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Abstract

In this paper, we consider quantitative stability for full random two stage linear stochastic

program with second-order conic constraints when the underlying probability distribution

is subjected to perturbation. We first investigate locally Lipschitz continuity of feasible set

mappings of the primal and dual problems in the sense of Hausdorff distance which derives

the Lipschitz continuity of the objective function, and then establish the quantitative stability

results of the optimal value function and the optimal solution mapping for the perturbation

problem. Finally, the obtained results are applied to the convergence analysis of optimal

values and solution sets for empirical approximations of the stochastic problems.
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1 Introduction

Consider the following stochastic programming:

min

{∫
Ξ
f0(x, ξ)dP (ξ) : x ∈ X,

∫
Ξ
fj(x, ξ)dP (ξ) ≤ 0, j = 1, · · · , d

}
, (1.1)

∗School of Mathematical Sciences, Dalian University of Technology, China. Email: duanqs@mail.dlut.edu.cn
†School of Mathematics, Tianjin University, Tianjin, 300072, China. E-mail: xumengw@hotmail.com. The

research of this author was supported by the National Natural Science Foundation of China under project No.
11601376
‡School of Mathematical Sciences, Dalian University of Technology, China. Email: syguo@dlut.edu.cn
§School of Mathematical Sciences, Dalian University of Technology, China. E-mail: lwzhang@dlut.edu.cn.

The research of this author was supported by the National Natural Science Foundation of China under projects
No.11571059 and No. 91330206.

1



where X ⊆ <n and Ξ ⊆ <s are closed set, fj mapping from <n × Ξ to <̄ are normal integrands

for j = 0, · · · , d, ξ : Ω→ Ξ is a random variable and P is Borel probability measure on Ξ.

Qualitative and quantitative stability properties for the optimal value function and optimal

solution mapping of stochastic programs play an important role in both theoretical and numerical

points of view. For problem (1.1), the authors in [9] studied the upper semi-continuity of local

optimal solution mapping and Lipschitz continuity of optimal value function which were also

applied to specific models: chance-constrained, linear two stage and mixed-integer two stage

models. With weak convergence of probability measures, Schultz [16] discussed stability of

chance-constrained model with linear equality constraint and integer variables. First-order and

second-order directional differentiability properties of the optimal value function and optimal

solution mapping were implied in [2]. Römisch and Schultz investigated the quantitative stability

of the optimal value function under different probability distances [12] and established Hölder

continuity of optimal solution mappings under the Hausdorff distance in [11]. For two stage

stochastic programs, the authors [13] proved the Lipschitz continuity to the optimal solution

mapping by introducing the subgradient distance. Shapiro [17] showed that the upper bound for

the rate of convergence implies the upper Lipschitz continuity of the optimal solution mapping

for two stage program respect to the Kolmogorov-Smirnov distance.

For a full random stochastic program, the quantitative stability of the optimal value func-

tion and the optimal solution mapping was investigated under epi-convergence framework in

[15]. The authors obtained the Lipschitz continuity of the optimal value function and the ε-

approximated solution mapping under the Hausdorff distance with respect to Fortet-Mourier

metric of probability distributions. They also applied these results to linear two stage programs.

The authors [7] derived stability results for full random linear two stage stochastic programs

with recourse.

In this paper, we consider a two stage second-order conic stochastic optimization problem

as follows:

minEP [f0(x, ξ)] (1.2)

where f0(x, ξ) := dTx + θ(x, ξ), d ∈ <n and θ(x, ξ) is the optimal value function of the second

stage problem:

P(x, ξ) min
y∈<m

cT y

s.t. aTi y + qTi x− bi ≥ ‖Biy‖2, i = 1, . . . , l,
(1.3)

where ξ = (c;A;Q;B; b) is a random vector with c : Ω → <m, A = (a1, · · · , al)T : Ω →
<l×m, Q = (q1, · · · , ql)T : Ω → <l×n, b : Ω → <l, B = (B1; . . . ;Bl) with Bi : Ω → <J×m, i =
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1, . . . , l. For convenience, we define the norm of ξ by ‖ξ‖ = ‖c‖+ ‖A‖+
J∑
j=1

‖Bj‖+ ‖Q‖+ ‖b‖,

where ‖ · ‖ denotes the 1-norm for a vector, that is ‖c‖1 :=
∑

i |ci| or infinity-norm of a matrix,

that is ‖A‖∞ := max{‖ai‖1, i = 1, · · · , l}.

Let gi(x, y; ξ) := (Biy, aTi y + qTi x − bi), i = 1, . . . , l and QJ+1 ⊂ <J+1 be the second-order

cone defined by

QJ+1 = {(s, t) ∈ <J ×< : t ≥ ‖s‖2}.

Then Problem (1.3) can be reformulated to

miny cT y

s.t. gi(x, y; ξ) ∈ QJ+1, i = 1, . . . , l.
(1.4)

In Duan et. al. [3], the authors discussed the stability properties of Problem (1.3) when

ξ = (c;A;Q;B; b) is perturbed to ξ̃ = (c̃; Ã; Q̃; B̃; b̃), especially the differentiability property

of θ(·, ·). They obtained the upper semi-continuity of solution mappings for both the original

problem and its Lagrange dual problem. Furthermore, the locally Lipschitz continuity of θ and

its Hadamard directional differentiability at a given point were established.

In this paper, we extend the study about the quantitative stability of two stage linear stochas-

tic programs with linear constraints to that with second-order conic constraints. First, we in-

troduce the dual problem of the second stage problem (1.3) and investigate the locally Lipschitz

continuity in the sense of Hausdorff distance of the primal and dual feasible set mappings. The

results can be extended to global Lipschitz continuity when a mild condition holds. Then we

establish locally Lipschitz continuity of the objective function and the quantitative stability of

the optimal value function and optimal solution mapping for the perturbation problem. We give

the convergence property of the optimal values and solution sets for empirical approximations

of two stage stochastic programs with second-order conic constraints.

The remaining parts of this paper are organized as follows. In section 2, we give some prelim-

inaries which will be used in this paper. In Section 3, we prove the locally Lipschitz continuity

property of the feasible sets for primal and dual problem in sense of Hausdorff distance. We also

give the quantitative stability results for the optimal value function and the optimal solution

mapping of perturbed two stage linear second-order conic stochastic programs. Asymptotic be-

havior of an empirical approximation problem is given in Section 4. We conclude our paper in

Section 5.
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2 Preliminary

We present kinds of distance and some background materials on perturbation analysis, which

will be used in the following section. Detailed discussions on these subjects can be found in

[1, 10].

Various kinds of distance are used for Lipschitz continuous property of the optimal solution

mapping.

Definition 2.1. The distance from a point x to the set C can be written as

d(x,C) := inf{‖x− x̃‖ : ∀x̃ ∈ C}.

Definition 2.2. The epi-distance of the objective functions can be bounded by some probability

semimetric of the form

dF (P,Q) := sup
f∈F

∣∣∣∣∫
Ξ
f(ξ)P (dξ)−

∫
Ξ
f(ξ)Q(dξ)

∣∣∣∣ , (2.1)

where F denotes a class of measurable functions from Ξ to <̄ and P,Q belongs to PF denoted

by

PF :=

{
Q ∈ P(Ξ) :

∫
Ξ

inf
x
f0(x, ξ)Q(dξ) > −∞, sup

x

∫
Ξ
f0(x, ξ)Q(dξ) <∞

}
.

Actually, the distance in (2.1) is also called Zolotarev’s pseudometric or ζ- structure. An im-

portant probability metric for stochastic programs with locally Lipschitz continuous integrands

is the p-th order Fortet-Mourier metric.

Definition 2.3. [5] The p-th order Fortet-Mourier metric ζp(p ≥ 1) is defined on Pp(Ξ) by

ζp(P,Q) := sup
f∈Fp(Ξ)

∣∣∣∣∫
Ξ
f(ξ)(P −Q)(dξ)

∣∣∣∣
for P,Q ∈ Pp(Ξ) :=

{
Q ∈ P(Ξ) :

∫
Ξ ‖ξ‖

pQ(dξ) <∞
}

. Here,

Fp(Ξ) := {f : Ξ 7→ R : |f(ξ)− f(ξ̃)|

≤ max{1, ‖ξ‖, ‖ξ̃‖}p−1‖ξ − ξ̃‖, ∀ξ, ξ̃ ∈ Ξ}.

In order to establish quantitative stability of stochastic program, we need a suitable proba-

bility measure.

Definition 2.4. For any ρ > 0 and probability measures P,Q ∈ PF , dF ,ρ- distance is defined

by

dF ,ρ(P,Q) := sup
x∈ρB

|EP [f0(x)]− EQ[f0(x)]|

where EP [f0(x)] :=
∫

Ξ f0(ξ, x)P (dξ).
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Definition 2.5. (Hausdorff distance) The Hausdorff distance of closed sets C and D can be

written as follows

dH(C,D) = max{d∗(C,D), d∗(D,C)},

with d∗(C,D) = sup{d(c,D),∀c ∈ C}.

Definition 2.6. [1] We say that the set-valued mapping Ψ : X → 2Y is metric regular at a

point (x0, y0) ∈ gph(Ψ), at a rate c, if for all (x, y) in a neighborhood of (x0, y0)

d(x,Ψ−1(y)) ≤ cd(y,Ψ(x)). (2.2)

Lemma 2.1. [1](Robinson-Ursescu stability theorem) Let Ψ : X → 2Y be a closed convex set-

valued mapping. Then Ψ is metric regular at (x0, y0) ∈ gph(Ψ) if and only if the regularity

condition

y0 ∈ int(rangeΨ)

holds. More precisely, let (x, y) be such that

‖x− x0‖ <
1

2
ν, ‖y − y0‖ <

1

8
η.

Then (2.2) holds with constant c = 4ν/η.

Lemma 2.2. [1]Let x0 ∈ Φ(u0) be such that Robinson’s constraint qualification holds. Then for

all (x, u) in a neighborhood of (x0, u0), one has

d(x,Φ(u)) = O(d(G(x, u),K)),

where Φ(u) := {x ∈ X : G(x, u) ∈ K}, K is a closed convex subset of Y and G : X × U → Y is

a continuous mapping.

3 Quantitative stability for full random two stage linear second-

order conic stochastic programs

In this section, we derive the Lagrange dual problem to study the quantitative stability for the

two stage second-order conic stochastic program. Let λ = (λ1, · · · , λl) ∈ Q := QlJ+1,

L(x, y, ξ, λ) := cT y −
l∑

i=1

〈λi, gi(x, y; ξ)〉

= cT y − 〈λ,Ay〉 −
l∑

i=1

λiJ+1(qTi x− bi),
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where A : <m → <(J+1)×l is a linear operator defined by

Ay =

{(
B1y

aT1 y

)
, · · · ,

(
Bly

aTl y

)}
.

Then the Lagrange dual of Problem (1.3) becomes

max
l∑

i=1

λiJ+1

(
bi − qTi x

)
s.t. c−A∗λ = 0,

λ ∈ Q,

(3.1)

where A∗ is the adjoint of A and A∗λ is calculated by

A∗λ =
l∑

i=1

[(Bi)T , ai]λ
i.

We denote the feasible set of problem (3.1) and problem (1.3) by

Λ(ξ) := {λ ∈ Q : c−A∗λ = 0},

Y (x, ξ) := {y ∈ <m : gi(x, y; ξ) ∈ QJ+1, i = 1, . . . , l}.

for ξ ∈ Ξ.

To analyze the stability properties of the problem (1.3) when a given parameter ξ0 =

(c0, A0, Q0, B0, b0) is perturbed by ξ = (c, A,Q,B, b), we make the following assumptions through-

out the paper.

Assumption 3.1. The set X ⊂ <n is a non-empty compact and convex set.

Assumption 3.2. For each x ∈ X and a given ξ0, the optimal value of problem (1.3) is finite

and the solution set for problem (1.3) is compact.

Assumption 3.3. The slater condition of problem (1.3) holds for ξ0 and each x ∈ X, namely

for each x ∈ <n, there exists yx such that

gi(x, yx; ξ0) ∈ intQJ+1, i = 1, . . . , l.

If Assumption 3.3 is satisfied, it’s well known that the dual problem (3.1) has a nonempty

compact solution set and the duality gap between (1.3) and its dual problem is zero.

From Assumption 3.1, X is compact and thus bounded. Assume there exists γ > 0 such

that for all x ∈ X, ‖x‖ ≤ γ. The following theorem reveals that the primal and dual feasible

set-valued mappings ξ 7→ Λ(ξ) and ξ 7→ Y (x, ξ) are locally Lipschitz continuous with respect to

the Hausdorff distance.
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Theorem 3.1. Suppose that Assumptions 3.1− 3.3 hold. For a given ξ0 ∈ Ξ and δ > 0, for any

ξ1, ξ2 ∈ Bδ(ξ0), there exist Lλ(ξ0) and Ly(ξ0) such that

dH(Λ(ξ1),Λ(ξ2)) ≤ Lλ(ξ0) max{1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖, (3.2)

dH(Y (x, ξ1), Y (x, ξ2)) ≤ Ly(ξ0) max{1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖. (3.3)

Proof From Lemma 2.1 and Lemma 3.1 in [3], the slater condition of Problem (1.3) and

(3.1) hold around ξ0 under Assumptions 3.1−3.3. We first prove the locally Lipschitz continuity

of set-valued mapping ξ 7→ Λ(ξ) with respect to the Hausdorff distance around ξ0. Define

F (λ, ξ) =

[
λ

c−A∗λ

]
and K = Q× {0}.

Then Λ(ξ) can be rewritten as

Λ(ξ) = {λ : F (λ, ξ) ∈ K}.

From Lemma 3.2 in [3] for fixed ξ0, we can obtain that

λ0 ∈ int(rangeΛ(ξ0)). (3.4)

Because of Lemma 2.1 and (3.4), we have that Λ(ξ0) is metrically regular at (ξ0, λ0) ∈
gph(Λ(ξ0)) and thus the Robinson’s constraint qualification of λ0 ∈ Λ(ξ0) holds. For δ > 0,

ξ1, ξ2 ∈ Bδ(ξ0), let λ1 ∈ Λ(ξ1) and λ2 ∈ Λ(ξ2) such that

d∗(Λ(ξ1),Λ(ξ2)) = d(λ1,Λ(ξ2)),

d∗(Λ(ξ2),Λ(ξ1)) = d(λ2,Λ(ξ1)).

Because of Lemma 3.2 in [3], we have the continuous differentiability of Λ(ξ) and there exists

ε > 0 such that λ1, λ2 ∈ Bε(λ0) . Now we choose the couple (ξ2, λ1), it follows from Lemma 2.2

that

d(λ1,Λ(ξ2)) ≤ κ1d(F (λ1, ξ2),K) ≤ κ1(‖F (λ1, ξ2)− F (λ1, ξ1)‖+ d(F (λ1, ξ1),K))

≤ κ1‖c1 − c2 + (A∗2 −A∗1)λ1‖ ≤ κ1 max{1, ‖λ1‖}‖ξ1 − ξ2‖

with κ1 > 0. For the couple (ξ1, λ2), we similarly obtain that

d(λ2,Λ(ξ1)) ≤ κ2 max{1, ‖λ2‖}‖ξ1 − ξ2‖.

with κ2 > 0.
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We now prove the operator A∗0 is onto when Assumption 3.1 holds. Suppose that there exists

dy ∈ <m such that A0dy = 0, then we obtain that cT0 dy = 0 by

〈c0 −A∗0λ0, dy〉 = 0⇔ cT0 dy − 〈A∗0λ0, dy〉 = 0⇔ cT0 dy − 〈λ0,A0dy〉 = 0.

For β > 0 and y∗ is an optimal solution of problem P (x, ξ0), then ȳ = y∗+βdy is also an optimal

solution. ȳ is unbounded when β →∞, which is a contradiction with Assumption 3.2 and thus

dy = 0. Then we have that kerA0 = {0} and operator A∗0 is onto.

Define M(ξ) := [((B1)T , a1), · · · , ((Bl)T , al)] ∈ <m×l(J+1) and M(ξi) = Mi, in view of A∗0,

we have that matrix M0 is of row full rank. Then for dy 6= 0, we have

‖MT
0 dy‖22 > 0⇒ (MT

0 dy)
TMT

0 dy > 0⇒ dTy (M0M
T
0 )dy > 0

and thus M0M
T
0 is positive definite. Let ∆Nij = ∆M ijM

T
i + Mi∆M

T
ij + ∆M ij∆M

T
ij , where

∆M ij = Mi −Mj , 0 ≤ j ≤ i ≤ 2. When ∆M i0 is small enough, MiM
T
i = (M0 + ∆Mi0)(M0 +

∆Mi0)T = M0M
T
0 +∆Ni0, i = 1, 2 are nonsingular. We assume that δi0 > 0 such that ‖∆Mi0‖ ≤

δi0 satisfying that MiM
T
i is nonsingular. Then we obtain from Sherman-Morrison-Woodbury

formula that

M †i := MT
i (MiM

T
i )−1

= (Mj + ∆MT
ij)(MjM

T
j + ∆Nij)−1

= (Mj + ∆MT
ij)[(MjM

T
j )−1 − (MjM

T
j )−1∆Nij [Im + (MjM

T
j )−1∆Nij ]−1(MjM

T
j )−1]

= M †j + ∆Σij .

From Theorem 3.8 in [19], we know that there exists a constant µ > 0 such that the following

estimation holds:

‖∆Σij‖ = ‖M †i −M
†
j ‖ ≤ µmax{‖M †i ‖, ‖M

†
j ‖}‖∆Mij‖,

for 0 ≤ j ≤ i ≤ 2. Since ∆Mi0 is small enough and ξ0 is fixed, as well as ‖M †0‖, then ‖M †i ‖, i =

1, 2 are bounded and constrained by some L(ξ0) ≥ 1 without loss of generality. On the other

hand, from the constraints of the problem (3.1), we have that

c1 −A∗1λ1 = 0⇒ c1 = M1λ1 ⇒ λ1 = MT
1 (M1M

T
1 )−1c1

⇒ λ1 = M †1c1 ⇒ ‖λ1‖ ≤ ‖M †1‖‖c1‖ ≤ L(ξ0)‖ξ1‖.

Similarly we have that for any λ ∈ Λ(ξ), ξ ∈ Bδ(ξ0),

‖λ‖ ≤ L(ξ0)‖ξ‖. (3.5)
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Taking Lλ(ξ0) = L(ξ0) max{κ1, κ2}, from the above discussion,

dH(Λ(ξ1),Λ(ξ2)) = max{d(λ1,Λ(ξ2)), d(λ2,Λ(ξ1))}

≤ max{κ1, κ2}max{1, ‖λ1‖, ‖λ2‖}‖ξ1 − ξ2‖

≤ Lλ(ξ0) max{1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖,

which means that ξ 7→ Λ(ξ) is locally Lipschitz continuous in the sense of Hausdorff distance.

Now we consider the locally Lipshitz continuous property of Y (x, ξ) in the sense of Hausdorff

distance. Because of Assumption 3.3, the Robinson’s constraint qualification of y0 ∈ Y (x, ξ0)

holds. For δ > 0, ε̃ > 0, ξ1, ξ2 ∈ Bδ(ξ0), there exists y1 ∈ Y (x, ξ1) and y2 ∈ Y (x, ξ2) such that

d∗(Y (x, ξ1), Y (x, ξ2)) = d(y1, Y (x, ξ2)),

d∗(Y (x, ξ2), Y (x, ξ1)) = d(y2, Y (x, ξ1)).

From the continuous differentiability of Y (x, ξ), there exists ε̃ > 0 such that y1, y2 ∈ Bε̃(y0) from

Lemma 2.2 in [3]. For (y1, ξ2), (y2, ξ1) in the neighborhood of (y0, ξ0) and fixed x, we have that

dist(y1, Y (x, ξ2)) ≤ κ3dist(g(x, y1, ξ2),Q)

≤ κ3(‖g(x, y1, ξ2)− g(x, y1, ξ1)‖+ dist(g(x, y1, ξ1),Q))

≤ κ3(

l∑
j=1

‖Bj
1 −B

j
2‖‖y1‖+ ‖A1 −A2‖‖y1‖+ ‖Q1 −Q2‖‖x‖+ ‖b1 − b2‖)

≤ κ3 max{1, γ, ‖y1‖}‖ξ1 − ξ2‖

where κ3 > 0, g(x, y, ξ) = (By,Ay+Qx− b) and are in Q for couples (y1, ξ1), (y2, ξ2). Then for

κ4 > 0,

d (y2, Y (x, ξ1)) ≤ κ4 max{1, γ, ‖y2‖}‖ξ1 − ξ2‖

can be obtained.

Let

Y (x, ξ, α) := Y (x, ξ) ∩ lev≤αf(y, ξ), ∀α,

where lev≤αf(y, ξ) = {y ∈ <m : cT y ≤ α} , we now prove that the set Y (x, ξ, α) is bounded.

We only need to prove that for α ≥ cT0 y
∗, y∗ is an optimal solution of (1.3) and there exists

δ > 0 and a bounded set D ⊂ <m such that Y (x, ξ, α) ⊂ D, ∀ξ ∈ Bδ(ξ0). We prove the result by

contradiction. Suppose that there exist a sequence {ξk} such that ξk → ξ0 and yk ∈ Y (x, ξk, α)

with ‖yk‖ → ∞. Let dky = yk/‖yk‖, we can find a subsequence kj such that d
kj
y → dy for

‖dy‖ = 1. In view of ykj ∈ Y (x, ξkj , α), one has

c
kjT
0 ykj ≤ α,

a
kjT
0,i y

kj + q
kjT
0,i x− b

kj
0,i ≥ ‖[B

kj
0 ]iykj‖2, i = 1, · · · , l.
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Dividing both sides of the above inequalities by ‖ykj‖, we obtain

c
kjT
0 d

kj
y ≤ α/‖ykj‖

a
kjT
0,i d

kj
y + q

kjT
0,i x/‖y

kj‖ − bkj0,i/‖y
kj‖ ≥ ‖[Bkj

0 ]id
kj
y ‖2, i = 1, · · · , l.

Taking the limits by j →∞, we have

cT0 dy ≤ 0, aT0,idy ≥ ‖Bi
0dy‖2 ≥ 0, i = 1, · · · , l.

Let β > 0. We now show that ȳ = y∗ + βdy is a feasible point of (1.3). For any i = 1, · · · , l,

aT0,iȳ + qT0,ix− b0,i = aT0,iy
∗ + qT0,ix− b0,i + βaT0,idy ≥ ‖Bi

0y
∗‖+ β‖Bi

0dy‖2 ≥ ‖Bi
0ȳ‖2.

Since cT0 dy ≤ 0, we have that

cT0 ȳ = cT0 (y∗ + βdy) = cT0 y
∗ + βcT0 dy ≤ cT0 y∗.

There ȳ is also an optimal solution, which implies dy = 0 and then we get the contradiction with

‖dy‖ = 1. Thus we obtain that Y (x, ξ0, α) is bounded. Since Y (x, ξ, α) is continuous around ξ0

by Lemma 2.2 in [3], Y (x, ξ, α) is also bounded.

Let B̄ = (b̄1, · · · , b̄l)T ∈ <l×m such that b̄Ti y = ‖Biy‖2, i = 1, · · · , l. Then

Qx− b ≥ (B̄ −A)y.

Since Y (x, ξ, α) is bounded, it is known from Theorem 9.3 in [6] that 0 ∈ int(H), where H =

con{hi|hi = b̄i − ai, i = 1, · · · , l}, so we have qTk x − bk > 0 for some k : 1 ≤ k ≤ l. For

0 6= y ∈ Y (x, ξ, α), we consider ζ = y/‖y‖, then there must exists some k ∈ 1, · · · , l to make

hkζ > 0. Then we have that

‖y‖ × hky

‖y‖
≤ qTk x− bk

⇒ ‖y‖ ≤ min

{
qTk x− bk
hkζ

|hkζ > 0, 1 ≤ k ≤ l
}

⇒ ‖y‖ ≤
max{qTk x− bk : 1 ≤ k ≤ l}

max{hkζ|hkζ > 0, 1 ≤ k ≤ l}
⇒ ‖y‖ ≤ Lζ(ξ0) max{1, γ}‖ξ‖,

where Lζ(ξ0) = 1/max{hkζ|hkζ > 0, 1 ≤ k ≤ l}. Furthermore, we can obtain that

dH(Y (x, ξ1), Y (x, ξ2)) ≤ Ly(ξ0){1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖

with Ly(ξ0) = max{κ3, κ4}max{1, γ}max{1, Lζ(ξ0)}. Then ξ 7→ Y (ξ) is locally Lischitz contin-

uous in the sense of Hausdorff distance. We complete the proof. 2

We now verify that locally Lipschitz property of the primal feasible set-valued mapping

ξ 7→ Λ(ξ) imply locally Lipschitz continuity of f0(·, x).
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Theorem 3.2. Assume that Assumptions 3.1- 3.3 hold. Then, for ξ0 = (c0, A0, Q0, B0, b0) and

δ > 0, there exist constants L̂(ξ0) > 0 , L̄(ξ0) > 0 and L̃(ξ0) > 0 such that

f0(x, ξ1)− f0(x, ξ2) ≤ L̄(ξ0) max{1, ‖ξ1‖, ‖ξ2‖}2‖ξ1 − ξ2‖,

f0(x1, ξ)− f0(x2, ξ) ≤ L̂(ξ0) max{1, ‖ξ‖}2‖x1 − x2‖,

‖f0(x, ξ)‖ ≤ L̃(ξ0) max{1, ‖ξ‖}2,

for all ξ1, ξ2 ∈ Bδ(ξ0), x1, x2 ∈ X.

Proof. Since the duality gap between problem (1.3) and its dual problem is zero, we set

µ := λJ+1, for x1, x2 ∈ X, and ξ1, ξ2 ∈ Bδ(ξ0),

f0(x1, ξ1)− f0(x2, ξ2) = dTx1 + θ(x1, ξ1)− (dTx2 + θ(x2, ξ2))

= dT (x1 − x2) + 〈µ∗1, b1 −Q1x1〉 − 〈µ∗2, b2 −Q2x2〉

≤ dT (x1 − x2) + 〈µ∗1, b1 −Q1x1〉 − 〈µ̄2, b2 −Q2x2〉,

where µ∗1 ∈ Λ(ξ1), µ∗2 ∈ Λ(ξ2) are the dual optimal solution for (x1, ξ1), (x2, ξ2) respectively and

we denote by µ̄2 the projection of µ∗1 onto Λ(ξ2). Thus we can have that by equations (3.2) and

(3.5),

‖µ∗1 − µ̄2‖ ≤ Lλ(ξ0) max{1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖, (3.6)

‖µ̄2‖ ≤ L(ξ0)‖ξ2‖.

For any fixed x ∈ X, we have

f0(x, ξ1)− f0(x, ξ2)

≤ 〈µ∗1, b1 −Q1x〉 − 〈µ̄2, b2 −Q2x〉

= 〈µ∗1 − µ̄2, b1 −Q1x〉+ 〈µ̄2, (b1 − b2)− (Q1x−Q2x)〉

≤ ‖µ∗1 − µ̄2‖‖b1 −Q1x‖+ ‖µ̄2‖‖(b1 − b2)− (Q1x−Q2x)‖

≤ Lλ(ξ0) max{1, γ}max{1, ‖ξ1‖, ‖ξ2‖}‖ξ1 − ξ2‖‖ξ1‖+ L(ξ0) max{1, γ}‖ξ2‖‖ξ1 − ξ2‖

≤ L̄(ξ0) max{1, ‖ξ1‖, ‖ξ2‖}2‖ξ1 − ξ2‖,

where L̄(ξ0) = max{Lλ(ξ0), L(ξ0)}max{1, γ}. The last inequality holds since

‖ξ1‖, ‖ξ2‖ ≤ max{1, ‖ξ1‖, ‖ξ2‖} ≤ max{1, ‖ξ1‖, ‖ξ2‖}2.
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Let ξ1 = ξ2 = ξ, Λ(ξ1) = Λ(ξ2), we have

f0(x1, ξ)− f0(x2, ξ)

≤ dT (x1 − x2) + 〈µ∗1, b−Qx1〉 − 〈µ∗1, b−Qx2〉

= dT (x1 − x2) + 〈µ∗1, Qx2 −Qx1〉

≤ ‖d‖‖x1 − x2‖+ ‖µ∗1‖‖Qx2 −Qx1‖

≤ ‖d‖‖x1 − x2‖+ L(ξ0) max{1, ‖ξ‖}‖Q‖‖x1 − x2‖

≤ L̂(ξ0) max{1, ‖ξ‖}2‖x1 − x2‖,

where L̂(ξ0) = max{‖d‖, L(ξ0)}. For any ξ ∈ Bδ(ξ0), x ∈ X, µ∗ is the dual problem solution for

(x, ξ),

|f0(x, ξ)|

≤ ‖d‖‖x‖+ ‖µ∗‖‖b−Qx‖

≤ ‖d‖γ + L(ξ0) max{1, γ}max{1, ‖ξ‖}‖ξ‖

≤ L̃(ξ0) max{1, ‖ξ‖}2, (3.7)

where L̃(ξ0) = max{‖d‖, L(ξ0)}max{1, γ}. 2

Since the probability measure P would be unknown in most reality examples, we consider

the case that P is approximated by Q in the rest of this section.

Note that problem (1.2) can be reformulated as

min

{∫
Ξ
f0(x, ξ)dP (ξ) : x ∈ X

}
. (3.8)

We denote the optimal value function and the optimal solution mapping of problem (3.8) by

v(P ) := inf {Ep[f0(x, ξ)] : x ∈ X} ,

S(P ) := argmin {Ep[f0(x, ξ)] : x ∈ X} .

In order to investigate the stability analysis of (3.8) when P is perturbed, we give the following

assumptions.

Assumption 3.4. Let Ξ0 be a countable dense set of Ξ. For ξ ∈ Ξ0, Assumptions 3.1- 3.3 hold.

Assumption 3.5. Let Ξ0 be a countable dense set of Ξ, the optimal solution mapping of dual

problem is uniformly bounded by C over Ξ0.

Under Assumptions 3.4, 3.5, we show that Theorems 3.1 and 3.2 hold for every ξ ∈ Ξ.
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Corollary 3.1. Let Assumption 3.1- 3.4 hold, then for any ξ ∈ Ξ, δ > 0, for any ξ̃, ξ̂ ∈ Bδ(ξ),
there exists Lξ such that

max{dH(Λ(ξ̃),Λ(ξ̂)), dH(Y (x, ξ̃), Y (x, ξ̂))} ≤ Lξ‖ξ̃ − ξ̂‖. (3.9)

Proof. For any ξ ∈ Ξ, δ > 0, there exist ξ′ ∈ Ξ0 such that ξ ∈ B δ
2
(ξ′) and Assumptions

3.1- 3.3 hold at ξ′. From Theorem 3.1, for any ξ̃, ξ̂ ∈ B δ
2
(ξ) ⊆ Bδ(ξ′), there exists Lξ =

max
{
Ly(ξ

′) max{1, ‖ξ̃‖, ‖ξ̂‖}, Lλ(ξ′) max{1, ‖ξ̃‖, ‖ξ̂‖}
}

such that (3.9) holds. 2

Therefore the Lipschitz property hold for the Pompeiu-Hausdorff distance about the mapping

ξ → Λ(ξ) and ξ → Y (ξ), ∀ξ ∈ Ξ.

Corollary 3.2. Assume that Assumptions 3.1-3.4 hold. Then for any ξ ∈ Ξ and δ > 0,

ξ1, ξ2 ∈ Bδ(ξ), x1, x2 ∈ X, there exist constants L̂(ξ) > 0 , L̄(ξ) > 0 and L̃(ξ) > 0 such that

f0(x, ξ1)− f0(x, ξ2) ≤ L̄(ξ) max{1, ‖ξ1‖, ‖ξ2‖}2‖ξ1 − ξ2‖, (3.10)

f0(x1, ξ)− f0(x2, ξ) ≤ L̂(ξ) max{1, ‖ξ‖}2‖x1 − x2‖, (3.11)

‖f0(x, ξ)‖ ≤ L̃(ξ) max{1, ‖ξ‖}2. (3.12)

Furthermore, if Assumption 3.5 holds, for any ξ ∈ Ξ and x, x1, x2 ∈ X, there exist constants

L̂, L̃ such that

f0(x1, ξ)− f0(x2, ξ) ≤ L̂max{1, ‖ξ‖}‖x1 − x2‖, (3.13)

‖f0(x, ξ)‖ ≤ L̃max{1, ‖ξ‖}. (3.14)

Proof. Similarly with Corollary 3.1, equations (3.10)− (3.12) derive from the Theorem 3.2.

For any x ∈ X, ξ ∈ Ξ, there exists ξ′ ∈ Ξ0 such that ξ ∈ B δ
2
(ξ′), for dual problem solutions

µ ∈ Λ(ξ) and µ′ ∈ Λ(ξ′), we have ‖µ‖ ≤ ‖µ′‖+ 1 ≤ C + 1 from Assumption 3.5. Let µ1 be the

dual problem solution for (x1, ξ), ‖µ‖ ≤ C + 1,

f0(x1, ξ)− f0(x2, ξ)

≤ dT (x1 − x2) + 〈µ1, Qx2 −Qx1〉

≤ ‖d‖‖x1 − x2‖+ ‖µ1‖‖Qx2 −Qx1‖

≤ ‖d‖‖x1 − x2‖+ (C + 1)‖Q‖‖x1 − x2‖

≤ L̂max{1, ‖ξ‖}‖x1 − x2‖,
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where L̂ = max{‖d‖, C + 1} and

|f0(x, ξ)| = dTx+ 〈µ, b−Qx〉

≤ ‖d‖‖x‖+ ‖µ‖‖b−Qx‖

≤ ‖d‖γ + (C + 1) max{1, γ}‖ξ‖

≤ L̃max{1, ‖ξ‖},

where L̃ = max{‖d‖, C + 1}max{1, γ}.

Inspired by Theorem 2.1 [15], the following proposition holds.

Proposition 3.1. Let P ∈ PF . Suppose S(P) is nonempty and bounded. Then there exist

constants ρ > 0 and δ > 0 such that

|v(P )− v(Q)| ≤ dF ,ρ(P,Q),

∅ 6= S(Q) ⊂ S(P ) + ΨP (dF ,ρ(P,Q))B

hold for all Q ∈ PF with dF ,ρ(P,Q) < δ, where ΨP is a conditioning function associated with

our given problem; more precisely,

ΨP (η) := η + ψ−1
P (2η), η ≥ 0, (3.15)

with

ψP (τ) := min{EP [f0(x)]− v(P ) : d(x, S(P )) ≥ τ, x ∈ X}, τ ≥ 0

and

ψ−1
P (t) := sup{τ ∈ R+ : ψP (τ) ≤ t}.

Proof. We only need to verify that f0(x, ξ) is a convex random lower semi-continuious

function.

From Corollary 8.14 in [14], we consider that for any ξ ∈ Ξ, f0(·, ξ) is convex. For τ ∈ [0, 1]

and x1, x2 ∈ X, we have

f0(τx1 + (1− τ)x2, ξ)

= dT (τx1 + (1− τ)x2) + max
λ
{〈λJ+1, b−Q(τx1 + (1− τ)x2)〉 : c−A∗λ = 0, λ ∈ Q}

≤ τdTx1 + τ max
λ
{〈λJ+1, b−Qx1〉 : c−A∗λ = 0, λ ∈ Q}

+(1− τ)dTx2 + (1− τ) max
λ
{〈λJ+1, b−Qx2〉 : c−A∗λ = 0, λ ∈ Q}

= τf0(x1, ξ) + (1− τ)f0(x2, ξ),

which implies f0(·, ξ) is a convex and thus is locally Lipschitz continuous for x ∈ X.
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From Corollary 3.2, we know f0(x, ·) is locally Lipschitz continuous over Ξ. Therefore f(·, ·)
is continuous on X × Ξ. It follows that f0(x, ξ) is a convex random lower semi-continuious

function. The proof is completed by Theorem 2.1 [15]. 2

Both functions ψP and ΨP depend on P and they are lower semicontinuous on R+, ψP is

nondecreasing and ΨP is increasing. The previous results derive when p = 3, we can rewrite the

pth order Fortet-Mourier metric ζp defined on Pp(Ξ) by

ζ3(P,Q) := sup
f∈F3(Ξ)

∣∣∣∣∫
Ξ
f(ξ)(P −Q)(dξ)

∣∣∣∣
for P,Q ∈ P3(Ξ) := {Q ∈ P(Ξ) :

∫
Ξ ‖ξ‖

3Q(dξ) <∞}, where

F3(Ξ) := {f : Ξ 7→ R : |f(ξ1)− f(ξ2)| ≤ max{1, ‖ξ1‖, ‖ξ2‖}2‖ξ1 − ξ2‖, ∀ξ1, ξ2 ∈ Ξ}. (3.16)

Theorem 3.3. Assume the Assumptions 3.1-3.5 hold and Ξ is a convex set. Let S(P ) be

nonempty and bounded for P ∈ P3(Ξ), then there exist constants L > 0 and δ > 0 such that

|v(P )− v(Q)| ≤ Lζ3(P,Q), (3.17)

∅ 6= S(Q) ⊂ S(P ) + ΨP (Lζ3(P,Q))B (3.18)

whenever Q ∈ P3(Ξ) and ζ3(P,Q) < δ.

Proof. Let Ξ := Ξ≤ + Ξ>, where Ξ≤ := {ξ ∈ Ξ : ‖ξ‖ ≤ R} and Ξ> := {ξ ∈ Ξ : ‖ξ‖ > R}
and set R ≥ max{1, ζ−1

3 (P,Q)}.

(i)Firstly we want to show that there exists a constant L1 > 0 such that

1

L1
f0(x, ξ)XΞ≤(ξ) ⊆ F3(Ξ),

where XΞ≤ is the indicator function denoted over Ξ≤. From the Heine-Borel Theorem, there

exist a finite number of points ξ1, ξ2, · · · , ξm ∈ Ξ≤ and positive constant δ(ξi), i = 1, · · · ,m such

that

Ξ≤ ⊆
m⋃
i=1

Ξi,

where Ξi := Bδ(ξi)(ξi) denotes an open ball for i = 1, · · · ,m. From Corollary 3.2, for each ξi,

there exists L̄(ξi) such that for any ξ̃i, ξ̂i ∈ Ξi,

f0(x, ξ̃i)− f0(x, ξ̂i) ≤ L̄(ξi) max{1, ‖ξ̃i‖, ‖ξ̂i‖}2‖ξ̃i − ξ̂i‖.

We consider the following cases.

Case (a). Assume that ξi ∈ Ξi, ξk ∈ Ξk for some i, k ∈ {1, · · · ,m}. Since Ξ is convex, we

consider the lines segment [ξi, ξk] = {ξ(η) = (1− η)ξi + ηξk : η ∈ [0, 1]} ⊆ Ξ≤, there exist indices
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ij , j = 1, · · · , l such that i1 = i, il = k, [ξi, ξk]∩Ξij 6= ∅ for each j = 1, · · · , l and [ξi, ξk] ⊆
l⋃

j=1

Ξij .

Then there exist increasing numbers ηij ∈ [0, 1] for each j = 1, · · · , l such that ξ(ηi1) = ξ(0) = ξi,

ξ(ηil) = ξ(1) = ξk, ξ(ηij ) ∈ Ξij−1 ∩ Ξij , j = 2, · · · , l and ξ(ηik) /∈ Ξij if 1 ≤ ik < ij . Then we

can ensure that there are only two spots ξ(ηij ) and ξ(ηij+1) in Ξij . For fixed x and i 6= k,

ξi ∈ Ξi, ξk ∈ Ξk,

|f0(x, ξi)XΞ≤(ξi)− f0(x, ξk)XΞ≤(ξk)|

= |f0(x, ξi)− f0(x, ξk)|

≤
l−1∑
j=1

|f0(x, ξ(ηij ))− f0(x, ξ(ηij+1))|

≤
l−1∑
j=1

L̄(ξij ) max{1, ‖ξ(ηij )‖, ‖ξ(ηij+1)‖}2‖ξ(ηij )− ξ(ηij+1)‖

≤ max
j=1,··· ,l−1

L̄(ξij ) max{1, ‖ξi‖, ‖ξk‖}2
l−1∑
j=1

‖ξ(ηij )− ξ(ηij+1)‖

≤ L̄i max{1, ‖ξi‖, ‖ξk‖}2
l−1∑
j=1

‖(ηij − ηij+1)(ξi − ξk)‖

= L̄i max{1, ‖ξ1‖, ‖ξk‖}2‖ξ(ηi1)− ξ(ηil)‖

= L̄i max{1, ‖ξi‖, ‖ξk‖}2‖ξi − ξk‖,

where L̄i = max
j=1,··· ,l−1

L̄(ξij ).

Case (b). For ξ̃i, ξ̂i ∈ Ξi, i = 1, · · · ,m,

|f0(x, ξ̃i)XΞ≤(ξ̃i)− f0(x, ξ̂i)XΞ≤(ξ̂i)|

= |f0(x, ξ̃i)− f0(x, ξ̂i)|

≤ L̃(ξi) max{1, ‖ξ̃i‖, ‖ξ̂i‖}2‖ξ̃i − ξ̂i‖. (3.19)

From Case (a) and Case (b), let L̄ := max
i=1,··· ,m

{L̄i, L̃(ξi)}, then for any ξ̃, ξ̂ ∈ Ξ≤, we have that

|f0(x, ξ̃)XΞ≤(ξ̃)− f0(x, ξ̂)XΞ≤(ξ̂)| ≤ L̄max{1, ‖ξ̃‖, ‖ξ̂‖}2‖ξ̃ − ξ̂‖. (3.20)

Case (c). We now consider that ξ̂ ∈ Ξ≤ and the ξ̃ ∈ Ξ> and the ligature [ξ̂, ξ̃] and the

boundary of Ξ≤ intersect at ξ∗. From the equation (3.14), ‖f0(x, ξ)‖ ≤ L̃max{1, ‖ξ‖}, we can
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obtain that

‖f0(x, ξ̂)XΞ≤(ξ̂)− f0(x, ξ̃)XΞ≤(ξ̃)‖

≤ ‖f0(x, ξ̂)− f0(x, ξ∗)‖+ ‖f0(x, ξ∗)− 0‖

≤ L̄max{1, ‖ξ̂‖, ‖ξ∗‖}2‖ξ̂ − ξ∗‖+ L̃max{1, ‖ξ∗‖}

≤ max{L̄, L̃}max{1, ‖ξ̂‖, ‖ξ̃‖}2{‖ξ̂ − ξ∗‖+ 1}.

Assume that ‖ξ∗ − ξ̃‖ > 1, then ‖ξ̂ − ξ∗‖+ 1 ≤ ‖ξ̂ − ξ∗‖+ ‖ξ∗ − ξ̃‖ = ‖ξ̂ − ξ̃‖ and thus

‖f0(x, ξ̂)XΞ≤(ξ̂)− f0(x, ξ̃)XΞ≤(ξ̃)‖ ≤ max{L̄i, L̃}max{1, ‖ξ̂‖, ‖ξ̃‖}2‖ξ̂ − ξ̃‖. (3.21)

Otherwise if d(ξ̃,Ξ≤) ≤ ‖ξ∗− ξ̃‖ ≤ 1, then we denote Ξ′≤ := {ξ ∈ Ξ : ‖ξ‖ ≤ R′}, R′ := R+ 1 and

ξ̂, ξ̃ ∈ Ξ′≤. From the Heine-Borel Theorem, similarly with (3.20), there exists L̂ such that

‖f0(x, ξ̂)XΞ≤(ξ̂)− f0(x, ξ̃)XΞ≤(ξ̃)‖ ≤ L̂max{1, ‖ξ̂‖, ‖ξ̃‖}2‖ξ̂ − ξ̃‖. (3.22)

Combing with (3.20)-(3.22), we denote L1 := max{L̄, L̃, L̂}, for any ξ̂, ξ̃ ∈ Ξ,

‖f0(x, ξ̂)XΞ≤(ξ̂)− f0(x, ξ̃)XΞ≤(ξ̃)‖ ≤ L1 max{1, ‖ξ̂‖, ‖ξ̃‖}2‖ξ̂ − ξ̃‖

and thus
1

L1
f0(x, ξ)XΞ≤(ξ) ⊆ F3(Ξ).

Therefore, we can obtain the following estimation on Ξ∫
Ξ≤

f0(x, ξ)(P −Q)(dξ)

= L1

∫
Ξ

1

L1
f0(x, ξ)XΞ≤(ξ)(P −Q)(dξ)

≤ L1ζ3(P,Q). (3.23)

(ii) Denote the upper bound of
{∫

Ξ ‖ξ‖
3Q(dξ) : Q ∈ P3(Ξ)

}
by Π > 0. From the equation

(3.14), ‖f0(x, ξ)‖ ≤ L̃max{1, ‖ξ‖}, we can obtain that∫
Ξ>

f0(x, ξ)(P −Q)(dξ)

≤ L̃

∫
{ξ∈Ξ>:‖ξ‖>R}

‖ξ‖(P +Q)(dξ)

≤ L̃

∫
{ξ∈Ξ>:‖ξ‖>R}

‖ξ‖2

R
(P +Q)(dξ)

≤ L̃

R

(∫
Ξ>

‖ξ‖2dP (ξ) +

∫
Ξ>

‖ξ‖2dQ(ξ)

)
≤ L̃

R

(∫
Ξ>

‖ξ‖3dP (ξ) +

∫
Ξ>

‖ξ‖3dQ(ξ)

)
≤ 2L̃Π

R
≤ min{1, ζ3(P,Q)}2L̃Π.
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Combine the above discussions, we have that∫
Ξ
f0(x, ξ)(P −Q)(dξ)

=

∫
Ξ≤

f0(x, ξ)(P −Q)(dξ) +

∫
Ξ>

f0(x, ξ)(P −Q)(dξ)

≤ L1ζ3(P,Q) + 2L̃Πζ3(P,Q).

Thus

sup
x∈X

∣∣∣∣∫
Ξ
f0(x, ξ)(P −Q)(dξ)

∣∣∣∣ ≤ Lζ3(P,Q),

where L := L1 + 2L̃Π. Then we have dF ,ρ(P,Q) ≤ Lζ3(P,Q).

From the second inequality of Proposition 3.1 and the increasing property of ΨP , there exists

x̃ ∈ S(Q), we can obtain that

d(x̃, S(P )) ≤ ΨP (dF ,ρ(P,Q)) ≤ ΨP (Lζ3(P,Q)).

Then ∅ 6= S(Q) ⊂ S(P ) + ΨP (Lζ3(P,Q))B. We complete the proof.

2

4 Empirical approximations of two-stage stochastic programs

In this section, we consider problem (3.8) when the probability distribution P ∈ P(Ξ) is es-

timated by empirical measures and investigate the asymptotic behavior of the approximate

problems.

Let P ∈ P(Ξ) and ξ1, ξ2, . . . , ξn, . . . be independent identically distributer variables on a

probability space (Ω,A,P) having the joint distribution P , i.e., P = Pξ−1
1 with support set Ξ.

We consider the empirical measures

Pn(ω) :=
1

n

n∑
i=1

δξi(ω), (ω ∈ Ω;n ∈ N),

where δξ denotes the unit mass at ξ ∈ Ξ, and the empirical approximations of the stochastic

program (1.2) with sample size n, i.e.,

min

{
1

n

n∑
i=1

f0(x, ξi(·)) : x ∈ X

}
. (4.1)

Since the objective function of (4.1) is a random lsc function from Rn × Ω to R̄, the optimal

value v(Pn(·)) of (4.1) is measurable from Ω to R and the optimal solution mapping S(Pn(·)) is

a closed-valued measurable set-valued mapping from Ω to Rn from [10].
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Another measurability question arises when studying uniform convergence properties of the

empirical process {
n

1
2 (Pn(·)− P )f = n−

1
2

n∑
i=1

(f(ξi(·))− Pf)

}
f∈F

indexed by some class F = {f0(x, ·) : x ∈ X}. Here we set Pf :=
∫

Ξ f0(x, ξ)P (dξ) for P ∈ P(Ξ)

and f ∈ F . Uniform convergence properties refer to the convergence or to the convergence rate

of

dF (Pn(·), P ) = sup
f∈F
|Pn(·)f − Pf | (4.2)

to 0 in terms of some stochastic convergence. Since the supremum in (4.2) is nonmeasurable

in general, we introduce a common condition on F that can be satisfied in most stochastic

programming models.

Definition 4.1. [7] A class of measurable functions from Ξ to R is called P -permissible if for

P ∈ P(Ξ), there exists a countable subset F0 of F such that for each function f ∈ F , there

exists a sequence fn in F0 of F converging pointwise to f such that the sequence {Pfn} also

converges to Pf .

If F is P -permissible, then

dF (Pn(ω), P ) = dF0(Pn(ω), P )

for ω ∈ Ω, when n→∞. Then the convergence analysis reduces to a countable class.

Definition 4.2. [15] A P-permissible class is called a P-Glivenko-Cantelli class if the sequence

dF (Pn(·), P ) of random variables converges to 0 P-almost surely.

In order to judge whether a given class F is a P-Glivenko-Cantelli class, we introduce the

following concepts.

Definition 4.3. Let F be a subset of the normed space Lr(Ξ, P ), i.e., for some r ≥ 1, equipped

with the usual norm ‖F‖P,r = (P |F |r)
1
r . The covering number N(ε,F , ‖ · ‖) is the minimal

number of balls {g ∈ Lr(Ξ, P ) : ‖g − f‖P,r < ε} of radius ε needed to cover the set F .

The centers of the balls need not belong to F , but they should have finite norms. The

entropy (with bracketing) is the logarithm of the coving number.

Given two functions f1 and f2 from Lr(Ξ, P ), the bracket [f1, f2] is the set of all functions

f ∈ Lr(Ξ, P ) with f1(ξ) ≤ f(ξ) ≤ f2(ξ). An ε-bracket is a bracket [f1, f2] with ‖f1 − f2‖ ≤ ε.
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The bracketing number N[ ](ε,F , ‖ · ‖) is the minimum number of ε-brackets needed to cover F .

The entropy with bracketing is the logarithm of the bracketing number. In the definition of the

bracketing number, the upper and lower bounds f1 and f2 of the brackets need not belong to F
themselves but are assumed to have finite norms.

Definition 4.4. If F is called uniformly bounded in probability with tail CF (·) if the function

CF (·) is defined on (0,+∞) and decreasing to 0 with the estimate

P{ω : n
1
2dF (Pn(ω), P ) ≥ ε} ≤ CF (ε) (4.3)

holds for each ε ≥ 0 and n ∈ N.

To state the following results, we denote the set of all real-valued random variables on

(Ω,A,P) by K(<). Then the Ky Fan distance [4, Theorem 9.21] κ of two real random variable

X ,Y ∈ K(R) is denoted by

κ(X ,Y) := inf{η > 0 : P (|X − Y| > η) ≤ η}, (4.4)

where the equality is understood in sense of P-almost surely.

Lemma 4.1. [20, Theorem 2.7.11] Suppose that

|fs(x)− ft(x)| ≤ d(s, t)F (x)

for some metric d on the index set, function F on the sample space, and for every x. Let

F = {ft : t ∈ T} be a class of functions satisfying the preceding display for every s and t and

some fixed function F . Then for any form ‖ · ‖,

N[ ](2ε‖F‖,F , ‖ · ‖) ≤ N(ε, T, d).

Lemma 4.2. [18, 20]Let F be P-permissible with envelope FF . If PFF <∞ and

sup
P
N[ ](ε‖FF‖P,1,F , L1(Ξ, P )) <∞, (4.5)

then F is a P-Glivenko-Cantelli class. If F is uniformly bounded and there exist constants r ≥ 1

and R ≥ 1 such that

sup
P
N[ ](ε‖FF‖P,2,F , L2(Ξ, P )) <

(
R

ε

)r
(4.6)

holds for all ε > 0, then the empirical process indexed by F is uniformly bounded in probability

with exponential tail CF (ε) = (K(R)εr−
1
2 )rexp(−2ε2) with some constant K(R) depending on

R.

20



Theorem 4.1. Let the assumptions in Theorem 3.3 hold, then for sufficiently large n ∈ N ,

κ(v(Pn(·)), v(P )) ≤ Lκ(ζ3(Pn(·), P ), 0),

κ

(
sup

x∈S(Pn(·))
d(x, S(P )), 0

)
≤ ΨP (κ(ζ3(Pn(·), P ), 0)),

where L > 0 is the constant in Theorem 3.3 and ΨP is the associated function (3.15).

Proof Since X is a compact set, there exists a countable and dense subset X0. Let F0 =

{f0(x, ξ), x ∈ X0}. Then F0 is a countable subset of F , which implies that F is permissible with

respect to P . Then we prove F is a P -Glivenko-Cantelli class. From Corollary 3.2,

f0(x1, ξ)− f0(x2, ξ) ≤ L̂max{1, ‖ξ‖}‖x1 − x2‖,

for all x1, x2 ∈ γB, and ξ ∈ Ξ.

Setting fs(x) := f0(x1, ·), ft(x) := f0(x2, ·), F (ξ) := L̂max{1, ‖ξ‖}, x1, x2 ∈ ρB, d(s, t) =

‖x1 − x2‖. By applying Lemma 4.1 we can obtain that

N[ ](2ε‖F‖P,1,F , L1(Ξ, P )) ≤ N(ε,X,Rn) ≤ Kε−n, (4.7)

for 0 < ε < 1 and some constant K > 0 depending only on n and the diameter of X. Since

‖F‖P,1 is finite, we may replace ε by ε/2‖F‖P,1 in (4.7) and obtain that N[ ](ε,F , L1(Ξ, P )) is

finite for all ε > 0. F is a Glivenko-Cantelli class because of Lemma 4.2.

Set εn := κ(ζ3(Pn(·), P ), 0), from Theorem 3.3 |v(P )− v(Pn(·))| ≤ Lζ3(P, Pn(·)), thus

P(|v(P ), v(Pn(·))| > Lεn) ≤ P(ζ3(Pn(·), P ) > εn) ≤ εn,

for sufficiently large n ∈ N. Since F is a Glivenko-Cantelli class, thus the sequence εn tends to

0. From the definition of κ, we obtain that

κ(v(Pn(·)), v(P )) ≤ max{εn, Lεn} = max{1, L}κ(ζ3(Pn(·), P ), 0).

Then we conclude from Theorem 3.3 and the nature of increasing about ΨP (η) := η + ψ−1
P (2η)

that

P

(
sup

x∈S(Pn(·))
d(x, S(P )) > ΨP (εn)

)
≤ P (ΨP (Lζ3(Pn(·), P ) > ΨP (εn))

= P(ζ3(Pn(·), P ) >
εn
L

) ≤ εn
L
≤ 1

L
ΨP (εn)

for sufficiently large n ∈ N. Then we obtain that

κ

(
sup

x∈S(Pn(·))
d(x, S(P )), 0

)
≤ max

{
1,

1

L

}
ΨP (εn).

21



Note that L = L1 + 2L̃Π > max{L̄, L̃, L̂} > 1, where L̄, L̃, L̂ are constants denoted in Theorem

3.3 and then we complete the proof. 2

Theorem 4.2. Assume the conditions of Theorem 3.2 are satisfied and Ξ is bounded, then

κ(v(P ), v(Pn)) = O((log n)1/2n−1/2),

κ

(
sup

x∈S(Pn(·))
d(x, S(P )), 0

)
= O(ΨP (log n)1/2n−1/2).

Proof Since Ξ is bounded, the class F is uniformly bounded. When p = 3, due to Lemma

4.1 we have that N[ ](ε,F , L2(Ξ, P )) ≤ Cε−n and directly obtain the result by adopting the

similar method used in Proposition 4.2 in [9]. 2

Actually, we could show that whatever p is, the results in Theorem 4.1 and Theorem 4.2

hold. For p > q ≥ 1 and εp = κ(ζp(Pn(·), P ), 0), εq = κ(ζq(Pn(·), P ), 0), since Fp(Ξ) ⊇ Fq(Ξ),

we can obtain that

ζp(Pn(·), P ) ≥ ζq(Pn(·), P ).

To the contrary we assume that εq > εp, then

εq > εp ≥ P(ζp(Pn(·), P ) > εp) ≥ P(ζq(Pn(·), P ) > εp).

We can obtain that εp ≥ P(ζq(Pn(·), P ) > εp), thus εq is not the minimum value of κ(ζq(Pn(·), P ))

by εq > εp. By contradiction, then εp ≥ εq. We also can obtain that

ζp(Pn(·), P ) = sup
f∈Fp(Ξ)

∣∣∣∣∫
Ξ
f(ξ)(Pn − P )dξ

∣∣∣∣
≤ sup

f∈F(Ξ)

∣∣∣∣∫
Ξ
f(ξ)(Pn − P )dξ

∣∣∣∣ = dF (Pn(·), P ).

Because CF (·) is decreasing to 0 and equation (4.3), we have that

P (ζp(Pn(·), P ) ≥ εp) ≤ P (dF (Pn(·), P ) ≥ εp)

≤ CF (
√
nεp) ≤ CF (

√
nεq) ≤ CF (

√
nε1) =

(
K(R)ε1

√
n

r

)r
exp(−2

√
nε2

1)

holds for some constant K(R) depending on R, ε1 > 0 and nature number n. Replacing ε1 by

(log n)1/2n−1/2 leads to the estimate

P
(
ζp(Pn(·), P ) > (log n)1/2n−1/2

)
= O

(
(log n)r/2n−2

)
and hence, to κ(ζp(Pn(·), P ), 0) = O

(
(log n)1/2n−1/2

)
. Then we complete the proof.
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5 Conclusions

Based on the research of the stability of a second-order conic optimization problem where all

parameters are perturbed by random vectors [3], we investigate the quantitative stability prop-

erty of the problem with probability distribution being perturbed and approximated in this

paper. We derive quantitative continuity properties of the optimal value function and solution

mapping by using the locally Lipschitz continuity properties of the feasible set-valued mapping

with respect to Hausdorff distance. We also discuss the stability property for optimal values and

solution sets for empirical approximations of two stage stochastic programs with second-order

conic constraints. In the future research, we intend to study two stage problem with general

conic constraints or bilevel programming and carry out quantitative stability under different

probability metrics.
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