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Abstract

This paper considers an optimal investment problem for a defined contribution (DC) pension plan
with default risk in a mean-variance framework. In the DC plan, contributions are supposed to be
a predetermined amount of money as premiums and the pension funds are allowed to invest in a
financial market which consists of a risk-free asset, a defaultable bond and a risky asset satisfied a
constant elasticity of variance (CEV) model. Notice that a part of pension members could die dur-
ing the accumulation phase, and their premiums should be withdrew. Thus, we consider the return
of premiums clauses by an actuarial method and assume that the surviving members will share the
difference between the return and the accumulation equally. Taking account of the pension fund
size and the volatility of the accumulation, a mean-variance criterion as the investment objective
for the DC plan can be formulated, and the original optimization problem can be decomposed into
two sub-problems: a post-default case and a pre-default case. By applying a game theoretic frame-
work, the equilibrium investment strategies and the corresponding equilibrium value functions can
be obtained explicitly. Economic interpretations are given in the numerical simulation, which is
presented to illustrate our results.

JEL classification: C61; G11; G22

Key words: DC pension plan; Default risk; Constant elasticity of variance (CEV) model;
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1. Introduction

Nowadays, investment is an important element in the management of the pension plan, the
research about the optimal investment problem for the pension plan has drawn increasing attention.
Two principle types of pension fund in the literature have been concluded as the defined benefit
(DB) plan and the defined contribution (DC) plan. In a DB plan, the benefits are fixed in advance
by the sponsor while the contributions are initially set and subsequently adjusted to maintain the
fund in balance. In contrast, a DC plan assumes that the contributions are fixed and benefits
depend on the returns of the fund portfolio.

Owing to the demographic evolution and development of the capital market, especially the
population aging problem and the longevity risk, the DC plan has been widely used in the global
pension market in recent years and extensively studied in the literature. Based on the abroad prac-
tice of the DC plan in the reality, it has inspired literally hundreds of extensions and applications.
For instance, Deelstra et al. (2004) presented a martingale method to study the related DC plan
whereas some papers adopted a stochastic control framework to model the optimization problem for
the DC plan, such as Cairns et al. (2006) and Giacinto et al. (2011) studied the optimal control
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strategies during the accumulation phase of the DC plan with different forms of utility functions.
Han and Hung (2012) investigated the DC pension fund management problem with the inflation
risk. He and Liang (2013) obtained the optimal investment strategy for the DC plan during the
accumulation phase with the return of premiums. Sun et al. (2016) discussed the optimization
problem for the DC plan under a jump-diffusion model.

Although many scholars have investigated optimization problems for the DC plans, we think
that two aspects ought to be explored further. On one hand, most literature assumes a determin-
istic volatility, which goes against well-documented evidence, such as the volatility smile and the
volatility clustering implied by option prices, to support the existence of stochastic volatility (SV),
as far back as French et al. (1987) and Pagan and Schwert (1990) with detail studies of SV. CEV
model provided by Cox and Ross (1976) pioneers the research of SV market, and still attracts
much attention from academics. A couple of papers have studied the optimization problem for the
DC plan under the CEV model and SV model. For example, Gao (2009) applied the Legendre
transform and dual theory to study the DC plan for a pension member’s whole life under the CEV
model. Guan and Liang (2014) considered the optimal management of the DC plan in a stochastic
interest rate and Heston SV model framework.

On the other hand, although optimal investment problems for the DC pension plan have been
extensively studied, the credit or default risk is rarely considered in the modeling framework. How-
ever, it is a notorious fact that high yield corporate bonds have become increasingly prevalent for
the institutional investors due to the considerably attractive rate of the return. Although the de-
fault risk has been understood as one of the significant trigger of the global credit crisis, defaultable
bonds are still sought after because of the relative high profits. Bielecki and Jang (2006) studied
a financial optimization problem including a defaultable asset to maximize the expected constant
relative risk aversion (CRRA) utility from the terminal wealth. Bo et al. (2010) investigated
a portfolio optimization problem with default risk to maximize the infinite-horizon expected dis-
counted logarithm utility of consumption, where the default risk premium and the default intensity
were assumed to rely on some stochastic factors. Capponi and Figueroa-López (2014) discussed a
portfolio optimization problem in a defaultable market with finitely-many economical regimes and
obtained the explicit optimal investment strategy with the objective of maximizing the expected
logarithmic utility from the terminal wealth. Barucci and Cosso (2015) considered the optimal
investment strategy with a defaultable asset and VaR constraint. Zhu et al. (2015) focused on the
optimal reinsurance-investment problem in a defaultable market to maximize the expected expo-
nential utility from the terminal wealth under the Heston model. Zhao et al. (2016) studied the
optimal reinsurance-investment problem with default risk in a jump-diffusion model.

Since very few paper considers the optimization problem for the DC plan under the SV market
with defaultable risk, we aim to derive an optimal investment strategy under the environment we
mentioned above. Specifically, assume that the financial market consists of a risk-free asset, a
defaultable bond and a risky asset described by the CEV model. The manager of the DC pension
fund will make the investment decision under a mean-variance (MV) criterion based on the reality
that they hope to maximize the size of the fund and minimize the risk of the accumulation when
the pension members retire. Under the MV framework, the original optimization problem can be
decomposed into two sub-problems: a post-default case and a pre-default case. Notice that the
dynamic MV problem is a time-inconsistent problem, and most of literature derives the optimal
strategy which is only optimal at the initial time, for example, Shen and Zeng (2015). Since time-
consistency of strategies is important for a rational decision-maker, recently many scholars develop
an equilibrium strategy for the dynamic mean-variance asset allocation problem, which is time-
consistent1. Furthermore, the change of the fund size is affected by not only the result of the return

1As shown in Chen et al. (2014), for a dynamic optimization problem, if the strategy πt1 is optimal for the
decision-maker at some time t1, and for any later time t2 > t1, she will follow the strategy πt1 because it is still
optimal at time t2, i.e., πt1(t) = πt2(t) for all t > t2, then it is called a time-consistent strategy. Under the game
theory framework, the derived subgame perfect Nash equilibrium strategy is a time-consistent strategy, see Björk and
Murgoci (2010), Björk et al. (2014), and so on.
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rate of the financial market but the mortality risk. During the accumulation phase, a part of pension
members could die which leads to the phenomenon that their premiums should be withdrew and
the rest surviving members share the difference between the return and the accumulation equally.

Based on the above setup, we aim to derive the equilibrium strategy under the MV criterion
for the DC plan in a financial market consisting of a risk-free asset, a risky asset and a defaultable
bond. Comparing with the existing literature, we think our paper have three innovations: (1)
Optimal investment problem for the DC plan with default risk is considered. We find that the
equilibrium value function under the pre-default situation is higher than the one under the post-
default situation, which can be interpreted in this way: the difference between two cases stands
for the loss in the pension manager’s objective due to the default event. (2) Optimal investment
problem for the DC plan with the return of premiums clauses under the CEV model is investigated.
Our result shows that the return of premium mechanism reduces the fund size level. (3) Equilibrium
investment strategy, which depends on the maximal age of the life table and the start age of the
accumulation period, is derived explicitly.

The remainder of this paper is organized as follows. In Section 2, we describe the formulation of
the DC pension fund optimization problem. In Section 3, by solving the extended Hamilton-Jacobi-
Bellman (HJB) equations, we derive the equilibrium investment strategies and the corresponding
equilibrium value functions for the post-default case and the pre-default case, respectively. In
Section 4, numerical simulations are presented to illustrate our results. Section 5 concludes this
paper.

2. General formulation

Let (Ω,G,Q) be a complete probability space, which is endowed with the filtration G = (Gt)0≤t≤T

and G is enlarged filtration given by Gt = Ft ∨ Zt. The filtration Ft is assumed to be generated
by the Brownian motion {W (t)}, and Zt is driven by a Poisson process representing the arrivals of
defaults. The probability measure Q is a martingale probability measure of risk neutral measure
which is assumed to be equivalent to a real-world probability measure P.

In the DC plan, contributions to the pension fund are supposed to be a predetermined amount
of money as premiums during the accumulation phase. We assume that the premium per unit time
is c and the accumulation period starts from the age ω0 and lasts to the age ω0 + T when the
pension members retire, i.e., the length of the pension fund’s accumulation period is T . To gain
higher yields, the pension funds are allowed to invest in a financial market consisting of a risk-free
asset, a defaultable bond and a risky asset. The price processes of the risk-free asset under the
probability measure P follows

dS0(t) = r0S0(t)dt, S0(0) = 1,

while the price process of the risky asset is described by the CEV model

dS(t) = S(t)
(
rdt+ σ(S(t))βdW (t)

)
, S(0) = s0,

where r0 is the risk-free interest rate and r, σ(S(t))β, β are the expected return rate, the instanta-
neous volatility and the elasticity parameter of the risky asset, respectively. {W (t)} is a standard
Brownian motion. To capture the features of the real market, we assume that r > r0 and β ≥ 0
regularly.

Unlike the price process of the risk-free asset and the risky asset which are given under the real-
world probability measure P directly, the price process of the defaultable bond is firstly defined
under the risk neutral measure Q and then will be transformed into the price process under the
probability measure P. To investigate the price process of the defaultable bond, similar to Bielecki
and Jang (2006), we provide the definition of the default process.

Definition 2.1. Let τ be a nonnegative random variable, representing the default time of the
company issuing the bond. A nondecreasing right continuous process which makes discrete jumps
at the random time τ is called a default process. Denote a default process by Z(t) := 1τ≤t, where 1
represents the indicator which has value one if there is a jump and zero otherwise.
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As in Jarrow and Turnbull (1995), Madan and Unal (1998), Duffie and Singleton (1999) and
Driessen (2005), the default time τ can be modeled as the first arrival of a Poisson process. The
intensity of the jump process is denoted by h, which measures the arrival rate of a default. Next,
we define a martingale default process.

Definition 2.2. The martingale default process is thus given by M(t) := Z(t)−
∫ t
0 (1− Z(ν))hdν.

The stochastic differential equation of M(t) is dM(t) = dZ(t)− (1− Z(ν))hdt.

We first derive the dynamics of a defaultable bond price under measure Q. As shown in
Bielecki and Jang (2006), there exists a defaultable zero-coupon bond with one-unit face value
and the maturity date T1. Suppose that if the default occurs, the investor recovers a fraction of
the defaultable bond’s market value just prior to default and then the post-default value of the
defaultable bond is zero. The loss rate is denoted by ζ(ζ ∈ [0, 1]) and the default recovery rate
is 1 − ζ. Denote δ = hQζ as the risk neutral credit spread, and hQ is the constant intensity of
the default Poisson process under measure Q, then the price process of the defaultable bond under
measure Q can be given by

B(t, T1) = 1τ>te
−(r0+δ)(T1−t) + 1τ≤t(1− ζ)e−(r0+δ)(T1−τ)er(t−τ).

As the discussion in Bielecki and Jang (2006), B(t, T1) is a fictitious security rather than a real
traded security, which allows us to account for the jump risk premium in the expected return of
the defaultable bond, and the dynamic of the defaultable bond price under measure Q follows

dB(t, T1) = r0B(t, T1)dt− ζe−(r0+δ)(T1−t)dMQ(t),

where MQ(t) is a compensated jump process and Q martingale process.
Next, we change the price process of the defaultable bond from the risk neutral probability

measure Q to the real-world probability measure P. The following Girsanov’s theorem (see Kusuoka,
1999) is used to change of measures.

Theorem 2.3. A probability P is equivalent to Q on G if and only if there exists progressively
measurable process ψ and a predictable process ∆ > 0 such that
(1) EP[L(T )] = 1, where

L(t) = L1(t)L2(t),

L1(t) = exp

{∫ t

0
ψ(ν)dWQ(ν)− 1

2

∫ t

0
ψ2(ν)dν

}
,

L2(t) = exp

{∫ t

0
ln(∆)dZ(ν)−

∫ t∧τ

0
hQ[∆− 1]dν

}
, ∀t ∈ [0, T ].

(2) dP
dQ = L(t).

Moreover, the process WP(t) = WQ(t)−
∫ t
0 ψ(ν)dν is a G-Brownian under measure P and the

process MP(t) = Z(t)−
∫ t
0 h

Q∆(1− Z(ν))dν is a G-martingale under measure P.

Following Bielecki and Jang (2006), we denote by 1/∆ the (constant) default risk premium. Ac-
cording to Duffie and Singleton (2003), the probability of default under the risk neutral probability
measure Q is higher than that under the real-world probability measure P, i.e., 1/∆ = hQ/hP ≥ 1,
where hP represents the density of the default process {Z(t)} under the probability measure P. Fur-
thermore, the process {MP(t)} defined byMP(t) := Z(t)−

∫ t
0 (1−Z(ν))h

Pdν is a (G,P)-martingale,
which is assumed to be independent of {W (t)}. By applying Theorem 2.3 (Girsanov’s Theorem,
Kusuoka, 1999) for the default process and following the derivation of Bielecki and Jang (2006),
we obtain the dynamic of the defaultable bond price under the probability measure P as follow

dB(t, T1) = B(t−, T1)[r0dt+ (1− Z(t))(1−∆)δdt− (1− Z(t−))ζdMP(t)]. (1)
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The expected return of the defaultable bond in equation (1) consists of two components (see Yu
(2002)). The first component is the return of the risk-free asset and the second is the difference
between the risk neutral credit spread and the real-world credit spread when the default has not
occurred by time t.

Denote by π1(t) and π2(t) as the money amount allocated in the risky asset and the defaultable
bond by the the pension manager at time t, respectively, the rest is allocated in the risk-free asset.
The investment strategy π := {(π1(t), π2(t))}t∈[0,T ] will be applied by the pension manager at time
t.

Considering that some pension members could die during the accumulation phase, the change of
the DC pension fund size would be associated with the uncertainty of the mortality risk. Therefore,
the fund manager could take the return of premiums clauses into account, which means part of
the premiums should be withdrew and the surviving members share the difference between the
return and the accumulation equally. Similar to He and Liang (2013) and Sun et al. (2016), to
understand better our model, we first introduce the wealth process in the differential form with the
time interval [t, t+ 1

n ]

Xπ
(
t+ 1

n

)
=

1

1− 1
n
qω0+t

{
Xπ(t)

[(
1− π1(t)

Xπ(t)
− π2(t)

Xπ(t)

)
S0(t+

1
n)

S0(t)

+
π1(t)

Xπ(t)

S(t+ 1
n)

S(t)
+

π2(t)

Xπ(t)

B(t+ 1
n , T1)

B(t, T1)

]
+
c

n
− act 1

n
qω0+t

}
.

(2)

Remark 2.4. In equation (2),
(
1− π1(t)

Xπ(t) −
π2(t)
Xπ(t)

)
S0(t+

1
n
)

S0(t)
, π1(t)

Xπ(t)

S(t+ 1
n
)

S(t) , π2(t)
Xπ(t)

B(t+ 1
n
,T1)

B(t,T1)
represent

the investments in the risk-free asset, risky asset and defaultable bond, respectively. c
n represents

the contributions during [t, t+ 1
n ]. 1

n
qω0+t is an actuarial symbol standing for the probability that

the person who is alive at the age of ω0 + t will be dead in the following 1
n time period, a is a

parameter with the value 1 or 0. If a = 1, the premiums are returned to the pension member
when she is dead, whereas if a = 0, the pension member obtains nothing. Therefore, act 1

n
qω0+t

represents the premium which should be returned to the dead member from time t to time t+ 1
n .

The coefficient 1
1− 1

n
qω0+t

means that after returning the premium, the difference between the return

and the accumulation will be equally distributed by the surviving members.

To simplify equation (2), we denote (cf. He and Liang, 2013)

△δ
1
n
t =

(
1− π1(t)

Xπ(t)
− π2(t)

Xπ(t)

)
S0(t+

1
n)− S0(t)

S0(t)

+
π1(t)

Xπ(t)

S(t+ 1
n)− S(t)

S(t)
+

π2(t)

Xπ(t)

B(t+ 1
n , T1)−B(t, T1)

B(t, T1)
,

and the conditional death probability tqx = 1 − tpx = 1 − e−
∫ t
0 µ(x+ν)dν , where µ(t) is the force

function of mortality at time t, and for n→ ∞,

1
n
qω0+t = 1− e−

∫ 1
n
0 µ(ω0+t+ν)dν ≈ µ(ω0 + t)

1

n
= O(

1

n
)

is satisfied. Similarly,

1
n
qω0+t

1− 1
n
qω0+t

=
1− e−

∫ 1
n
0 µ(ω0+t+ν)dν

e−
∫ 1

n
0 µ(ω0+t+ν)dν

= e
∫ 1

n
0 µ(ω0+t+ν)dν − 1 ≈ µ(ω0 + t)

1

n
= O(

1

n
).

Then equation (2) becomes

Xπ
(
t+ 1

n

)
=

(
Xπ(t)(1 +△δ

1
n
t ) +

c

n
− act 1

n
qω0+t

)(
1 +

1
n
qω0+t

1− 1
n
qω0+t

)

= Xπ(t)(1 +△δ
1
n
t ) +Xπ(t)µ(ω0 + t)

1

n
+Xπ(t)△δ

1
n
t µ(ω0 + t)

1

n
+
c

n
− actµ(ω0 + t)

1

n
+ o(

1

n
).

(3)
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When n→ ∞, the fund size Xπ(t) satisfies
dXπ(t) = [r0X

π(t) + (r − r0)π1(t) +Xπ(t)µ(ω0 + t) + c− actµ(ω0 + t)]dt

+ π1(t)σ(S(t))
βdW (t) + π2(t)(1− Z(t))δ(1−∆)dt− π2(t)(1− Z(t−))ζdMP(t),

Xπ(0) = x0.

(4)

According to the Abraham De Moivre model (cf. Kohler and Kohler (2000)), we characterize
the force function of mortality µ(t) and the survival function s(t) as follow

s(t) = 1− t

ω
, µ(t) =

1

ω − t
, for 0 ≤ t < ω,

where ω is the maximal age of the life table. Then equation (4) degenerates to
dXπ(t) =

[
r0X

π(t) + (r − r0)π1(t) +
Xπ(t)

ω − ω0 − t

]
dt+

c[ω − ω0 − (1 + a)t]

ω − ω0 − t
dt

+ π1(t)σ(S(t))
βdW (t) + π2(t)(1− Z(t))δ(1−∆)dt− π2(t)(1− Z(t−))ζdMP(t),

Xπ(0) = x0.

(5)
When default has occurred, i.e., τ ≤ t, we suppose that B(t−, T1) = 0 and fix π2(t) = 0 afterwards.

In the following part, we consider an optimal investment problem under the MV criterion over
the investment horizon [0, T ]. Similar to Bielecki and Jang (2006), Zhu et al. (2015) and some other
papers, we assume throughout that T < T1, where T1 is the time of maturity of the defaultable
bond.

Definition 2.5. (Admissible strategy). For any fixed t ∈ [0, T ], a strategy π = {(π1(ν), π2(ν))}ν∈[t,T ]

is said to be admissible if
(1) π is G-predictable;
(2) ∀ν ∈ [t, T ], E[

∫ T
t ((π1(ν))

2(S(ν))2β + (π2(ν))
2)]dν < +∞;

(3) ∀(x, s, z) ∈ R×R×{0, 1}, the equation (5) has an unique solution Xπ(ν)ν∈[t,T ] with X
π(t) = x,

S(t) = s and Z(t) = z;
(4) ∀ν ∈ [t, T ], ∀ϱ ∈ [1,+∞) and ∀(t, x, s, z) ∈ [0, T ]×R×R×{0, 1}, Et,x,s,z (sup |Xπ(ν)|ϱ) < +∞,
where Et,x,s,z[·] is the conditional expectation given Xπ(t) = x, S(t) = s and Z(t) = z.

In addition, let Π(t, x, s, z) denote the set of all admissible strategies and z denote the initial
default state. z = 1 and z = 0 correspond to the post-default case τ > t and the pre-default case
τ ≤ t, respectively. Some illustrations about the conditions that admissible strategies satisfy are
given in Appendix A.

Taking account of both the pension fund size and the volatility of the accumulation, we formulate
the optimal investment problem under the mean-variance criterion as follows

W (t, x, s, z;π∗) = sup
π∈Π(t,x,s,z)

{
Et,x,s,z[X

π(T )]− γ

2
Vart,x,s,z[X

π(T )]
}
, (6)

where γ is the risk averse coefficient. Problem (6) is time-inconsistent since there is a non-linear
function of the expectation of terminal wealth in the variance term, and thus the Bellman optimality
principle is not applicable. Most literatures assume the mean-variance problem in a precommitment
formulation, which leads to the optimal strategies time-inconsistent. However, time-consistency can
not be ignored for a rational decision-maker who hopes to capture an equilibrium strategy which
is optimal at a time and still be optimal as time goes forward into a future time, i.e., equilibrium
strategy is time-consistent, see among Björk and Murgoci (2010), Björk et al. (2014), Chen et al.
(2014) and so on. Therefore, we aim to derive the equilibrium strategy for problem (6).
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Definition 2.6. Given any initial state (t, x, s, z) ∈ [0, T ]×R×R×{0, 1}, consider an admissible
strategy π∗(t). Define the following strategy

πε(ν, x, s, z) =

{
(π̃1, π̃2), t ≤ ν < t+ ε,

π∗(ν, x, s, z), t+ ε ≤ ν < T,

where π̃1, π̃2 ∈ Π := R× R, ε ∈ R+. If

lim
ε↓0

inf
W (t, x, s, z;π∗)−W (t, x, s, z;πε)

ε
≥ 0,

then π∗ is called an equilibrium strategy and the equilibrium value function is W (t, x, s, z;π∗) with

W (t, x, s, z;π∗) = Et,x,s,z[X
π∗
(T )]− γ

2
Vart,x,s,z[X

π∗
(T )] (7)

According to Definition 2.6, the equilibrium strategy is time-consistent. For simplicity, we de-
note that C1,2([0, T ]×R×R×{0, 1}) = {ϕ(t, x, s, z)|ϕ(t, ·, ·, ·) is once continuously differentiable on
[0, T ]and ϕ(·, x, s, ·) is twice continuously differentiable on R× R}. To provide the verification the-
orem, we define a variational operator: for ∀ϕ(t, x, s, z) ∈ C1,2([0, T ] × R × R × {0, 1}) and
∀(t, x, s, z) ∈ [0, T ]× R× R× {0, 1}, let

Aπϕ(t, x, s, z) =



ϕt(t, x, s, 1) +

[
r0x+ (r − r0)π1 +

x

ω − ω0 − t
+
c[ω − ω0 − (1 + a)t]

ω − ω0 − t

]
·ϕx(t, x, s, 1) + rsϕs(t, x, s, 1) +

1

2
π21σ

2s2βϕxx(t, x, s, 1) +
1

2
σ2s2β+2ϕss(t, x, s, 1)

+π1σ
2s2β+1ϕxs(t, x, s, 1), z = 1,

ϕt(t, x, s, 0) +

[
r0x+ (r − r0)π1 +

x

ω − ω0 − t
+
c[ω − ω0 − (1 + a)t]

ω − ω0 − t
+ π2δ

]
·ϕx(t, x, s, 0) + rsϕs(t, x, s, 0) +

1

2
π21σ

2s2βϕxx(t, x, s, 0) +
1

2
σ2s2β+2ϕss(t, x, s, 0)

+π1σ
2s2β+1ϕxs(t, x, s, 0) + [ϕ(t, x− ζπ2, s, 1)− ϕ(t, x, s, 0)]hP, z = 0.

(8)
The following theorem provide verifications for the extended HJB equations in the post-default

case (z = 1) and the pre-default case (z = 0), respectively.

Theorem 2.7. (Verification theorem). For the post-default case (z = 1) and pre-default case
(z = 0), if there exist two real-valued functions V (t, x, s, z), g(t, x, s, z) ∈ C1,2([0, T ]×R×R×{0, 1})
satisfying the following extended HJB system: ∀(t, x, s, z) ∈ [0, T ]× R× R× {0, 1},

sup
π∈Π(t,x,s,z)

{
AπV (t, x, s, z)−Aπ γ

2
(g(t, x, s, z))2 + γg(t, x, s, z)Aπg(t, x, s, z)

}
= 0, (9)

V (T, x, s, z) = x, (10)

Aπ∗
g(t, x, s, z) = 0, g(T, x, s, z) = x, (11)

π∗ := arg sup
π∈Π(t,x,s,z)

{
AπV (t, x, s, z)−Aπ γ

2
(g(t, x, s, z))2 + γg(t, x, s, z)Aπg(t, x, s, z)

}
, (12)

then W (t, x, s, z;π∗) = V (t, x, s, z), Et,x,s,z[X
π∗
(T )] = g(t, x, s, z) and π∗ is the equilibrium invest-

ment strategy.

Proof. See Appendix B.
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3. Solution to the model

In this section, we derive the explicit solutions of the equilibrium investment strategy and the
corresponding equilibrium value function for the DC pension plan in the post-default case (z = 1)
and the pre-default case (z = 0), respectively.

In the post-default case, note that B(t, T1) = 0, τ ≤ t ≤ T , and thus π2(t) = 0, τ ≤ t ≤ T .
Suppose that there exist two functions V (t, x, s, 1) and g(t, x, s, 1) satisfying the conditions given
in Theorem 2.7. According to the expression of Aπ in equation (8), we rewrite equation (9) as

sup
π∈Π(t,x,s,1)

{
Vt(t, x, s, 1) +

[
r0x+ (r − r0)π1 +

x

ω − ω0 − t
+
c[ω − ω0 − (1 + a)t]

ω − ω0 − t

]
Vx(t, x, s, 1)

+rsVs(t, x, s, 1) +
1

2
π21σ

2s2β(Vxx(t, x, s, 1)− γ(gx(t, x, s, 1))
2)

+
1

2
σ2s2β+2(Vss(t, x, s, 1)− γ(gs(t, x, s, 1))

2)

+ π1σ
2s2β+1(Vxs(t, x, s, 1)− γgx(t, x, s, 1)gs(t, x, s, 1))

}
= 0.

(13)
For the pre-default case, suppose that there exist two functions V (t, x, s, 0) and g(t, x, s, 0)

satisfying the conditions given in Theorem 2.7. Based on equation (8), equation (9) becomes

sup
π∈Π(t,x,s,0)

{
Vt(t, x, s, 0) +

[
r0x+ (r − r0)π1 +

x

ω − ω0 − t
+
c[ω − ω0 − (1 + a)t]

ω − ω0 − t
+ π2δ

]
Vx(t, x, s, 0)

+rsVs(t, x, s, 0) +
1

2
π21σ

2s2β(Vxx(t, x, s, 0)− γ(gx(t, x, s, 0))
2)

+
1

2
σ2s2β+2(Vss(t, x, s, 0)− γ(gs(t, x, s, 0))

2)

+π1σ
2s2β+1(Vxs(t, x, s, 0)− γgx(t, x, s, 0)gs(t, x, s, 0))

+[V (t, x− ζπ2, s, 1)− V (t, x, s, 0)]hP − 1

2
[g(t, x− ζπ2, s, 1)− g(t, x, s, 0)]2hP

}
= 0.

(14)
More details are given in Appendix C, and the equilibrium strategy and the corresponding equilib-
rium value function are summarized in Theorem 3.1.

Theorem 3.1. For the mean-variance problem (6), the equilibrium investment strategy is given by

π∗1(t) =
(r − r0)(ω − ω0 − T )e−r0(T−t)

γσ2(S(t))2β(ω − ω0 − t)

[
1 +

r − r0
r0

(
1− e2r0β(t−T )

)]
, (15)

π∗2(t) =

[
(ω − ω0 − T )er0(T−t)

γ(ω − ω0 − t)

(
δ

hPζ2
+
b1(t)− b2(t)− 1

ζ

)]
1τ>t, (16)

and the equilibrium value function is

V (t, x, s, z) =


ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

A1(t)

γ
(S(t))−2β +

B1(t)

γ
, z = 1,

ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

A2(t)

γ
(S(t))−2β +

B2(t)

γ
, z = 0.

(17)

Furthermore, the expectation and variance of the terminal value associated with the equilibrium
investment strategy are

Et,x,s,z[X
π∗
(T )] =


ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

a1(t)

γ
(S(t))−2β +

b1(t)

γ
, z = 1,

ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

a2(t)

γ
(S(t))−2β +

b2(t)

γ
, z = 0,

(18)
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Vart,x,s,z[X
π∗
(T )] =


2

γ2
[(a1(t)−A1(t))(S(t))

−2β + b1(t)−B1(t)], z = 1,

2

γ2
[(a2(t)−A2(t))(S(t))

−2β + b2(t)−B2(t)], z = 0,

(19)

where A1(t), A2(t), B1(t), B2(t), a1(t), a2(t), b1(t) and b2(t) are given by

a1(t) = a2(t) =
(r − r0)

2

2r0βσ2
(1− e2r0β(t−T )),

b1(t) =
(2β + 1)(r − r0)

2

2r0
(T − t)− (2β + 1)(r − r0)

2

4r20β
(1− e2r0β(t−T ))

+
γc[r0(ω − ω0 − (1 + a)t)− (1 + a)]

r20(ω − ω0 − T )
er0(T−t) − γc[r0(ω − ω0 − (1 + a)T )− (1 + a)]

r20(ω − ω0 − T )
,

b2(t) =
(2β + 1)(r − r0)

2

2r0
(T − t)− (2β + 1)(r − r0)

2

4r20β
(1− e2r0β(t−T ))

+
δγc[(r0 +

δ
ζ )(r0(ω − ω0 − (1 + a)t)− (1 + a))− r0(1 + a)]

ζ(r0 +
δ
ζ )

2r20(ω − ω0 − T )
er0(T−t)

−
δγc[(r0 +

δ
ζ )(r0(ω − ω0 − (1 + a)T )− (1 + a))− r0(1 + a)]

ζ(r0 +
δ
ζ )

2r20(ω − ω0 − T )
e

δ
ζ
(t−T )

− γc[r0(ω − ω0 − (1 + a)T )− (1 + a)]

r20(ω − ω0 − T )
(1− e

δ
ζ
(t−T )

)

+
γc[(r0 +

δ
ζ )(ω − ω0 − (1 + a)t)− (1 + a)]

(r0 +
δ
ζ )

2(ω − ω0 − T )
er0(T−t)

−
γc[(r0 +

δ
ζ )(ω − ω0 − (1 + a)T )− (1 + a)]

(r0 +
δ
ζ )

2(ω − ω0 − T )
e

δ
ζ
(t−T )

+

(
δ

hPζ
− 2 +

hPζ

δ

)
(1− e

δ
ζ
(t−T )

),

A1(t) = e2rβt
∫ T

t
e−2rβν

[
2β(r − r0)a1(ν) +

(r − r0)
2

2σ2

]
dν,

B1(t) =

∫ T

t

[
β(2β + 1)σ2A1(ν) +

γc[ω − ω0 − (1 + a)ν]

ω − ω0 − T
er0(T−ν)

]
dν,

A2(t) = e(2rβ+hP)t

∫ T

t
e−(2rβ+hP)ν

[
hPA1(ν) + 2β(r − r0)a2(ν) +

(r − r0)
2

2σ2

]
dν,

B2(t) = eh
Pt

∫ T

t
e−hPν

[
hPB1(ν) + β(2β + 1)σ2A2(ν) +

(
δ

ζ
− hP

)
(b1(ν)− b2(ν))

+
γc[ω − ω0 − (1 + a)ν]

ω − ω0 − T
er0(T−ν) +

δ2

2hPζ2
− δ

ζ
+
hP

2

]
dν.

(20)

Proof. See Appendix C.

Remark 3.2. According to equation (7), we have

Vart,x,s,z[X
π∗
(T )] =

2

γ
(Et,x,s,z[X

π∗
(T )]−W (t, x, s, z;π∗)). (21)

The variance of the terminal value in Theorem 3.1 implies

1

γ
=



√
Vart,x,s,z[X

π∗
(T )]

2[(a1(t)−A1(t))(S(t))−2β + b1(t)−B1(t)]
, z = 1,

√
Vart,x,s,z[X

π∗
(T )]

2[(a2(t)−A2(t))(S(t))−2β + b2(t)−B2(t)]
, z = 0.

(22)
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Together with equation (18), we obtain

Et,x,s,z[X
π∗
(T )] =


ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

√
Vart,x,s,z[X

π∗
(T )](a1(t)(S(t))

−2β + b1(t))
2

2[(a1(t)−A1(t))(S(t))−2β + b1(t)−B1(t)]
, z = 1,

ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

√
Vart,x,s,z[X

π∗
(T )](a2(t)(S(t))

−2β + b2(t))
2

2[(a2(t)−A2(t))(S(t))−2β + b2(t)−B2(t)]
, z = 0.

(23)
Equation (23) is known as the efficient frontier of the investment problem at the initial state
(t, x, s, z) in modern portfolio theory. The efficient frontier is also a straight line in the mean-
standard deviation plane, no matter at which state.

Remark 3.3. Let

M(t) =
(r − r0)(ω − ω0 − T )

γσ2(S(t))2β(ω − ω0 − t)
e−r0(T−t),

N(t) = 1 +
r − r0
r0

(
1− e2r0β(t−T )

)
,

then we find the equilibrium strategy invested in the risky asset π∗1(t) = M(t) · N(t). Thus the
money amount invested in the risky asset for the DC plan under the CEV model can be decomposed
into two components. The first component M(t), called as the moving GBM strategy, is actually
the optimal investment strategy under the GBM model. The other component N(t) is the hedge
term for the volatility risk, which can be understood as a correction factor.

The following corollary discusses the properties of the correction factor.

Corollary 3.4. The correction factor N(t) is a monotone decreasing function with respect to time
t and satisfies

1 ≤ N(t) ≤ 1 +
r − r0
r0

[
1− e−2r0βT

]
, 0 ≤ t ≤ T. (24)

Proof. Since r > r0 and β > 0, we derive

Nt(t) = −2β(r − r0)e
2r0β(t−T ) < 0,

which implies that the correction factor is a monotone decreasing function with respect to time t.
Since

N(0) = 1 +
r − r0
r0

[
1− e−2r0βT

]
and N(T ) = 1, we obtain inequality (24).

Corollary 3.4 shows the same insight as intuition that the pension manager will invest more
money in the risky asset at the beginning of the investment horizon and steadily decrease the
amount thereafter. The result can be interpreted from this perspective that during the initial stage
of the accumulation phase, the death probability is so small that the new premiums received could
cover the expenses caused by the return of premium clauses. As time passes, the fund size increases,
which requires less investment in the risky asset to avoid risk.

Remark 3.5. The equilibrium investment strategy π∗ = {(π∗1(t), π∗2(t))}t∈[0,T ] depends on the risk
aversion coefficient γ. Based on the expressions in equations (18) and (19), a higher γ leads to the
lower expectation and variance of the terminal wealth, which means that a pension manager with
higher risk-aversion level will invest less in the defaultable bond and the risky asset to avoid risk.

In the following two propositions, we present two special cases of our model.

Proposition 3.6. (No defaultable bond case) Under the case without the defaultable security in
the financial market, the equilibrium strategy becomes

π∗(t) =
(r − r0)(ω − ω0 − T )e−r0(T−t)

γσ2(S(t))2β(ω − ω0 − t)

[
1 +

r − r0
r0

(
1− e2r0β(t−T )

)]
,

10



and the equilibrium value function is that of the post-default case, i.e.,

V (t, x, s) =
ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

A1(t)

γ
(S(t))−2β +

B1(t)

γ
,

where A1(t) and B1(t) are give in equation (20).

From Proposition 3.6, we find that the equilibrium investment strategy in the case of no de-
faultable bond is the same as that in the post-default case as mentioned above.

Proposition 3.7. (GBM case) If β = 0, the CEV model reduces to the GBM model, the equilibrium
strategy degenerates to

π̄∗1(t) =
(r − r0)(ω − ω0 − T )e−r0(T−t)

γσ2(ω − ω0 − t)
,

π̄∗2(t) =

[
(ω − ω0 − T )er0(T−t)

γ(ω − ω0 − t)

(
δ

hPζ2
+
b̄1(t)− b̄2(t)− 1

ζ

)]
1τ>t,

and the equilibrium value function is

V̄ (t, x, z) =


ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

B̄1(t)

γ
, z = 1,

ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

B̄2(t)

γ
, z = 0,

where

b̄1(t) =
(r − r0)

2

σ2
(T − t) +

γc[r0(ω − ω0 − (1 + a)t)− (1 + a)]

r20(ω − ω0 − T )
er0(T−t)

− γc[r0(ω − ω0 − (1 + a)T )− (1 + a)]

r20(ω − ω0 − T )
,

b̄2(t) =
(r − r0)

2

σ2
(T − t) +

δγc[(r0 +
δ
ζ )(r0(ω − ω0 − (1 + a)t)− (1 + a))− r0(1 + a)]

ζ(r0 +
δ
ζ )

2r20(ω − ω0 − T )
er0(T−t)

−
δγc[(r0 +

δ
ζ )(r0(ω − ω0 − (1 + a)T )− (1 + a))− r0(1 + a)]

ζ(r0 +
δ
ζ )

2r20(ω − ω0 − T )
e

δ
ζ
(t−T )

− γc[r0(ω − ω0 − (1 + a)T )− (1 + a)]

r20(ω − ω0 − T )
(1− e

δ
ζ
(t−T )

)

+
γc[(r0 +

δ
ζ )(ω − ω0 − (1 + a)t)− (1 + a)]

(r0 +
δ
ζ )

2(ω − ω0 − T )
er0(T−t)

−
γc[(r0 +

δ
ζ )(ω − ω0 − (1 + a)T )− (1 + a)]

(r0 +
δ
ζ )

2(ω − ω0 − T )
e

δ
ζ
(t−T )

+

(
δ

hPζ
− 2 +

hPζ

δ

)
(1− e

δ
ζ
(t−T )

),

B̄1(t) =
(r − r0)

2

2σ2
(T − t) +

γc[r0(ω − ω0 − (1 + a)t)− (1 + a)]

r20(ω − ω0 − T )
er0(T−t)

− γc[r0(ω − ω0 − (1 + a)T )− (1 + a)]

r20(ω − ω0 − T )
,

B̄2(t) = eh
Pt

∫ T

t
e−hPν

[
hPB̄1(ν) +

(
δ

ζ
− hP

)
(b̄1(ν)− b̄2(ν)) +

(r − r0)
2

2σ2

+
γc[ω − ω0 − (1 + a)ν]

ω − ω0 − T
er0(T−ν) +

δ2

2hPζ2
− δ

ζ
+
hP

2

]
dν.

From Proposition 3.7, we find that the equilibrium investment strategy π̄∗1(t) is actually the
equilibrium investment strategy in He and Liang (2013), i.e., our model can reduce to the case in
He and Liang (2013) with β = 0.
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4. Numerical simulations

In this section, numerical simulations are provided to illustrate our results. Throughout nu-
merical analysis, unless otherwise stated, the basic parameters are given by: r0 = 0.03, r = 0.12,
γ = 0.5, σ = 0.2, β = 1, a = 1, δ = 0.01, ζ = 0.5, hP = 0.005, c = 1, ω = 100, ω0 = 20, T = 10,
S(0) = 5.
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Figure 1: (a) Evolution of the risky asset’s price over time. (b) Evolution of the equilibrium investment strategy
invested in the risky asset.

Figure 1 plots the evolution of the risky asset’s price and the dynamic behavior of the equilibrium
investment strategy invested in the risky asset π∗1 over time under the CEV model. We find that
the change trend of π∗1 is opposite to that of the risky asset’s price. When the price process of the
risky asset is more expensive, since the elasticity parameter β > 0, the volatility of the risky asset’s
price σ(S(t))2β becomes higher. Thus the pension manager will invest less wealth in the risky asset.
Furthermore, notice that π∗1 decreases as time goes on, which can be explained by the reason as the
death probability of the pension members is so small that the new premiums received could cover
the expenses caused by the return of premium clauses at the beginning of the accumulation phase.
As time passes, the fund size increases, which depresses the level of investment in the risky asset
to control the risk.
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Figure 2: (a) Effects of ω and ω0 on the equilibrium investment strategy invested in the risky asset at time 0. (b)
Effects of r and β on the equilibrium investment strategy invested in the risky asset at time 0.

Figure 2 shows the impacts of ω, ω0, r and β on the equilibrium investment strategy invested
in the risky asset π∗1 at time 0. As shown in Figure 2 (a), π∗1 increases with the maximal age of
the life table ω and decreases with the start age of the accumulation period ω0. When ω0 is fixed,
a larger ω means that the pension manager predicts the death probability of the pension members
in the future will be lower. Then the pension manager will invest more money in the risky asset.

12



Instead, if ω is fixed, a larger ω0 implies the start age of the pension members taking part in
the pension plan is older. Furthermore, the death probability of the pension members predicted
by the pension manager will be higher. Therefore, the pension manager with larger ω0 will be
more cautious to the investment. In Figure 2 (b), we find that π∗1 increases with the risky asset’s
return r and decreases with the elasticity coefficient β. This can be explained by the fact that as
r increases, the investment in the risky asset becomes more attractive. Besides, a higher β leads
to a larger expected drop in volatility and an increased probability of a large adverse movement in
the risky asset’s price, which means the pension manager will invest less wealth in the risky asset
as β increases to reduce risk from the investment in the risky asset. The results at any other time
t > 0 are similar to that at initial time 0, so we omit explanations here.
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Figure 3: (a) Effect of ω on the equilibrium investment strategy invested in the defaultable bond. (b) Effect of ω0 on
the equilibrium investment strategy invested in the defaultable bond.

Figure 3 presents the impacts of ω and ω0 on the equilibrium investment strategy invested in
the defaultable bond π∗2. We omit the analyses here due to the similarity to π∗1.
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Figure 4: (a) Effect of δ on the equilibrium investment strategy in the defaultable bond. (b) Effect of ζ on the
equilibrium investment strategy in the defaultable bond.

From Figure 4, we find that the equilibrium investment strategy invested in the defaultable bond
π∗2 increases with the credit spread δ and decreases with the loss rate ζ. This can be attributed to
the fact that the defaultable bond will be more attractive when the credit spread is higher and its
default recovery rate 1 − ζ is larger. Thus the pension manager will buy more defaultable bonds
with higher δ and smaller ζ. Besides, a larger ζ induces a smaller recovery amount, which means
that the potential loss of the pension manager becomes larger with ζ increasing. Then the pension
manager will reduce the investment in the defaultable bond.
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Figure 5: (a) Effect of hP on the equilibrium investment strategy invested in the defaultable bond. (b) Effect of c on
the equilibrium investment strategy invested in the defaultable bond.

As shown in Figure 5, the equilibrium investment strategy invested in the defaultable bond π∗2
decreases with the default intensity hP and increases with premium rate paying by the pension
members c. Two reasons can be explained the relationship between hP and π∗2 in Figure 5: on
one hand, as hP increases, the probability of default becomes larger, and the counterparty risk of
the defaultable bond will undermine its investment grade and thus make it less attractive to the
pension manager; on the other hand, a larger hP implies the less default risk premium, and the
pension manager will invest less wealth in the defaultable bond. In addition, if c is higher, the
pension manager will receive more premium from the pension members and she will have more
wealth to invest in the financial market, which is consistent with our intuition.
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Figure 6: (a) Equilibrium value functions with respect to x at time 0. (b) Equilibrium value functions with respect
to s at time 0.

Figure 6 shows the effects of x and s on the pre-default and post-default equilibrium value
functions with or without premium clauses at time 0. From Figure 6, we can see that the equilib-
rium value functions increase with the wealth x and decreases with the price of the risky asset s.
Moreover, the pre-default equilibrium value functions are higher than the post-default equilibrium
value functions when all model parameters remain the same, i.e., V (0, x, s, 0) > V (0, x, s, 1). The
difference between V (0, x, s, 0) and V (0, x, s, 1) can be understood as the loss in the pension man-
ager’s objective due to the default event. We also find that the equilibrium value functions without
premium clauses are higher than those with premium clauses, which can be attributed to the fact
that the pension plan with premium clauses gives out part of the accumulations to the pension
members who die during the accumulation phase, and this return of premium mechanism definitely
reduces the fund size level. The results at any other time t > 0 are similar to that at initial time
0, so we omit explanations here.
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5. Conclusion

This paper studies a mean-variance optimization management problem for the DC plan with
default risk under the CEV model during the accumulation phase. Before retirement, contributions
to the pension fund are supposed to be a predetermined amount of money as premiums. To gain
higher yield, the pension funds are allowed to invest in a risk-free asset, a defaultable bond and a
risky asset whose price process satisfies the CEV model. At the same time, the pension members
could die during the accumulation phase which means the return of premiums clauses should also
be considered. To model the above situation, assume that the premiums of the dead members
can be withdrew, and the surviving members share the difference between the return and the
accumulation equally. In addition, a wise fund manager considers an equilibrium strategy, which
is time-consistent, and the corresponding problem could be formulated from a game theoretic
perspective. First, we obtain the extended HJB equations for the post-default and the pre-default
cases, respectively. By applying ansatz and variable separation, we derive the explicit expressions
of the equilibrium investment strategy and the corresponding equilibrium value function for the two
cases. Secondly, we analyze the properties of the equilibrium investment strategy. Finally, numerical
simulations are proposed to illustrate the impacts of model parameters on the equilibrium strategy.
The main findings are as follow: (1) both the maximal age of the life table ω and the start age
of the accumulation period ω0 have impacts on the money amounts invested in the defaultable
bond and the risky asset, which can be attributed to that ω and ω0 has close connections with
the mortality risk; (2) the pre-default equilibrium value function is higher than the post-default
equilibrium value function, which implies that the difference between two cases stands for the loss
in the pension manager’s objective due to the default event; (3) the equilibrium value function
without premium clauses is higher than that with premium clauses, which can be interpreted by
that the return of premium mechanism reduces the fund size level; (4) the efficient frontier is a
straight line in the mean-standard derivation plane, which is independent of the state.
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Appendix A.
Illustrations of Definition 2.5.

To illustrate the existence and uniqueness of equation (5), we firstly show the CEV model

dS(t) = S(t)
(
rdt+ σ(S(t))βdW (t)

)
has a unique solution. Denote m(t) = (S(t))−2β. By Itô’s lemma, we can see

dm(t) = (β(2β + 1)σ2 − 2βrm(t))dt− 2βσ
√
m(t)dW (t).

This is a mean-reverting square-root model. From Theorem 1.5.5.1 in Jeanblanc et al. (2009), we
know that the above equation has a unique strong solution. When β > 0, the Feller condition is
satisfied, i.e., 2β(2β+1)σ2 > 4β2σ2, so m(t) > 0, a.s.. When β = 0, the CEV model reduces to the
geometric Brownian motion model. Therefore, for β ≥ 0, CEV model has a unique solution such
that S(t) ∈ (0,+∞), a.s.. In Dufresne (2001), it is found that all the moments of an integrated
square-root process are finite. Using this result, we can further deduce that for any ϱ ∈ [1,+∞),

E

[
sup

ν∈[0,T ]
|m(ν)|ϱ

]
≤ K1

{
1 + E

[(∫ T

0
|m(ν)|dν

)ϱ
]
+ E

[
sup

t∈[0,T ]

(∫ t

0

√
m(ν)dW (ν)

)ϱ
]}

≤ K2

{
1 + E

[(∫ T

0
|m(ν)|dν

)ϱ
]
+ E

[(∫ T

0
|m(ν)|dν

)ϱ/2
]}

<∞,
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where K1 and K2 are positive constants. In the above inequality, the second line follows from the
Burkholder-Davis-Gundy inequality. Next, from conditions (1) and (2) in Definition 2.5 and the
boundedness of parameters, we know that

E

[∫ T

t

∣∣∣∣(r − r0)π(ν) +
c[ω − ω0 − (1 + a)ν]

ω − ω0 − ν

∣∣∣∣2dν
]
<∞,

E

[∫ T

t

(
|π1(ν)σ(S(ν))β|2 + |π2(ν)(1− Z(ν))δ(1−∆)|2 + |π2(ν)(1− Z(ν))ζ|2

)
dν

]
<∞.

Thus by Theorem 6.3 in Yong and Zhou (1999), the wealth process admits a unique strong solution
such that

Et,x,s,z [sup |Xπ(ν)|ϱ] <∞,

for any ϱ ∈ [1,+∞) and (t, x, s, z) ∈ [0, T ]× R× R× {0, 1}.

Appendix B.
Proof of Theorem 2.7.

Suppose that for z = 1, 0, V (t, x, s, z) and g(t, x, s, z) satisfy verification theorem, and the
optimal strategy in HJB equation is achieved at π∗.

Step 1. We aim to show

g(t, x, s, z) = Et,x,s,z[X
π∗
(T )], V (t, x, s, z) =W (t, x, s, z;π∗). (25)

Due to the condition
Aπ∗

g(t, x, s, z) = 0, g(T, x, s, z) = x,

in the verification theorem, and by Dynkin’s formula, we derive

Et,x,s,z[g(T,X
π∗
(T ), S(T ), z)]

= g(t, x, s, z) + Et,x,s,z

[∫ T

t
Aπ∗

g(ν,X(ν), S(ν), z)dν

]
= g(t, x, s, z),

furthermore, we have

g(t, x, s, z) = Et,x,s,z[g(T,X
π∗
(T ), S(T ), z)] = Et,x,s,z[X

π∗
(T )],

where the variational operator Aπ is defined in equation (8) of our paper.
Next we show V (t, x, s, z) =W (t, x, s, z;π∗). Since the optimal strategy in HJB equation

sup
π∈Π(t,x,s,z)

{
AπV (t, x, s, z)−Aπ γ

2
(g(t, x, s, z))2 + γg(t, x, s, z)Aπg(t, x, s, z)

}
= 0,

is achieved at π∗, by the condition

Aπ∗
g(t, x, s, z) = 0, g(T, x, s, z) = x,

in the verification theorem, we rewrite HJB equation as

Aπ∗
V (t, x, s, z)− γ

2
Aπ∗

g2(t, x, s, z) = 0. (26)

It follows from
V (T, x, s, z) = x,

in the verification theorem, Dynkin’s formula that

Et,x,s,z[X
π∗
(T )] = Et,x,s,z[V (T,Xπ∗

(T ), S(T ), z)]

= V (t, x, s, z) +

∫ T

t
Aπ∗

V (ν,X(ν), S(ν), z)dν.
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Substituting equation (26) into the last equation yields

V (t, x, s, z) = Et,x,s,z[X
π∗
(T )]− γ

2

∫ T

t
Aπ∗

g2(ν,X(ν), S(ν), z)dν. (27)

By Dynkin’s formula and boundary conditions, we have

Et,x,s,z[(X
π∗
(T ))2] = Et,x,s,z[g

2(T,Xπ∗
(T ), S(T ), z)]

= g2(t, x, s, z) +

∫ T

t
Aπ∗

g2(ν,X(ν), S(ν), z)dν

=
(
Et,x,s,z[X

π∗
(T )]

)2
+

∫ T

t
Aπ∗

g2(ν,X(ν), S(ν), z)dν,

or equivalently,

Vart,x,s,z[X
π∗
(T )] =

∫ T

t
Aπ∗

g2(ν,X(ν), S(ν), z)dν. (28)

Substituting equation (28) into equation (27) yields

V (t, x, s, z) = Et,x,s,z[X
π∗
(T )]− γ

2
Vart,x,s,z[X

π∗
(T )] =W (t, x, s, z;π∗).

Step 2. We show that π∗ is an equilibrium strategy defined in Definition 2.6 in our paper. For
any (π̃1, π̃2) ∈ R× R, t ∈ [0, T ], and ε > 0, consider the perturbed strategy πε defined as

πε(ν) =

{
(π̃1, π̃2), t ≤ ν < t+ ε,

π∗(ν), t+ ε ≤ ν < T.

By

W (t, x, s, z;π) = Et,x,s,z[X
π(T )]− γ

2
Vart,x,s,z[X

π(T )],

we derive

Et,x,s,z[W (t+ ε,X π̃(t+ ε), S(t+ ε), z;πε)]−W (t, x, s, z;πε)

= Et,x,s,z

[
Et+ε,Xπ̃(t+ε),S(t+ε),z[X

π∗
(T )− γ

2
Xπ∗

(T )2] +
γ

2

(
Et+ε,Xπ̃(t+ε),S(t+ε),z[X

π∗
(T )]

)2]
−Et,x,s,z

[
Xu∗

(T )− γ

2
Xπ∗

(T )2
]
− γ

2

(
Et,x,s,z[X

π∗
(T )]

)2
=
γ

2
Et,x,s,z

[(
Et+ε,Xπ̃(t+ε),S(t+ε),z[X

π∗
(T )]

)2]
− γ

2

(
Et,x,s,z

[
Et+ε,Xπ̃(t+ε),S(t+ε),z[X

π∗
(T )]

])2
=
γ

2
Et,x,s,z

[
g2(t+ ε,X π̃(t+ ε), S(t+ ε), z)

]
− γ

2

(
Et,x,s,z

[
g(t+ ε,X π̃(t+ ε), S(t+ ε), z)

])2
.

It follows from the above equation that

W (t, x, s, z;πε)

= Et,x,s,z[W (t+ ε,X π̃(t+ ε), S(t+ ε), z;πε)]−
γ

2
Et,x,s,z

[
g2(t+ ε,X π̃(t+ ε), S(t+ ε), z)

]
+
γ

2

(
Et,x,s,z

[
g(t+ ε,X π̃(t+ ε), S(t+ ε), z)

])2
.

By inserting extra terms V (t, x, s, z) and g2(t, x, s, z) into the last equation and using the result in
step 1, we obtain

W (t, x, s, z;πε) = Et,x,s,z[V (t+ ε,X π̃(t+ ε), S(t+ ε), z)]

−γ
2

{
Et,x,s,z

[
g2(t+ ε,X π̃(t+ ε), S(t+ ε), z)

]
− g2(t, x, s, z)

}
+
γ

2

{(
Et,x,s,z

[
g(t+ ε,X π̃(t+ ε), S(t+ ε), z)

])2 − g2(t, x, s, z)
}
.

(29)
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For any π ∈ Π, ε > 0 small and ψ ∈ C1,2([0, T ]× R× R× {0, 1}), we define the operator

Aπ
εψ(t, x, s, z) = Et,x,s,z[ψ(t+ ε,Xπ(t+ ε), S(t+ ε), z)]− ψ(t, x, s, z), (30)

and for small ε > 0,

lim
ε↓0

1

ε
Aπ

εψ(t, x, s, z) = Aπψ(t, x, s, z). (31)

By equation (30), we can rewrite equation (29) as

W (t, x, s, z;πε) = V (t, x, s, z) +Aπ̃
εV (t, x, s, z)− γ

2
Aπ̃

ε g
2(t, x, s, z)

+
γ

2

{(
Et,x,s,z

[
g(t+ ε,X π̃(t+ ε), S(t+ ε), z)

])2 − g2(t, x, s, z)
}
.

(32)

By Dynkin’s formula, we have

Et,x,s,z[g(t+ ε,X π̃(t+ ε), S(t+ ε), z)] = g(t, x, s, z) + Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]
,

which implies[
Et,x,s,z(g(t+ ε,X π̃(t+ ε), S(t+ ε), z))

]2 − g2(t, x, s, z)

= 2g(t, x, s, z)Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]
+

{
Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]}2

.

(33)
Substituting equation (33) into equation (32) yields

W (t, x, s, z;πε) = V (t, x, s, z) +Aπ̃
εV (t, x, s, z)− γ

2
Aπ̃

ε g
2(t, x, s, z)

+γg(t, x, s, z)Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)ds

]
+

1

2

{
Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]}2

.

(34)
On the other hand, it follows from the extended HJB equation that

Aπ̃V (t, x, s, z)− γ

2
Aπ̃g2(t, x, s, z) + γg(t, x, s, z)Aπ̃g(t, x, s, z) ≤ 0.

It follows from equation (31) that for a small enough ε, we have

Aπ̃
εV (t, x, s, z)− γ

2
Aπ̃

ε g
2(t, x, s, z) + γg(t, x, s, z)Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]
≤ o(ε).

(35)
By substituting equation (35) into equation (34), we have

W (t, x, s, z;πε) ≤ V (t, x, s, z) +
1

2

{
Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]}2

+ o(ε)

=W (t, x, s, z;π∗) +
1

2

{
Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]}2

+ o(ε).

According to Dominated Convergence Theorem, we have

lim
ε↓0

{
Et,x,s,z

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]}2

=

{
Et,x,s,z lim

ε↓0

[∫ t+ε

t
Aπ̃g(ν,X π̃(ν), S(ν), z)dν

]}2

= 0,
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which implies

lim
ε↓0

inf
W (t, x, s, z;π∗)−W (t, x, s, z;πε)

ε
≥ 0.

Thus π∗ is an equilibrium strategy.

Appendix C.
Proof of Theorem 3.1.

For the post-default case, due to the linear structure of equations (11) and (13) and according
to the boundary conditions, we try to guess the solutions in the following form

V (t, x, s, 1) =
ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

A1(t)

γ
s−2β +

B1(t)

γ
, A1(T ) = B1(T ) = 0,

g(t, x, s, 1) =
ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

a1(t)

γ
s−2β +

b1(t)

γ
, a1(T ) = b1(T ) = 0.

(36)

Then we have

Vt(t, x, s, 1) = −1 + (ω − ω0 − t)r0
ω − ω0 − T

er0(T−t)x+
A1t(t)

γ
s−2β +

B1t(t)

γ
,

Vx(t, x, s, 1) =
ω − ω0 − t

ω − ω0 − T
er0(T−t), Vs(t, x, s, 1) = −2βA1(t)

γ
s−2β−1,

Vss(t, x, s, 1) =
2β(2β + 1)A1(t)

γ
s−2β−2, Vxx(t, x, s, 1) = Vxs(t, x, s, 1) = 0,

gt(t, x, s, 1) = −1 + (ω − ω0 − t)r0
ω − ω0 − T

er0(T−t)x+
a1t(t)

γ
s−2β +

b1t(t)

γ
,

gx(t, x, s, 1) =
ω − ω0 − t

ω − ω0 − T
er0(T−t), gs(t, x, s, 1) = −2βa1(t)

γ
s−2β−1,

gss(t, x, s, 1) =
2β(2β + 1)a1(t)

γ
s−2β−2, gxx(t, x, s, 1) = gxs(t, x, s, 1) = 0.

(37)

By differentiating equation (9) w.r.t. π, we obtain the optimal investment strategy as follows

π∗1 =
(r − r0)Vx(t, x, s, 1)− γσ2s2β+1gx(t, x, s, 1)gs(t, x, s, 1)

γσ2s2β(gx(t, x, s, 1))2

=
(r − r0)(ω − ω0 − T )

γσ2s2β(ω − ω0 − t)
e−r0(T−t) +

2β(ω − ω0 − T )a1(t)

γs2β(ω − ω0 − t)
e−r0(T−t).

(38)

Substituting equations (37) and (38) into equations (11) and (13), we get

s−2β

γ

{
A1t(t)− 2rβA1(t) + 2β(r − r0)a1(t) +

(r − r0)
2

2σ2

}
+
1

γ

{
B1t(t) + β(2β + 1)σ2A1(t) +

γc[ω − ω0 − (1 + a)t]

ω − ω0 − T
er0(T−t)

}
= 0,

s−2β

γ

{
a1t(t)− 2r0βa1(t) +

(r − r0)
2

σ2

}
+
1

γ

{
b1t(t) + β(2β + 1)σ2a1(t) +

γc[ω − ω0 − (1 + a)t]

ω − ω0 − T
er0(T−t)

}
= 0.

(39)
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By separating variables, we obtain the following differential equations

A1t(t)− 2rβA1(t) + 2β(r − r0)a1(t) +
(r − r0)

2

2σ2
= 0,

B1t(t) + β(2β + 1)σ2A1(t) +
γc[ω − ω0 − (1 + a)t]

ω − ω0 − T
er0(T−t) = 0,

a1t(t)− 2r0βa1(t) +
(r − r0)

2

σ2
= 0,

b1t(t) + β(2β + 1)σ2a1(t) +
γc[ω − ω0 − (1 + a)t]

ω − ω0 − T
er0(T−t) = 0.

(40)

Considering the boundary conditions, we derive

a1(t) =
(r − r0)

2

2r0βσ2
(1− e2r0β(t−T )),

b1(t) =
(2β + 1)(r − r0)

2

2r0
(T − t)− (2β + 1)(r − r0)

2

4r20β
(1− e2r0β(t−T ))

+
γc[r0(ω − ω0 − (1 + a)t)− (1 + a)]

r20(ω − ω0 − T )
er0(T−t) − γc[r0(ω − ω0 − (1 + a)T )− (1 + a)]

r20(ω − ω0 − T )
,

A1(t) = e2rβt
∫ T

t
e−2rβν

[
2β(r − r0)a1(ν) +

(r − r0)
2

2σ2

]
dν,

B1(t) =

∫ T

t

[
β(2β + 1)σ2A1(ν) +

γc[ω − ω0 − (1 + a)ν]

ω − ω0 − T
er0(T−ν)

]
dν.

(41)

Similarly, for the pre-default case, we conjecture the solutions to equations (11) and (14) in the
following ways

V (t, x, s, 0) =
ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

A2(t)

γ
s−2β +

B2(t)

γ
, A2(T ) = B2(T ) = 0,

g(t, x, s, 0) =
ω − ω0 − t

ω − ω0 − T
er0(T−t)x+

a2(t)

γ
s−2β +

b2(t)

γ
, a2(T ) = b2(T ) = 0.

(42)

Then we have

Vt(t, x, s, 0) = −1 + (ω − ω0 − t)r0
ω − ω0 − T

er0(T−t)x+
A2t(t)

γ
s−2β +

B2t(t)

γ
,

Vx(t, x, s, 0) =
ω − ω0 − t

ω − ω0 − T
er0(T−t), Vs(t, x, s, 0) = −2βA2(t)

γ
s−2β−1,

Vss(t, x, s, 0) =
2β(2β + 1)A2(t)

γ
s−2β−2, Vxx(t, x, s, 0) = Vxs(t, x, s, 0) = 0,

gt(t, x, s, 0) = −1 + (ω − ω0 − t)r0
ω − ω0 − T

er0(T−t)x+
a2t(t)

γ
s−2β +

b2t(t)

γ
,

gx(t, x, s, 0) =
ω − ω0 − t

ω − ω0 − T
er0(T−t), gs(t, x, s, 0) = −2βa2(t)

γ
s−2β−1,

gss(t, x, s, 0) =
2β(2β + 1)a2(t)

γ
s−2β−2, gxx(t, x, s, 0) = gxs(t, x, s, 0) = 0.

(43)

The first-order of the optimality conditions for problem (13) are given by

π∗1 =
(r − r0)Vx(t, x, s, 0)− γσ2s2β+1gx(t, x, s, 0)gs(t, x, s, 0)

γσ2s2β(gx(t, x, s, 0))2

=
(r − r0)(ω − ω0 − T )

γσ2s2β(ω − ω0 − t)
e−r0(T−t) +

2β(ω − ω0 − T )a2(t)

γs2β(ω − ω0 − t)
e−r0(T−t),

(44)

π∗2 =
δ(ω − ω0 − T )

γhPζ2(ω − ω0 − t)
e−r0(T−t) +

(a1(t)− a2(t))(ω − ω0 − T )

γζs2β(ω − ω0 − t)
e−r0(T−t)

+
(b1(t)− b2(t)− 1)(ω − ω0 − T )

γζ(ω − ω0 − t)
e−r0(T−t).

(45)
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Introducing equations (43), (44) and (45) into equations (11) and (14) yields

s−2β

γ

{
A2t(t)− (2rβ + hP)A2(t) + hPA1(t) + 2β(r − r0)a2(t) +

(
δ

ζ
− hP

)
(a1(t)− a2(t))

+
(r − r0)

2

2σ2

}
+

1

γ

{
B2t(t)− hPB2(t) + hPB1(t) + β(2β + 1)σ2A2(t) +

(
δ

ζ
− hP

)
(b1(t)− b2(t))

+
γc[ω − ω0 − (1 + a)t]

ω − ω0 − T
er0(T−t) +

δ2

2hPζ2
− δ

ζ
+
hP

2

}
= 0,

(46)
s−2β

γ

{
a2t(t)−

(
2r0β +

δ

ζ

)
a2(t) +

δ

ζ
a1(t) +

(r − r0)
2

σ2

}
+

1

γ

{
b2t(t)−

δ

ζ
b2(t)

+
δ

ζ
b1(t) + β(2β + 1)σ2a2(t) +

γc[ω − ω0 − (1 + a)t]

ω − ω0 − T
er0(T−t) +

δ2

hPζ2
− 2δ

ζ
+ hP

}
= 0.

(47)

By separating variables, we obtain the following differential equations

A2t(t)− (2rβ + hP)A2(t) + hPA1(t) + 2β(r − r0)a2(t) +

(
δ

ζ
− hP

)
(a1(t)− a2(t)) +

(r − r0)
2

2σ2
= 0,

B2t(t)− hPB2(t) + hPB1(t) + β(2β + 1)σ2A2(t) +

(
δ

ζ
− hP

)
(b1(t)− b2(t))

+
γc[ω − ω0 − (1 + a)t]

ω − ω0 − T
er0(T−t) +

δ2

2hPζ2
− δ

ζ
+
hP

2
= 0,

a2t(t)−
(
2r0β +

δ

ζ

)
a2(t) +

δ

ζ
a1(t) +

(r − r0)
2

σ2
= 0,

b2t(t)−
δ

ζ
b2(t) +

δ

ζ
b1(t) + β(2β + 1)σ2a2(t) +

γc[ω − ω0 − (1 + a)t]

ω − ω0 − T
er0(T−t) +

δ2

hPζ2
− 2δ

ζ
+ hP = 0.

(48)
Taking the boundary conditions into account, we obtain

a2(t) =
(r − r0)

2

2r0βσ2
(1− e2r0β(t−T )),

b2(t) =
(2β + 1)(r − r0)

2

2r0
(T − t)− (2β + 1)(r − r0)

2

4r20β
(1− e2r0β(t−T ))

+
δγc[(r0 +

δ
ζ )(r0(ω − ω0 − (1 + a)t)− (1 + a))− r0(1 + a)]

ζ(r0 +
δ
ζ )

2r20(ω − ω0 − T )
er0(T−t)

−
δγc[(r0 +

δ
ζ )(r0(ω − ω0 − (1 + a)T )− (1 + a))− r0(1 + a)]

ζ(r0 +
δ
ζ )

2r20(ω − ω0 − T )
e

δ
ζ
(t−T )

− γc[r0(ω − ω0 − (1 + a)T )− (1 + a)]

r20(ω − ω0 − T )
(1− e

δ
ζ
(t−T )

)

+
γc[(r0 +

δ
ζ )(ω − ω0 − (1 + a)t)− (1 + a)]

(r0 +
δ
ζ )

2(ω − ω0 − T )
er0(T−t)

−
γc[(r0 +

δ
ζ )(ω − ω0 − (1 + a)T )− (1 + a)]

(r0 +
δ
ζ )

2(ω − ω0 − T )
e

δ
ζ
(t−T )

+

(
δ

hPζ
− 2 +

hPζ

δ

)
(1− e

δ
ζ
(t−T )

),

(49)

A2(t) = e(2rβ+hP)t

∫ T

t
e−(2rβ+hP)ν

[
hPA1(ν) + 2β(r − r0)a2(ν) +

(r − r0)
2

2σ2

]
dν,

B2(t) = eh
Pt

∫ T

t
e−hPν

[
hPB1(ν) + β(2β + 1)σ2A2(ν) +

(
δ

ζ
− hP

)
(b1(ν)− b2(ν))

+
γc[ω − ω0 − (1 + a)ν]

ω − ω0 − T
er0(T−ν) +

δ2

2hPζ2
− δ

ζ
+
hP

2

]
dν.

(50)

Once we get the explicit expressions of a1(t), b1(t), A1(t), B1(t), a2(t), b2(t), A2(t) and B2(t),
the explicit expressions of the equilibrium investment strategy π∗1, π

∗
2 and the equilibrium value
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function V (t, x, s, 1), V (t, x, s, 0) for the post-default case and the pre-default case can be easily
derived. Then the proof of Theorem 3.1 is completed.
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