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Abstract In 2008, Deza and Varukhina established asymptotic formula for the mean
value of the arithmetic function τ K

k1
(n)τ K

k2
(n) · · · τ K

kl
(n), where K is a quadratic or

cyclotomic field, and τ K
k (n) is the k-dimensional divisor function in the number field

K . Recently, Lü generalized their results to any Galois extension K of the ratio-
nal field. It seems interesting to deal with similar problems which involve different
number fields. In this paper, we are concerned with the mean value of the arithmetic
function τ

K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n), where K j are number fields whose discriminants
are relatively prime.
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1 Introduction and main results

Arithmetic functions play important roles in number theory and discrete mathematics.
Since the behavior of many arithmetic functions is very irregular, we often try to study
the average order of arithmetic functions by establishing the asymptotic formulae of
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their mean value. As an example, we choose to mention the k-dimensional divisor
problem, which studies the behavior of the mean value of τk(n). Here, as usual τk(n)

denotes the number of the representation of n as a product of k natural numbers. See
Chap. 13 in Ivić [6] and the references therein for detailed explanation.

Let K be an algebraic number field of finite degree d over the rational field Q.
Denote the number of integral ideals in K with norm n by aK (n). Chandraseknaran
and Good [1] showed that aK (n) is a multiplicative function, and satisfies

aK (n) ≤ τ(n)d , (1.1)

where τ(k) is the divisor function, and d = [K : Q]. Although the number of integral
ideals

∑
n≤x aK (n) appeals to many authors [5,8,10,11], it was Chandraseknaran

and Narasimhan [2] who first considered the second moment of aK (n) for a general
extension K/Q of degree d. They proved that

∑

n≤x

aK (n)2 � x(log x)d−1. (1.2)

Later, Chandraseknaran and Good [1] showed that if K is a Galois extension of Q of
degree d, then for any ε > 0 and any integer l ≥ 2, we have

∑

n≤x

aK (n)l = x PK (log x) + O(x
1− 2

dl
+ε

), (1.3)

where PK denotes a suitable polynomial of degree dl−1 − 1.
Let a (with or without subscripts) denote an integral ideal in number field K . The

problem to obtain an asymptotic formula for the mean value of the arithmetic function

τ K
k (n) =

∑

N (a1a2...ak )=n

1 =
∑

n=n1n2...nk

aK (n1)aK (n2) . . . aK (nk) (1.4)

is known as the k-dimensional divisor problem in the field K . Namely,we are interested
in the average behavior of the sum

∑

n≤x

τ K
k (n) =

∑

N (a1a2...ak )≤x

1.

In 1988, Panteleeva [12] considered the divisor problem in the quadratic field
Q(

√
D) and the cyclotomic field Q(ζ ) (ζ t = 1). Let D be a squarefree number,

|D| ≤ log2 x , and K = Q(
√
D) a quadratic field. Then, for any k ≥ 1, she proved that

∑

n≤x

τ K
k (n) = x Pk(log x) + θx1−

10
133 k

− 2
3
(C log x)2k,

where Pk is a polynomial of degree k − 1, |θ | ≤ 1, and C > 0 is an absolute constant.
For the cyclotomic field K = Q(ζ ) (ζ t = 1), she proved that for any k ≥ 1
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On mean values of some arithmetic functions 103

∑

n≤x

τ K
k (n) = x Pk(log x) + θx1−

1
12 (ϕ(t)k)−

2
3
(C log x)ϕ(t)k,

where Pk is a polynomial of degree k − 1, θ is a complex number, |θ | ≤ 1, C > 0 is
an absolute constant, and ϕ(t) is the Euler’s function.

In 1994, Panteleeva [13] further studied the asymptotic behavior of the product
function of several multi-dimensional divisor functions, i.e., τk1(n)τk2(n) . . . τkl (n),
where l ≥ 1, k1, k2, . . . , kl ≥ 2 are integers. Based on some deep results in analytic
number theory, she was able to prove

∑

n≤x

τk1(n)τk2(n) . . . τkl (n) = x Pm(log x) + θx1−
2
31m

− 2
x3

(C log x)m, (1.5)

where l ≥ 1, k1, k2, . . . , kl ≥ 2 are integer, m = k1k2 . . . kl , m ≤ log x , Pm is a
polynomial of degreem−1, θ is a complex number, |θ | ≤ 1, andC > 0 is an absolute
constant.

In 2008, Deza and Varukhina [3] considered the generalized problems of (1.5) in
number fields, namely

∑

n≤x

τ K
k1 (n)τ K

k2 (n) . . . τ K
kl (n). (1.6)

They established asymptotic formulae for (1.6) in quadratic and cyclotomic fields.
More precisely, they proved that for the quadratic field K = Q(

√
D),

∑

n≤x

τ K
k1 (n)τ K

k2 (n) . . . τ K
kl (n) = x Pm(log x) + θx1−

1
15m

− 2
3
(C log x)2m, (1.7)

where l ≥ 1, k1, k2, . . . , kl ≥ 2 are integers, m = k1k2 . . . kl , m ≤ (log x)
5
6 , Pm is a

polynomial of degreem−1, θ is a complex number, |θ | ≤ 1, andC > 0 is an absolute
constant. For the cyclotomic field K = Q(ζ ) (ζ t = 1), they proved

∑

n≤x

τ K
k1 (n)τ K

k2 (n) . . . τ K
kl (n) = x Pm(log x) + θx1−

1
13 (ϕ(t)m)

− 2
3
(C log x)ϕ(t)m,

(1.8)

where l ≥ 1, k1, k2, . . . , kl ≥ 2 are integer, m = k1k2 . . . kl , m ≤ (log x)
5
6 , Pm is a

polynomial of degree m − 1, θ is a complex number, |θ | ≤ 1, C > 0 is an absolute
constant, and ϕ(t) is the Euler’s function.

Recently, Lü [9] proved that the true degrees of the polynomials Pm(t)’s in (1.7)
and (1.8) are m = k1k2 . . . kl2l−1 and m = k1k2 . . . klϕ(t)l−1, respectively. Then,
Lü proved a slightly general result, which states that for a Galois extension K/Q of
degree d and any positive integer l, we have
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∑

n≤x

τ K
k1 (n)τ K

k2 (n) . . . τ K
kl (n) = x Pm(log x) + O(x1−

3
md+6+ε), (1.9)

where k1, k2, . . . , kl ≥ 2 are integers, m = k1k2 . . . kldl−1, Pm is a polynomial of
degree m − 1, and ε > 0 is an arbitrarily small constant. At the same time, it was
shown that for any Abelian extension K/Q, the error term in (1.9) can be strengthened
to have the same quality as those in (1.7) and (1.8).

It seems interesting to consider similar problems involving different fields. In this
paper, we shall investigate the average behavior of the sum

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) . . . τ
Kl
kl

(n), (1.10)

where K j/Q are number fields with degrees d j , j = 1, 2, . . . , l.
First, we choose to give an upper bound in a general setting by a simple argument,

which can be regarded as a generalization ofChandraseknaran andNarasimhan’s result
(1.2).

Theorem 1.1 Let K j/Q be number fields whose degrees satisfy d1 ≤ d2 ≤ · · · ≤ dl .
Then we have

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) . . . τ
Kl
kl

(n) � x(log x)

l∏

j=1
k j

l−1∏

j=1
d j−1

.

Obviously, when l = 2, K1 = K2, d1 = d2 = d, and k1 = k2 = 1, our result
coincides with (1.2). When K1 = K2 = · · · = Kl = K/Q is a Galois extension
of degree d, the upper bound in Theorem 1.1 coincides with the first term in the
asymptotic formula (1.9).

In order to simplify matters for (1.10), it seems natural to consider number fields
whose discriminants are relatively prime.

Theorem 1.2 Let K j/Q be number fields whose discriminants D j are relatively
prime, i.e., (Di , Dj ) = 1, 1 ≤ i �= j ≤ l. Then we have

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) . . . τ
Kl
kl

(n) = x Pm(log x) + O(x
1− 3

md1d2 ...dl+6+ε
),

where m = k1k2 . . . kl , Pm is a polynomial of degree m−1, and ε > 0 is an arbitrarily
small constant.

FromTheorem 1.2, when k1 = k2 = · · · = kl = 1, we have the following corollary.

Corollary 1.3 Under the same conditions as Theorem 1.2, we have

∑

n≤x

aK1(n)aK2(n) . . . aKl (n) = cK1,K2,...,Kl x + O(x
1− 3

d1d2 ...dl+6+ε
).
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On mean values of some arithmetic functions 105

By combining the arguments in Theorems 1.1 and 1.2, one easily finds the following
result.

Corollary 1.4 Let K j/Q be number fields whose degrees satisfy d1 ≤ d2 ≤ · · · ≤ dl .
For an integer i0 satisfying 1 ≤ i0 ≤ l, the discriminants of K j (i0 ≤ j ≤ l) are
relatively prime: (Di , Dj ) = 1, i0 ≤ i �= j ≤ l. Then we have

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n) � x(log x)
∏l

j=1 k j
∏i0−1

j=1 d j−1
.

2 Preliminaries

Let K be an algebraic number field of degree d, and ζK (s) the Dedekind zeta function
of the field K . Then, for �s > 1, it is defined by

ζK (s) =
∑

a

NK/Q(a)−s, (2.1)

where the sum is extended over all integral ideals a of the field K , and NK/Q(a) is the
absolute norm of a. Then, we can rewrite it as

ζK (s) =
∞∑

n=1

aK (n)

ns
, (2.2)

where aK (n) denotes the number of integral ideals in K with norm n. Since aK (n) is
a multiplicative function, for �s > 1,

ζK (s) =
∞∑

n=1

aK (n)

ns
=

∏

p

(

1 + aK (p)

ps
+ aK (p2)

p2s
+ · · ·

)

. (2.3)

From the definition of τ K
k (n) in (1.4), we have that for �s > 1

ζK (s)k =
∑

a1

∑

a2

· · ·
∑

ak

(NK/Q(a1)NK/Q(a2) · · · NK/Q(ak))
−s =

∞∑

n=1

τ K
k (n)

ns
.

(2.4)

Since τ K
k (n) is also a multiplicative function, and

τ K
k (n) =

∑

n=n1n2···nk
aK (n1) · · · aK (nk) �

∑

n=n1n2···nk
(τ (n1) · · · τ(nk))

d−1 � nε

(2.5)
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106 G. Lü, W. Ma

for any ε > 0, we can rewrite (2.4) for �s > 1 as

ζK (s)k =
∏

p

(

1 + τ K
k (p)

ps
+ τ K

k (p2)

p2s
+ · · ·

)

. (2.6)

On the other hand, from (2.3), we have

ζK (s)k =
( ∞∑

n=1

aK (n)

ns

)k

=
∏

p

(

1 + aK (p)

ps
+ aK (p2)

p2s
+ · · ·

)k

=
∏

p

(

1 + kaK (p)

ps
+ kaK (p2) + k(k−1)

2 aK (p)

p2s
+ · · ·

)

. (2.7)

By comparing (2.6) with (2.7), we have the following lemma.

Lemma 2.1 Let K be an algebraic number field of degree d, and the function τ K
k (n)

defined in (1.4). Then, for any prime number p, we have

τ K
k (p) = kaK (p),

where aK (p) denotes the number of integral ideals in K with norm p.

Our next lemma gives an upper bound for aK (n), which improves (1.1).

Lemma 2.2 Let K/Q be a number field of degree d. Then we have

aK (n) ≤ τd(n).

Proof Since aK (n) and τd(n) are both multiplicative functions, it suffices to prove
aK (pr ) ≤ τd(pr ), where p is a rational prime number, and r is a natural number. Let
OK be the ring of algebraic integers in K . Denote by pOK the principal ideal in K
generated by p. It is well known that pOK can be uniquely factorized into a product
of prime ideals in K

pOK = B
e1
1 B

e2
2 · · ·Beg

g ,

where B j are distinct prime ideals in K with norm p f j , j = 1, 2 . . . , g. These e j ’s
and f j ’s satisfy the relation

e1 f1 + e2 f2 + · · · + eg fg = d. (2.8)

If a is a non-zero integral ideal satisfying NK/Q(a) = pr , so that we have

a = B
r1
1 B

r2
2 · · ·Brg

g .
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On mean values of some arithmetic functions 107

By checking the norms on both sides, we have

r1 f1 + r2 f2 + · · · + rg fg = r.

Then, it is easy to find that aK (pr ), the number of integral ideals with norm pr , equals
the number of solutions of the Diophantine equation

f1x1 + f2x2 + · · · + fgxg = r. (2.9)

Obviously, the number of solutions of (2.9) is not more than the number of solutions
of Diophantine equation (note that g ≤ d)

x1 + x2 + · · · + xd = r. (2.10)

It is well known that the number of solutions of (2.10) equals

(
r + d − 1
d − 1

)

= τd(p
r ).

Hence, we have aK (pr ) ≤ τd(pr ). This completes the proof of Lemma 2.2. 	

Let K L be the compositum of two number fields K and L , whose discriminants

are relatively prime. We would like to establish a relationship between aK L(p) and
aK (p)aL(p).

Lemma 2.3 Suppose K and L are two field extensions of Q such that

[K : Q] = m, [L : Q] = n, (DK , DL) = 1,

where DK and DL are discriminants of K and L respectively. Hence, for any prime
number p, we have that

aK L(p) = aK (p)aL(p).

Proof Since the discriminants DK and DL are relatively prime, their compositum K L
is a field of degree mn, i.e., [K L : Q] = [K : Q][L : Q]. In this case, the inclusion
OKOL ⊆ OK L is an equality.

Let A1 ⊂ OK and A2 ⊂ OL be two integral ideals with NK/Q(A1) =
NL/Q(A2) = p. By the fundamental theorem of Abel group, we could find integral
bases {ω1, . . . , ωm}, {υ1, . . . , υn} of OK , OL such that

OK = Zω1 ⊕ · · · ⊕ Zωm, A1 = Zα1ω1 ⊕ · · · ⊕ Zαmωm;
OL = Zυ1 ⊕ · · · ⊕ Zυn, A2 = Zβ1υ1 ⊕ · · · ⊕ Zβnυn

where αi , β j ∈ Z, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Hence, we know

NK/Q(A1) = |
∏

i

αi | = NL/Q(A2) = |
∏

j

β j | = p.
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108 G. Lü, W. Ma

On noting that OKOL = OK L , we learn that {ω1υ1, . . . , ω1υn, . . . , ωmυn} is an
integral basis of OK L . Take A = A1OL + A2OK ⊂ OK L . We have

NKL/Q(A) = |OK L/A| = |OKOL/(A1OL + A2OK )|
= | ⊕i, j Zωiυ j/(⊕i, jZαiωiυ j + ⊕i, jZβ jωiυ j )|
= |

∏

i, j

(αi , β j )|

= p.

Hence, we have

aK L(p) ≥ aK (p)aL(p). (2.11)

On the other hand, for any integral ideal A ⊂ OK L with NKL/Q(A) = p, let

A1 = NKL/K (A), A2 = NKL/L(A).

Note that NKL/Q(A) = NK/Q(NKL/K (A)) = NL/Q(NKL/L(A)), we have that

NK/Q(A1) = NL/Q(A2) = p.

What is more, if there is another integral ideal A′ in OK L such that

A1 = NKL/K (A) = NKL/K (A′), A2 = NKL/L(A) = NKL/L(A′),

we would have that A, A′|A1OL , A2OK . Then we have

A, A′ ⊃ A1OL + A2OK .

Together with

NKL/Q(A) = NKL/Q(A′) = NKL/Q(A1OL + A2OK ) = p,

we have A = A′ = A1OL + A2OK .
Hence, we have

aK L(p) ≤ aK (p)aL(p). (2.12)

By (2.11) and (2.12), we have that for any prime number p,

aK L(p) = aK (p)aL(p).

This completes the proof of Lemma 2.3. 	

In order to control the error terms in Theorem 1.2, we take a short cut to cite one

result in Heath-Brown [4].
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On mean values of some arithmetic functions 109

Lemma 2.4 Let K be an algebraic number field of degree n, Then

ζK (1/2 + i t) �K t
n
6+ε, (t ≥ 1)

for any fixed ε > 0.

3 Proof of Theorem 1.1.

Let K/Q be a number field of degree d. Recall that

τ K
k (n) =

∑

n=n1n2···nk
aK (n1) · · · aK (nk). (3.1)

By Lemma 2.2, we have

τ K
k (n) ≤

∑

n=n1n2···nk
τd(n1) · · · τd(nk) = τdk(n). (3.2)

Then we have

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n) ≤
∑

n≤x

τd1k1(n)τd2k2(n) · · · τdl−1kl−1(n)τ
Kl
kl

(n). (3.3)

Define an L-function associated to the function τd1k1(n) · · · τdl−1kl−1(n)τ
Kl
kl

(n) in
the half-plane �s > 1

LK1,K2,...,Kl
k1,k2,...,kl

(s) =
∞∑

n=1

τd1k1(n)τd2k2(n) · · · τdl−1kl−1(n)τ
Kl
kl

(n)

ns
, (3.4)

for it is absolutely convergent in this region. Since τd1k1(n)τd2k2(n) · · · τdl−1kl−1(n)

τ
Kl
kl

(n) is multiplicative, for �s > 1, we can write

LK1,K2,...,Kl
k1,k2,...,kl

(s) =
∏

p

(

1 + τd1k1(p) · · · τdl−1kl−1(p)τ
Kl
kl

(p)

ps

+τd1k1(p
2) · · · τdl−1kl−1(p

2)τ
Kl
kl

(p2)

p2s
+ · · ·

)

,

where the product is over all primes. By Lemma 2.1, we have

LK1,K2,...,Kl
k1,k2,...,kl

(s) =
∏

p

(

1 + k1k2 · · · kl−1d1d2 · · · dl−1klaKl (p)

ps
+ · · ·

)

. (3.5)
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On the other hand, from (2.3), we have

ζKl (s)
k1k2···kld1d2···dl−1 =

∏

p

(

1 + k1k2 · · · kld1d2 · · · dl−1aKl (p)

ps
+ · · ·

)

. (3.6)

From (3.5) and (3.6), we have

LK1,K2,...,Kl
k1,k2,...,kl

(s) = ζKl (s)
∏l

j=1 k j
∏l−1

j=1 d jU (s), (3.7)

where U (s) denotes a Dirichlet series, which is absolutely convergent for σ > 1
2 and

uniformly convergent for σ > 1
2 + ε. Therefore, LK1,K2,...,Kl

k1,k2,...,kl
(s) admits a meromor-

phic continuation to the half-plane Res > 1
2 , and only has a pole s = 1 of order

∏l
j=1 k j

∏l−1
j=1 d j in this region.

By (3.4) and (3.7), we easily find that

∑

n≤x

τd1k1(n)τd2k2(n) · · · τdl−1kl−1(n)τ
Kl
kl

(n) ∼ cx(log x)
∏l

j=1 k j
∏l−1

j=1 d j−1
. (3.8)

This, together with (3.3), completes the proof of Theorem 1.1. 	


4 Proof of Theorem 1.2.

Let K j/Q be number fields whose discriminants Dj are relatively prime, i.e.,
(Di , Dj ) = 1, 1 ≤ i �= j ≤ l. Define

LK1,K2,...,Kl
k1,k2,...,kl

(s) =
∞∑

n=1

τ
K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n)

ns
, (4.1)

Since τ
K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n) is multiplicative, for �s > 1, we can write

LK1,K2,...,Kl
k1,k2,...,kl

(s)

=
∏

p

(

1 + τ
K1
k1

(p)τ K2
k2

(p) · · · τ Kl
kl

(p)

ps
+ τ

K1
k1

(p2)τ K2
k2

(p2) · · · τ Kl
kl

(p2)

p2s
+ · · ·

)

,

where the product is over all primes. By Lemmas 2.2 and 2.3, we have

LK1,K2,...,Kl
k1,k2,...,kl

(s) =
∏

p

(

1 + k1k2 · · · klaK1(p)aK2(p) · · · aKl (p)

ps
+ · · ·

)

(4.2)

=
∏

p

(

1 + k1k2 · · · klaK1K2···Kl (p)

ps
+ · · ·

)

. (4.3)
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On mean values of some arithmetic functions 111

From (2.3), we have

LK1,K2,...,Kl
k1,k2,...,kl

(s) = ζK1K2···Kl (s)
∏l

j=1 k jU1(s), (4.4)

whereU1(s) denotes a Dirichlet series, which is absolutely convergent for σ > 1
2 and

uniformly convergent for σ > 1
2+ε. Therefore, LK1,K2,...,Kl

k1,k2,...,kl
(s) admits ameromorphic

continuation to the half-plane Res > 1
2 , and only has a pole s = 1 of order

∏l
j=1 k j :=

m in this region.
By Perron’s formula (see Proposition 5.54 in [7]), we have

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n) = 1

2π i

∫ b+iT

b−iT
LK1,K2,...,Kl
k1,k2,...,kl

(s)
xs

s
ds + O

(
x1+ε

T

)

,

(4.5)

where b = 1 + ε and 1 ≤ T ≤ x is a parameter to be chosen later.
Next, we move the integration to the parallel segment with Res = 1

2 + ε. By
Cauchy’s residue theorem, we have

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n)

= 1

2π i

{∫ 1
2+ε+iT

1
2+ε−iT

+
∫ b+iT

1
2+ε+iT

+
∫ 1

2+ε−iT

b−iT

}

LK1,K2,...,Kl
k1,k2,...,kl

(s)
xs

s
ds

+Ress=1L
K1,K2,...,Kl
k1,k2,...,kl

(s)
xs

s
+ O

(
x1+ε

T

)

:= x Pm(log x) + J1 + J2 + J3 + O

(
x1+ε

T

)

, (4.6)

where Pm(t) denotes a suitable polynomial in t of degree m − 1.
By Lemma 2.4, and the Phragmen-Lindelöf principle for a strip (see e.g. Theorem

5.53 in Iwaniec and Kowalski [7]), we have that for 1
2 ≤ σ ≤ 1 + ε

ζK1K2···Kl (σ + i t) � (1 + |t |) d1d2 ···dl
3 (1−σ)+ε. (4.7)

Therefore, we have for 1
2 ≤ σ ≤ 1 + ε

ζm
K1K2···Kl

(σ + i t) � (|t | + 1)
md1d2 ···dl

3 (1−σ)+ε. (4.8)
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For J1, by (4.4), we have

J1 � x
1
2+ε + x

1
2+ε

∫ T

1

∣
∣
∣LK1,K2,...,Kl

k1,k2,...,kl
(s)

∣
∣
∣ t−1dt

� x
1
2+ε + x1/2+ε

∫ T

1

∣
∣
∣ζm

K1K2···Kl
(1/2 + ε + i t)

∣
∣
∣ t−1dt,

where we have used that U1(s) is absolutely convergent in the region Res � 1/2 + ε

and behaves as O(1) there. Then, by (4.8), we have

J1 � x
1
2+ε + x1/2+ε log T max

T1≤T

{

T−1
1

∫ T1

T1/2

∣
∣ζK1K2···Kl (1/2 + ε + i t)

∣
∣m dt

}

� x
1
2+ε + x

1
2+ε log T max

T1≤T

{

T−1
1

∫ T1

T1/2
t
md1d2 ···dl

6 +εdt

}

(4.9)

� x
1
2+ε + x

1
2+εT

md1d2 ···dl
6 +ε.

For the integrals over the horizontal segments, we have

J2 + J3 �
∫ b

1
2+ε

xσ
∣
∣
∣ζm

K1K2···Kl
(σ + iT )

∣
∣
∣ T−1dσ

� max
1
2+ε≤σ≤b

xσ T
md1d2 ···dl

3 (1−σ)+εT−1

= max
1
2+ε≤σ≤b

(
x

T
md1d2 ···dl

3

)σ

T
md1d2 ···dl

3 −1+ε (4.10)

� x1+ε

T
+ x

1
2+εT

md1d2 ···dl
6 −1+ε.

From (4.6), (4.9), and (4.10), we have

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n) = x Pm(log x) + O(x1+εT−1)

+ O(x
1
2+εT

md1d2 ···dl
6 +ε). (4.11)

On taking T = x
3

md1d2 ···dl+6 in (4.11), we have

∑

n≤x

τ K
k1 (n)τ K

k2 (n) · · · τ K
kl (n) = x Pm(log x) + O(x

1− 3
md1d2 ···dl+6+ε

).

This completes the proof of Theorem 1.2. 	

At the end of this section, we complete the proof of Corollary 1.4.
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Proof of Corollary 1.4 We have

∑

n≤x

τ
K1
k1

(n)τ
K2
k2

(n) · · · τ Kl
kl

(n) ≤
∑

n≤x

τd1k1(n) · · · τdi0−1ki0−1(n)τ
Ki0
ki0

(n) · · · τ Kl
kl

(n).

Then, the generating function of the right-hand side is

ζKi0Ki0+1···Kl (s)
∏l

j=1 k j
∏i0−1

j=1 d jU2(s),

whereU2(s) denotes a Dirichlet series, which is absolutely convergent for σ > 1
2 and

uniformly convergent for σ > 1
2 + ε. This gives the proof of Corollary 1.4. 	
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