K-positive semidefinite

plus over the kernel K of that matrix; and the tensor is C-strictly copositive

for a proper subcone of the nonnegative orthant. Details and further investi-

gations will be carried out in the coming study.
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