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Abstract. This work is concerned with the following nonautonomous evolu-

tionary system on a Banach space X,

xt +Ax = f (x, h(t)) , (0.1)

where A is a hyperbolic sectorial operator on X, the nonlinearity f ∈ C(Xα×
X,X) is Lipschitz in the first variable, the nonautonomous forcing h ∈ C(R, X)
is µ-subexponentially growing for some µ > 0 (see (3.4) below for definition).

Under some reasonable assumptions, we first establish an existence result for a

unique nonautonomous hyperbolic equilibrium for the system in the framework
of cocycle semiflows. We then demonstrate that the system exhibits a global

synchronising behavior with the nonautonomous forcing h as time varies. Fi-

nally, we apply the abstract results to stochastic partial differential equations
with additive white noise and obtain stochastic hyperbolic equilibria for the

corresponding systems.

1. Introduction. The notion of equilibria is a fundamental concept in the study of
the long time behaviour of dynamical systems. The study of the existence and sta-
bility of equilibria is of great interests in both mathematics and physics. In contrast
to the autonomous dynamical systems, the existence of equilibria of nonautonomous
or random dynamical systems is still a more difficult and subtle problem.

There are many works on the studies of dynamics of evolutionary systems un-
der small bounded perturbations; see e.g. [4, 5, 7, 8, 11, 18, 20–22, 24, 25]. Generally,
autonomous hyperbolic equilibria are locally structural stable under small bounded
autonomous or nonautonomous perturbations; see e.g. [3–5]. This fact usually leads
to the structural stability of gradient attractors; see e.g. [4, 5, 11]. However, it is
also of great importance to study the effect of unbounded nonautonomous pertur-
bation on terms of a dynamical system when we consider such systems as models of
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real phenomena, because there are many examples of unbounded nonautonomous
perturbations such as (sub)linear and (sub)exponential ones.

In this paper, we first consider the nonautonomous system (0.1). To have a
better understanding of the dynamics of (0.1), as usual we embed the system into
the following cocycle system:

xt +Ax = f (x, p(t)) , p ∈ H, (1.1)

whereH := H[h] is the hull of h (see (3.7) below for definition). Then (1.1) generates
a cocycle semiflow ϕ = ϕ(t, p)x on Xα with base space H and driving system
θt, where θt is the shift operator on H for each t ∈ R. Suppose the Lipschitz
constant of f and the subexponential growth rate µ of h are sufficiently small.
We first prove that the system ϕ possesses a unique nonautonomous equilibrium
Γ ∈ C(H, Xα). Next we show the equilibrium is hyperbolic by proving the existences
of the section unstable manifold Wu(Γ, ·) : H → Xα and the section stable manifold
W s(Γ, ·) : H → Xα of Γ. Meanwhile, we demonstrate that both Wu(Γ, ·) : H → Xα

and W s(Γ, ·) : H → Xα are continuous in the sense of Hausdorff distance. In
consequence, if h is periodic (resp. pseudo periodic, almost periodic, uniformly
almost automorphic), then Γ(θth), Wu(Γ, θth) and W s(Γ, θth) are also periodic
(resp. pseudo periodic, almost periodic, uniformly almost automorphic). Moreover,
we prove that Wu(Γ, θth) exponentially forward attracts every point in Xα through
ϕ. Accordingly, the system (0.1) exhibits a global synchronising behavior with the
nonautonomous forcing h as time varies.

In the present paper, we also study the existence and asymptotic stability of
stochastic hyperbolic equilibrium of the following stochastic equation with additive
white noise

du+Audt = f(u)dt+ dW (t) (1.2)

on a Polish space X, where A is also a hyperbolic sectorial operator on X, f : Xα →
X is Lipschitz continuous, W is a X-valued Wiener process on the classic Wiener
space (Ω,F ,P). As far as I know, there are few papers to discuss the existence of
stochastic hyperbolic equilibria for stochastic systems. When the sectorial operator
A is positive, the existence of an exponentially stable non-trivial equilibrium was
obtained by Caraballo et al. [6]. Here we treat a general case when the operator A
is hyperbolic. We first need to construct a continuous stationary solution Z(ϑ·ω) :
R→ Xα for linear Langevin stochastic partial differential equation (SPDE) in Xα:

dz +Azdt = dW (t),

where {ϑt}t∈R is a family of measure preserving transformations on Ω. It is worth
noting that the stationary solution Z(ϑ·ω) : R → Xα is subexponentially growing
for each ω ∈ Ω. In other words, the random variable Z : Ω→ Xα is tempered (see
Definition 5.5 below).

By a transformation

v(t) = u(t)− Z(ϑtω),

then for each fixed ω ∈ Ω, SPDE (1.2) becomes the following nonautonomous
equation

dv

dt
+Av = f

(
v + Z(ϑtω)

)
. (1.3)

Then by applying the methods dealing with (0.1), the stochastic system (1.3) is
proved to possess a unique tempered stochastic hyperbolic equilibrium Ξ : Ω→ Xα,
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whose ω-section Ξ(ω) not only backward attracts every point in its ω-section unsta-
ble manifold Wu(Ξ, ω) but also forward attracts every point in its ω-section stable
manifold W s(Ξ, ω). Other existence results on invariant manifolds for stochastic
parabolic and hyperbolic differential equations with additive or multiplicative noise
can be refereed to Duan et al. [15,16], Lu and Schmalfuss [23], Brune and Schmal-
fuss [2]. We also point out that for each ω ∈ Ω, the original system (1.2) exhibits a
global synchronising behavior with h(t) = Z(ϑtω), t ∈ R as time vaies.

This paper is organized as follows. In Section 2 and Section 3, we present basic
definitions, and the mathematical setting of the system (1.1), respectively. Section 4
contains the proof of our main abstract results. In Section 5, we apply the abstract
results to stochastic partial differential equations with additive white noise.

2. Preliminaries. In this section we introduce some basic definitions and notions
[9, 10].

Let X be a complete metric space with metric d(·, ·). Given M ⊂ X, we denote
M , intM , ∂M and M c the closure, interior, boundary and complement of M of X,
respectively. A set U ⊂ X is called a neighborhood of M ⊂ X, if M ⊂ intU .

The Hausdorff semidistance and the Hausdorff distance in X are defined, respec-
tively, as

HX(M,N) = sup
x∈M

d(x,N), ∀M,N ⊂ X,

δX(M,N) = max{HX(M,N), HX(M,N)}, ∀M,N ⊂ X.

2.1. Cocycle semiflows. A nonautonomous system consists of a “base flow” and
a “cocycle semiflow” that is in some sense driven by the base flow.

A base flow {θt}t∈R is a group of continuous transformations from a metric space
Σ into itself such that

• θ0 = idΣ,
• θt ◦ θs = θt+s for all t, s ∈ R,
• θtΣ = Σ for all t ∈ R.

Definition 2.1. A cocycle semiflow ϕ on the phase space X over θ is a continuous
mapping ϕ : R+ × Σ×X → X satisfying

• ϕ(0, σ, x) = x,
• ϕ(t+ s, σ, x) = ϕ(t, θsσ, ϕ(s, σ, x)) (cocycle property).

We usually denote ϕ(t, σ)x := ϕ(t, σ, x). Then {ϕ(t, σ)}t≥0, σ∈Σ can be viewed
as a family of continuous mappings on X.

2.2. Nonautonomous equilibrium and its section invariant manifolds. Con-
sider a nonautonomous system (ϕ, θ)X,Σ.

For convenience in statement, a family of subsets B = {Bσ}σ∈Σ of X is called a
nonautonomous set in X.

Let B = {Bσ}σ∈Σ be a nonautonomous set. For convenience, we will rewrite
Bσ as B(σ), called the σ-section of B. We also denote P(B) the union of the sets
B(σ)× {σ} (σ ∈ Σ), i.e.,

P(B) =
⋃
σ∈Σ

B(σ)× {σ}.

Note that P(B) is a subset of X × Σ.
A nonautonomous set B is said to be closed (resp. open, compact), if P(B) is

closed (resp. open, compact) in X × Σ.
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A nonautonomous set B is said to be invariant under ϕ if

ϕ(t, σ)B(σ) = B(θtσ), σ ∈ Σ.

Let B and C be two nonautonomous subsets of X. We say that B pullback (resp.
forward) attracts C under ϕ if for any σ ∈ Σ,

lim
t→∞

HX(ϕ(t, θ−tσ)C(θ−tσ), B(σ)) = 0.(
resp. lim

t→∞
HX(ϕ(t, σ)C(σ), B(θtσ)) = 0.

)
Let J ⊂ R be an interval. A mapping γ : J → X is called a solution of ϕ on J ,

if there exists σ ∈ Σ such that

γ(t) = ϕ(t− s, θsσ)γ(s), ∀ t, s ∈ J, t ≥ s.
A solution on J = R is called a full solution.

Remark 1. We will also call a solution γ defined as above a σ-solution of ϕ to
emphasize the dependence of γ on σ.

Definition 2.2. A nonautonomous set Γ is called a nonautonomous equilibrium of
ϕ, if for each σ ∈ Σ, γ(t) := Γ(θtσ) is a full solution of ϕ.

Let Γ be a nonautonomous equilibrium of ϕ.

Definition 2.3. For each σ ∈ Σ, the section unstable (resp. stable) manifold of Γ
at σ is defined to be the set

Wu (Γ, σ) =

{
x ∈ X

∣∣∣∣ there is a σ-solution γ(t) on (−∞, 0] with γ(0) = x
such that limt→−∞HX(γ(t),Γ(θtσ)) = 0

}
.(

resp. W s (Γ, σ)=

{
x ∈ X

∣∣∣∣ there is a σ-solution γ(t) on [0,∞) with γ(0) = x
such that limt→∞HX(γ(t),Γ(θtσ)) = 0

}
.

)
In the following, we call Wu (Γ, σ) (resp. W s (Γ, σ)) the σ-section unstable and

(resp. stable) manifold of Γ for short.

3. Mathematical setting. Let X be a Banach space with norm ‖ · ‖, and let A
be a sectorial operator in X. Pick a number a > 0 sufficiently large so that

Reσ(A+ aI) > 0.

Let Λ = A + aI. For each α ≥ 0, define Xα = D(Λα). Xα is equipped with
the norm ‖ · ‖α defined by

‖x‖α = ‖Λαx‖, x ∈ Xα.

Note that the definition of Xα is independent of the choice of the number a.
A sectorial operator A is said to be hyperbolic if its spectrum σ(A) has a decom-

position σ(A) = σu ∪ σs with

σu = σ(A) ∩ {Reλ < 0}, σs = σ(A) ∩ {Reλ > 0}.
Accordingly, the space X has a direct sum decomposition: X = Xu

⊕
Xs. Let

Πi : X → Xi, i = u, s

be the projection from X to Xi. Denote Au = A|Xu and As = A|Xs . By the basic
knowledge on sectorial operators (see Henry [19]), we know that there exist M ≥ 1,
β > 0 such that

‖Λαe−Aut‖ ≤Meβt, ‖e−Aut‖ ≤Meβt, t ≤ 0, (3.1)
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‖Λαe−AstΠsΛ
−α‖ ≤Me−βt, ‖Λαe−Ast‖ ≤Mt−αe−βt, t > 0. (3.2)

In the present paper, we will study the qualitative behaviour of a nonautonomous
equation on X which have the form:

xt +Ax = f (x, h(t)) , (3.3)

where the nonautonomous forcing h ∈ C(R, X) is µ-subexponentially growing for
some µ > 0, namely, limt→±∞ ‖h(t)‖ =∞ and

lim sup
t→±∞

log+ ‖h(t)‖
|t|

= µ0 < µ. (3.4)

Note that it also covers the case when p is a periodic function, quasiperiodic func-
tion, almost periodic function or local almost periodic function [9, 21].

Suppose the nonlinearity f ∈ C(Xα ×X,X) satisfies

(1) Lipschitz condition:

‖f(x1, y)− f(x2, y)‖ ≤ Lf‖x1 − x2‖α, x1, x2 ∈ Xα, y ∈ X. (3.5)

(2) Linear growth condition: there exists a constant C > 0 such that

‖f(x, y)‖ ≤ C (‖x‖α + ‖y‖+ 1) , x ∈ Xα, y ∈ X. (3.6)

Denote by C(R, X) the set of continuous functions from R to X. Equip with
C(R, X) the compact-open topology generated by the metric:

r(h1, h2) =

∞∑
n=1

1

2n
·

maxt∈[−n,n] ‖h1(t)− h2(t)‖
1 + maxt∈[−n,n] ‖h1(t)− h2(t)‖

, h1, h2 ∈ C(R, X).

Then C(R, X) is a complete metric space. Define the hull of the nonautonomous
forcing h as follows

H := H[h] = {h(τ + ·); τ ∈ R}
C(R,X)

, (3.7)

and define the shift operator on H:

θt : H → H, t ∈ R, as θtp(·) = p(t+ ·).
It is clear that θt : H → H is continuous.

Instead of (3.3), we will consider the more general cocycle system in Xα (where
α ∈ [0, 1)):

xt +Ax = f (x, p(t)) , p ∈ H. (3.8)

For each x0 ∈ Xα and t0 ∈ R, we denote by x(t, t0;x0, p) the unique (strong)
solution x(t) of (3.8) with initial value x(t0) = x0.

Proposition 1 ( [19]). For each x0 ∈ Xα, there is a T > t0 such that (3.8) has a
unique solution x(t) = x(t, t0;x0, p) on [t0, T ) satisfying

x(t) = e−A(t−t0)x0 +

∫ t

t0

e−A(t−τ)f
(
x(τ), p(τ)

)
dτ, t ∈ [t0, T ). (3.9)

For convenience, we always assume that the unique solution (3.9) is globally
defined. Define

ϕ(t, p)x0 := x(t, 0;x0, p), x0 ∈ Xα.

Then ϕ is a cocycle semiflow on Xα driven by the base flow θ on H.

4. Nonautonomous hyperbolic equilibrium and global synchronising be-
havior of the forced nonautonomous system with h.
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4.1. Basics. Let us first introduce several Banach spaces that will used throughout
the paper. For µ ≥ 0, define

X ±
µ =

{
u ∈ C(R±;Xα) : sup

t∈R±
e−µ|t|‖x(t)‖α <∞

}
.

X ±
µ is equipped with the norm

‖x‖X ±
µ

= sup
t∈R±

e−µ|t|‖x(t)‖α, ∀x ∈X ±
µ .

Replacing R± with R in the above definition, one immediately obtains the definition
of the space Xµ. Clearly

Xµ = C(R;Xα) ∩X +
µ ∩X −

µ .

The following lemma will play a basic role in the proof of our main theorem in
the next section.

Lemma 4.1. Let µ ∈ (0, β). Then the following assertions hold.

(a) Let x ∈ X −
µ . Then x is the solution of (3.8) if and only if it solves the

following integral equation

x(t) = e−AutΠux(0) +

∫ t

0

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ

+

∫ t

−∞
e−As(t−τ)Πsf

(
x(τ), p(τ)

)
dτ.

(4.1)

(b) Let x ∈X +
µ . Then x is a solution of (3.8) if and only if it solves the following

integral equation

x(t) = e−AstΠsx(0) +

∫ t

0

e−As(t−τ)Πsf
(
x(τ), p(τ)

)
dτ

−
∫ ∞
t

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ.

(4.2)

(c) Let x ∈ Xµ. Then x is the solution of (3.8) if and only if it solves the
following integral equation

x(t) =

∫ t

−∞
e−As(t−τ)Πsf

(
x(τ), p(τ)

)
dτ

−
∫ ∞
t

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ.

(4.3)

Proof. (a) Let x ∈X −
µ be a solution of (3.8). We write x(t) = xu(t) +xs(t), where

xu(t) := Πux(t), xs(t) := Πsx(t). Then

xu(t) = e−Autxu(0) +

∫ t

0

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ,

and

xs(t) = e−As(t−t0)xs(t0) +

∫ t

t0

e−As(t−τ)Πsf
(
x(τ), p(τ)

)
dτ (4.4)
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for any t0 ≤ t. Since

‖e−As(t−t0)xs(t0)‖α ≤Me−β(t−t0)‖x(t0)‖α
= Me−βte(β−µ)t0

(
eµt0‖x(t0)‖α

)
≤Me−βte(β−µ)t0‖x‖X −

µ
→ 0, as t0 → −∞,

setting t0 → −∞ in (4.4) we find that

xs(t) =

∫ t

−∞
e−As(t−τ)Πsf

(
x(τ), p(τ)

)
dτ.

Consequently

x(t) = xu(t) + xs(t)

= e−Autxu(0) +

∫ t

0

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ

+

∫ t

−∞
e−As(t−τ)Πsf

(
x(τ), p(τ)

)
dτ.

This is precisely what we desired in (4.1).
Conversely if x satisfies (4.1), then one can easily see that it solves (3.8) on R−.

(b) Let x ∈X +
µ be a solution of (3.8). We write x(t) = xu(t) + xs(t), where

xu(t) = e−Autxu(t0) +

∫ t

t0

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ, (4.5)

xs(t) = e−Astxs(0) +

∫ t

0

e−As(t−τ)Πsf
(
x(τ), p(τ)

)
dτ

for any t0 ≥ t. Observing that

‖e−Au(t−t0)xu(t0)‖α ≤Meβ(t−t0)‖x(t0)‖α
= Meβte−(β−µ)t0e−µt0‖x(t0)‖α
≤Meβte−(β−µ)t0‖x‖X +

µ
→ 0, as t0 →∞,

setting t0 →∞ in (4.5) one immediately concludes that

xu(t) = −
∫ ∞
t

e−Au(t−τ)Πu[f(x(τ)) + p(τ)]dτ.

Thus

x(t) = xu(t) + xs(t)

= e−Astxs(0) +

∫ t

0

e−As(t−τ)Πsf
(
x(τ), p(τ)

)
dτ

−
∫ ∞
t

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ.

This is precisely what we desired in (4.2).
If x satisfies (4.2), then it clearly solves (3.8) on R+. The proof of (b) is complete.

(c) Let x ∈Xµ be a solution of (3.8). Write x(t) = xu(t) + xs(t), where

xs(t) = e−As(t−t0)xs(t0) +

∫ t

t0

e−As(t−τ)Πsf
(
x(τ), p(τ)

)
dτ, t ≥ t0,
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xu(t) = e−Au(t−t0)xu(t0) +

∫ t

t0

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ, t ∈ R.

Similar to (a) and (b), we have

xs(t) =

∫ t

−∞
e−As(t−τ)Πsf

(
x(τ), p(τ)

)
dτ,

and

xu(t) = −
∫ ∞
t

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ.

It follows that

x(t) =

∫ t

−∞
e−As(t−τ)Πsf

(
x(τ), p(τ)

)
dτ

−
∫ ∞
t

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ.

Conversely, if x satisfies (4.3), it is trivial to check that x is a full solution of
(3.8).

4.2. Main results. Denote

Xα
i := Xi ∩Xα, i = u, s.

Our main results in the section can be summarized as

Theorem 4.2. Let h ∈ C(R, X) be µ-subexponentially growing for some µ ∈ (0, β).
Suppose the Lipschitz constant Lf of f is sufficiently small. Then

(a) The cocycle semiflow ϕ has a unique µ-subexponential equilibrium Γ ∈ C(H, Xα),
namely, the full solution Γ(θ·p) : R → Xα is µ-subexponentially growing for
each p ∈ H.

(b) The equilibrium Γ is hyperbolic. Specifically, for each p ∈ H, there exist two
family of Lipschitz continuous mappings

ξp : Xα
u → Xα

s ζp : Xα
s → Xα

u

such that the p-section unstable and stable manifold of Γ are represented as

Wu(Γ, p) = {y + ξp(y) : y ∈ Xα
u } (4.6)

W s(Γ, p) = {ζp(y) + y : y ∈ Xα
s }

respectively, and

lim
t→−∞

‖γu(t)− Γ(θtp)‖α = 0, γu(0) ∈Wu(Γ, p)

lim
t→∞

‖γs(t)− Γ(θtp)‖α = 0, γs(0) ∈W s(Γ, p)

exponentially fast.
(c) Furthermore, the mappings

Ξ : H → C (Xα
u , X

α
s ) and Θ : H → C (Xα

s , X
α
u )

defined by

Ξ(p) = ξp and Θ(p) = ζp, p ∈ H
are continuous.
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Remark 2. (1) The continuous dependence of ξp and ζp on p imply that

lim
p→q

δXα
(
Wu(Γ, p), Wu(Γ, q)

)
= 0, ∀ q ∈ H (4.7)

and

lim
p→q

δXα
(
W s(Γ, p), W s(Γ, q)

)
= 0, ∀ q ∈ H, (4.8)

respectively.
(2) It is clear that if h is periodic (resp. pseudo periodic, almost periodic, u-

niformly almost automorphic), then θth is periodic (resp. pseudo periodic,
almost periodic, uniformly almost automorphic). In consequence, the con-
tinuity of Γ : H → Xα, (4.7) and (4.8) manifest that if h is periodic (resp.
pseudo periodic, almost periodic, uniformly almost automorphic), then Γ(θth),
Wu(Γ, θth) and W s(Γ, θth) are also periodic (resp. pseudo periodic, almost
periodic, uniformly almost automorphic). This means Γ(θth), Wu(Γ, θth) and
W s(Γ, θth) exhibit a synchronising behavior with the nonautonomous forcing
h as time varies.

Proof of Theorem 4.2. (a) Suppose Lf is so small that

MLf

∫ ∞
0

(
1 + τ−α

)
e−β

′τdτ < 1, (4.9)

where β′ = β − µ. For p ∈ H, one can use the righthand side of equation (4.3) to
define a contraction mapping T on Xµ as follows:

T x(t) =

∫ t

−∞
e−As(t−τ)Πsf

(
x(τ), p(τ)

)
dτ

−
∫ ∞
t

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ.

We first verify that T maps Xµ into itself. Let x be in Xµ. Then by (3.1),(3.2)
and (3.6),

‖T x(t)‖α ≤M
∫ t

−∞
(t− τ)−αe−β(t−τ)C

(
‖x(τ)‖α + ‖p(τ)‖+ 1

)
dτ

+M

∫ ∞
t

e−β(τ−t)C
(
‖x(τ)‖α + ‖p(τ)‖+ 1

)
dτ.

One observes that

e−µ|t| = e−µ|s+(t−s)| ≤ e−µ(|s|−|(t−s)|) = e−µ|s|eµ|t−s|, ∀ t, s ∈ R. (4.10)
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We have

e−µ|t|‖T x(t)‖α

≤M
∫ t

−∞
(t− τ)−αeµ|t−τ |e−β(t−τ)

[
e−µ|τ |C

(
‖x(τ)‖α + ‖p(τ)‖+ 1

)]
dτ

+M

∫ ∞
t

eµ|t−τ |e−β(τ−t)[e−µ|τ |C(‖x(τ)‖α + ‖p(τ)‖+ 1
)]
dτ

= M

∫ t

−∞
(t− τ)−αe−β

′(t−τ)
[
e−µ|τ |C

(
‖x(τ)‖α + ‖p(τ)‖+ 1

)]
dτ

+M

∫ ∞
t

e−β
′(τ−t)[e−µ|τ |C(‖x(τ)‖α + ‖p(τ)‖+ 1

)]
dτ

≤MC

∫ ∞
0

(
1 + τ−α

)
e−β

′τdτ
(
‖x‖Xµ

+ ‖p‖∞,µ + 1
)

:= Mβ′C
(
‖x‖Xµ

+ ‖p‖∞,µ + 1
)
, ∀ t ∈ R,

where

Mβ′ := M

∫ ∞
0

(
1 + τ−α

)
e−β

′τdτ,

‖p‖∞,µ := sup
t∈R

e−µ|t|‖p(t)‖.

Notice from (3.4) that ‖p‖∞,µ <∞. Hence ‖T x‖Xµ
<∞, i.e. T x ∈Xµ.

Next, we check that T is a contraction mapping. Indeed, in a quite similar
fashion as above, it can be shown that for any x, x′ ∈Xµ,

e−µ|t|‖T x(t)− T x′(t)‖α

≤MLf

∫ t

−∞
(t− τ)−αe−β

′(t−τ)
(
e−µ|τ |‖x(τ)− x′(τ)‖α

)
dτ

+MLf

∫ ∞
t

eβ
′(t−τ)

(
e−µ|τ |‖x(τ)− x′(τ)‖α

)
dτ

≤Mβ′Lf‖x− x′‖Xµ , ∀ t ∈ R.

Mβ′Lf < 1 by (4.9), it follows that T is contracting on Xµ.
Now thanks to the Banach fixed-point theorem, T has a unique fixed point

xp ∈Xµ which is precisely a full solution of (3.8) satisfying (4.3).
Define Γ : H → Xα by

Γ(p) = xp(0), p ∈ H.

It is easy to verify that Γ(θtp) = xp(t), t ∈ R, hence Γ is an equilibrium of ϕ. In
what follows we show that Γ is continuous.

Recall that for p ∈ H, xp(t) = Γ(θtp), t ≤ 0 satisfies

xp(t) =

∫ t

−∞
e−As(t−τ)Πsf

(
xp(τ), p(τ)

)
dτ

−
∫ ∞
t

e−Au(t−τ)Πuf
(
xp(τ), p(τ)

)
dτ.

(4.11)
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Let p, q ∈ H. Then for t ∈ R, by (4.10) and (4.11) we deduce that

e−µ|t|‖xp(t)− xq(t)‖α

≤MLf

∫ t

−∞
(t− s)−αe−β(t−s)eµ|t−s|

(
e−µ|s|‖xp(s)− xq(s)‖α

)
ds

+MLf

∫ ∞
t

e−β(s−t)eµ|t−s|
(
e−µ|s|‖xp(s)− xq(s)‖α

)
ds

+M

∫ t

−∞
(t− s)−αe−β(t−s)eµ|t−s|

(
e−µ|s|‖p(s)− q(s)‖

)
ds

+M

∫ ∞
t

e−β(s−t)eµ|t−s|
(
e−µ|s|‖p(s)− q(s)‖

)
ds

= MLf

∫ t

−∞
(t− s)−αe−β

′(t−s)(e−µ|s|‖xp(s)− xq(s)‖α)ds
+MLf

∫ ∞
t

e−β
′(s−t)(e−µ|s|‖xp(s)− xq(s)‖α)ds

+M

∫ t

−∞
(t− s)−αe−β

′(t−s)
(
e−µ|s|‖p(s)− q(s)‖

)
ds

+M

∫ ∞
t

e−β
′(s−t)

(
e−µ|s|‖p(s)− q(s)‖

)
ds.

(4.12)

Hence

e−µ|t|‖xp(t)− xq(t)‖α

≤MLf

(∫ t

−∞
(t− s)−αe−β

′(t−s)ds+

∫ ∞
t

e−β
′(s−t)ds

)
‖xp − xq‖Xµ

+M

(∫ t

−∞
(t− s)−αe−β

′(t−s)ds+

∫ ∞
t

e−β
′(s−t)ds

)
‖p− q‖∞,µ

≤Mβ′Lf‖xp − xq‖Xµ
+Mβ′‖p− q‖∞,µ, ∀ t ∈ R.

(4.13)

Thus

‖xp − xq‖Xµ
≤ Mβ′

1−Mβ′Lf
‖p− q‖∞,µ.

Therefore

‖Γ(p)− Γ(q)‖α = ‖xp(0)− xq(0)‖α ≤
Mβ′

1−Mβ′Lf
‖p− q‖∞,µ. (4.14)

We learn from (3.4) that ‖p− q‖∞,µ → 0 as p→ q (in H). Then by (4.14) we have

‖Γ(p)− Γ(q)‖α → 0, as p→ q,

which completes the proof of the continuity of Γ.

(b) For each p ∈ H and y ∈ Xα
u , the righthand side of (4.1) can define a mapping

T − = T −p,y on X −
µ as follows:

T −x(t) = e−Auty +

∫ t

0

e−Au(t−τ)Πuf
(
x(τ), p(τ)

)
dτ

+

∫ t

−∞
e−As(t−τ)Πsf

(
x(τ), p(τ)

)
dτ.
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We first show that T − maps X −
µ into itself. Let x ∈X −

µ . For any t ≤ 0,

eµt‖T −x(t)‖α

≤Me(β+µ)t‖y‖α +MC

∫ 0

t

e(β+µ)(t−τ)eµτ
(
‖x(τ)‖α + ‖p(τ)‖+ 1

)
dτ

+MC

∫ t

−∞
(t− τ)−αe−β

′(t−τ)eµτ
(
‖x(τ)‖α + ‖p(τ)‖+ 1

)
dτ

≤M‖y‖α +Mβ′C
(
‖x‖X −

µ
+ ‖p‖∞,µ + 1

)
<∞.

Hence T −u ∈X −
µ .

Now we check that T − is contracting on X −
µ . For x, x′ ∈X −

µ , we have for any
t ≤ 0 that

eµt‖T −x(t)− T −x′(t)‖α

≤MLf

∫ 0

t

e(β+µ)(t−τ)eµτ‖x(τ)− x′(τ)‖αdτ

+MLf

∫ t

−∞
(t− τ)−αe−β

′(t−τ)eµτ‖x(τ)− x′(τ)‖αdτ

≤Mβ′Lf‖x− x′‖X −
µ
.

Since Mβ′Lf < 1, T − is indeed a contraction mapping on X −
µ .

By virtue of the Banach fixed-point theorem, T − has a unique fixed point xp,y
in X −

µ . So xp,y(t) is precisely a solution of (3.8) on R− with Πuxp,y(0) = y, which
equivalently solves the following integral equation

xp,y(t) = e−Auty +

∫ t

0

e−Au(t−τ)Πuf
(
xp,y(τ), p(τ)

)
dτ

+

∫ t

−∞
e−As(t−τ)Πsf

(
xp,y(τ), p(τ)

)
dτ.

(4.15)

We claim that xp,y(0) is Lipschitz continuous in y uniformly on p ∈ H. Indeed,
for y, z ∈ Xα

u and t ≤ 0,

eµt‖xp,y(t)− xp,z(t)‖α

≤Me(β+µ)t‖y − z‖α +MLf

∫ 0

t

e(β+µ)(t−τ)eµτ‖xp,y(τ)− xp,z(τ)‖αdτ

+MLf

∫ t

−∞
(t− τ)−αe−(β−µ)(t−τ)eµτ‖xp,y(τ)− xp,z(τ)‖αdτ

≤M‖y − z‖α +Mβ′Lf‖xp,y(t)− xp,z(t)‖X −
µ
.

Hence,

‖xp,y(0)− xp,z(0)‖α ≤ ‖xp,y − xp,z‖X −
µ
≤ M

1−Mβ′Lf
‖y − z‖α,

and thus xp,y(0) is Lipschitz continuous in y uniformly on p ∈ H.
Define

ξp(y) :=

∫ 0

−∞
eAsτΠsf

(
xp,y(τ), p(τ)

)
dτ, y ∈ Xα

u . (4.16)
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Setting t = 0 in (4.15) leads to

xp,y(0) = y + ξp(y), y ∈ Xα
u . (4.17)

The Lipschitz continuity of xp,y(0) in y then implies ξp : Xα
u → Xα

s is a Lipschitz
continuous mapping.

Set

Mu(p) = {y + ξp(y) : y ∈ Xα
u }.

Then Mu(p) is homeomorphic to Xα
u . We claim that

Wu(Γ, p) =Mu(p).

Lemma 4.1 implies Wu(Γ, p) ⊂Mu(p). In what follows we check that

Mu(p) ⊂Wu(Γ, p). (4.18)

Define a Banach space

W −
µ :=

{
w ∈ C(R−;Xα) : sup

t∈R−
e−µt‖w(t)‖α <∞

}
.

W −
µ is equipped with the norm

‖w‖W −µ = sup
t∈R−

e−µt‖w(t)‖α.

Let xp(t) be the full solution of ϕ satisfying (4.11). For each fixed y ∈ Xα
u , define

a mapping G− = G−y : W −
µ → W −

µ as follows:

G−w(t) = e−Aut(y + z)

+

∫ t

0

e−Au(t−τ)Πu

[
f
(
xp(τ) + w(τ), p(τ)

)
− f

(
xp(τ), p(τ)

)]
dτ

+

∫ t

−∞
e−As(t−τ)Πs

[
f
(
xp(τ) + w(τ), p(τ)

)
− f

(
xp(τ), p(τ)

)]
dτ,

where

z =

∫ ∞
0

eAuτΠuf
(
xp(τ), p(τ)

)
dτ.

(It is trivial to see that ‖z‖α <∞.) We first check that G− is well defined. Indeed,
let w ∈ W −

µ . Then for any t ≤ 0,

e−µt‖G−w(t)‖α ≤Meβ
′t‖y + z‖α +MLf

∫ 0

t

eβ
′(t−τ)e−µτ‖w(τ)‖αdτ

+MLf

∫ t

−∞
(t− τ)−αe−(β+µ)(t−τ)e−µτ‖w(τ)‖αdτ

≤M‖y + z‖α +Mβ′Lf‖w‖W −µ <∞.

Thus G− maps W −
µ into itself.
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Now we show that G− is contracting. Let w, w′ ∈ W −
µ . Then for t ≤ 0,

e−µt‖G−w(t)− G−w′(t)‖α

≤MLf

∫ 0

t

eβ
′(t−τ)e−µτ‖w(τ)− w′(τ)‖αdτ

+MLf

∫ t

−∞
(t− τ)−αe−(β+µ)(t−τ)e−µτ‖w(τ)− w′(τ)‖αdτ

≤Mβ′Lf‖w − w′‖W −µ .

Since Mβ′Lf < 1, G− is a contraction mapping on W −
µ .

Therefore G− has a unique fixed point w in W −
µ , which solves the following

integral equation on R−:

w(t) = e−Aut(y + z)

+

∫ t

0

e−Au(t−τ)Πu

[
f
(
xp(τ) + w(τ), p(τ)

)
− f

(
xp(τ), p(τ)

)]
dτ

+

∫ t

−∞
e−As(t−τ)Πs

[
f
(
xp(τ) + w(τ), p(τ)

)
− f

(
xp(τ), p(τ)

)]
dτ.

(4.19)

(Note that ‖w(t)‖α tends to zero exponentially fast for t→ −∞.)
Adding (4.11) to (4.19), we find

xp(t) + w(t) =e−Auty +

∫ t

0

e−Au(t−τ)Πuf
(
xp(τ) + w(τ), p(τ)

)
dτ

+

∫ t

−∞
e−As(t−τ)Πsf

(
xp(τ) + w(τ), p(τ)

)
dτ.

(4.20)

Set x̃p,y(t) = xp(t) + w(t), t ≤ 0. The equation (4.20) means that x̃p,y(t), t ≤ 0
satisfies (4.15). By the uniqueness of the backward solution xp,y(t), t ≤ 0 with
Πuxp,y(0) = y, one knows that

x̃p,y(t) ≡ xp,y(t), t ≤ 0.

We conclude that the backward solution xp,y(t) tends to the full solution xp(t)
exponentially as t→ −∞. Since y ∈ Xα

u is arbitrary, we prove (4.18) and complete
the assertion.

(c) Let y ∈ Xα
u , and p, q ∈ H. Then similar computations as in (4.12) and (4.13)

show that

‖xp,y − xq,y‖X −
µ
≤Mβ′Lf‖xp,y − xq,y‖X −

µ
+Mµ‖p− q‖∞,µ.

In particular,

‖xp,y(0)− xq,y(0)‖α ≤
Mβ′

1−Mβ′Lf
‖p− q‖∞,µ.

This together with (4.17) shows that

‖ξp(y)− ξq(y)‖α ≤
Mβ′

1−Mβ′Lf
‖p− q‖∞,µ.

Since p→ q (in H) implies that ‖p− q‖∞,µ → 0, we conclude that

lim
p→q

sup
y∈Xαu

‖ξp(y)− ξq(y)‖α = 0,

which verifies the Lipschitz continuity property of ξp in p.
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The corresponding argument for stable manifold of Γ is completely similar to
that for the unstable manifold, so is omitted.

4.3. Dynamical completeness of hyperbolic equilibrium. Here we show that
the hyperbolic equilibrium Γ obtained in Theorem 4.2 will completely character-
izes the dynamics of the cocycle semiflow ϕ by proving its unstable manifold is
globally forward stable. Consequently, the original system (3.3) exhibits a global
synchronising behavior (in the sense of Remark 2) with the forcing h.

Theorem 4.3. Suppose the Lipschitz constant Lf of f is sufficiently small. Then
the unstable manifold of Γ is exponentially forward attracting all points in Xα

through ϕ, that is,

lim
t→+∞

‖ϕ(t, p)x0 −Wu(Γ, θtp)‖α = 0, ∀x0 ∈ Xα.

Remark 3. Theorem 4.3 and Remark 2 indicate that the system ϕ exhibits a global
synchronising behavior with the nonautonomous forcing h as time varies.

Proof of Theorem 4.3. The proof is adapted from that of Theorem 6.1.4 in Henry
[19].

Let M, β > 0 be that in (3.1) and (3.2). Denote by Lξ the Lipschitz constant
of mapping ξp : Xα

u → Xα
s in Theorem 4.2. Note that Lξ is independent on p ∈ H

and limLf→0 Lξ = M . Suppose Lf is so small that

MLf (1 + Lξ) < β (4.21)

and that

MLf

(
1 +

4MLf (1 + Lξ)

β

)∫ ∞
0

τ−αe−τdu < (β/2)
1−α

. (4.22)

Suppose x(t) = xu(t) + xs(t) ∈ Xα, t ≥ 0 is a solution of (3.8) and let

χ(t) = xs(t)− ξ(t, xu(t)),

where ξ(t, xu(t)) := ξθtp(xu(t)). In the following, we show that there is a 0 < γ <
β/2 and a constant K > 0 such that

‖χ(t)‖α ≤ KM‖χ(0)‖αe−γt, t ≥ 0,

which completes the proof the theorem.
Let y(τ ; t), τ ≤ t be the solution of the equation

{
yτ +Auy = Πu

[
f
(
y + ξ(τ, y), p(τ)

)]
, τ ≤ t;

y = xu(t), τ = t.
(4.23)
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We first estimate

‖y(τ ; t)−xu(τ)‖α ≤
∫ t

τ

Meβ(τ−r)∥∥f(y(r; t)+ξ(r, y(r; t)), p(r)
)
−f
(
x(r), p(r)

)∥∥dr
≤MLf

∫ t

τ

eβ(τ−r)(‖ξ(r, y(r; t))− xs(r)‖α + ‖y(r; t)− xu(r)‖α
)
dr

≤MLf

∫ t

τ

eβ(τ−r)[‖ξ(r, y(r; t))− ξ(r, xu(r))‖α+

+ ‖ξ(r, xu(r))− xs(r)‖α + ‖y(r; t)− xu(r)‖α
]
dr

≤MLf (Lξ + 1)

∫ t

τ

eβ(τ−r)‖y(r; t)− xu(r)‖αdr +MLf

∫ t

τ

eβ(τ−r)‖χ(r)‖αdr

:= a

∫ t

τ

eβ(τ−r)‖χ(r)‖αdr + b

∫ t

τ

eβ(τ−r)‖y(r; t)− xu(r)‖αdr,

where a := MLf , b := MLf (Lξ + 1). By Gronwall’s inequality, we have

e−βτ‖y(τ ; t)− xu(τ)‖α

≤ a
∫ t

τ

e−βr‖χ(r)‖αdr + b

∫ t

τ

eb(r−τ)

(
a

∫ t

r

e−βµ‖χ(µ)‖αdµ
)
dr, 0 ≤ τ ≤ t.

Integrating by parts, we find

b

∫ t

τ

eb(r−τ)

(
a

∫ t

r

e−βµ‖χ(µ)‖αdµ
)
dr

= a

∫ t

τ

(∫ t

r

e−βµ‖χ(µ)‖αdµ
)
d
(
eb(r−τ)

)
= aeb(r−τ)

∫ t

r

e−βµ‖χ(µ)‖αdµ
∣∣∣∣t
τ

+ a

∫ t

τ

eb(r−τ)e−βr‖χ(r)‖αdr

= −a
∫ t

τ

e−βr‖χ(r)‖αdr + a

∫ t

τ

eb(r−τ)e−βr‖χ(r)‖αdr.

So

‖y(τ ; t)− xu(τ)‖α ≤ a
∫ t

τ

e−(β−b)(r−τ)‖χ(r)‖αdr, 0 ≤ τ ≤ t. (4.24)

Let τ ≤ t0 ≤ t. We then calculate

y(τ ; t)− y(τ ; t0) = [y(τ ; t)− xu(τ)]− [y(τ ; t0)− xu(τ)]

=

∫ τ

t

e−Au(τ−r)Πu

[
f
(
y(r; t) + ξ(r, y(r; t)), p(r)

)
− f

(
x(r), p(r)

)]
dr

−
∫ τ

t0

e−Au(τ−r)Πu

[
f
(
y(r; t0) + ξ(r, y(r; t0)), p(r)

)
− f

(
x(r), p(r)

)]
dr

=

∫ τ

t0

e−Au(τ−r)Πu

[
f
(
y(r; t) + ξ(r, y(r; t)), p(r)

)
−

− f
(
y(r; t0) + ξ(r, y(r; t0), p(r))

)]
dr

+

∫ t0

t

e−Au(τ−r)Πu

[
f
(
y(r; t) + ξ(r, y(r; t)), p(r)

)
− f

(
x(r), p(r)

)]
dr

:= I + J.
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Now

‖I‖α ≤ b
∫ t0

τ

eβ(τ−r)‖y(r; t)− y(r; t0)‖αdr, (4.25)

‖J‖α ≤ b
∫ t

t0

eβ(τ−r)‖y(r; t)− xu(r)‖αdr + a

∫ t

t0

eβ(τ−r)‖χ(r)‖αdr

≤ (by (4.24)) ≤ ab
∫ t

t0

eβ(τ−r)
∫ t

r

e(b−β)(µ−r)‖χ(µ)‖αdµdr

+ a

∫ t

t0

eβ(τ−r)‖χ(r)‖αdr

= aeβτ
∫ t

t0

be−br
(∫ t

r

e(b−β)µ‖χ(µ)‖αdµ
)
dr + a

∫ t

t0

eβ(τ−r)‖χ(r)‖αdr

= aeβτ
∫ t

t0

(∫ t

r

e(b−β)µ‖χ(µ)‖αdµ
)
d
(
−e−br

)
+ a

∫ t

t0

eβ(τ−r)‖χ(r)‖αdr

= aeβτ
∫ t

t0

eb(r−t0)e−βr‖χ(r)‖αdr (by integration-by-parts formula).

(4.26)

Inequalities (4.25) and (4.26) imply

e−βτ‖y(τ ; t)− y(τ ; t0)‖α ≤ b
∫ t0

τ

e−βr‖y(r; t)− y(r; t0)‖αdr

+ a

∫ t

t0

eb(r−t0)e−βr‖χ(r)‖αdr.

By Gronwall’s inequality, we have

‖y(τ ; t)− y(τ ; t0)‖α ≤ a
∫ t

t0

e−(β−b)(r−τ)‖χ(r)‖αdr, τ ≤ t0 ≤ t. (4.27)

From (4.16) and (4.23), one knows that ξ(t, xu(t)), t ≥ 0 satisfies

ξ(t, xu(t)) =

∫ t

−∞
e−As(t−τ)Πs

[
f
(
y(τ ; t) + ξ(τ, y(τ ; t)), p(τ)

)]
dτ.

Then for t ≥ 0,

χ(t)− e−Astχ(0) =

∫ t

0

e−As(t−τ)Πs

[
f
(
x(τ), p(τ)

)
− f

(
y(τ ; t)+

+ ξ(τ, y(τ ; t)), p(τ)
)]
dτ

+

∫ 0

−∞
e−As(t−τ)Πs

[
f
(
y(τ ; 0) + ξ(τ, y(τ ; 0)), p(τ)

)
−

− f
(
y(τ ; t) + ξ(τ, y(τ ; t)), p(τ)

)]
dτ,

and thus

‖χ(t)‖α ≤Me−βt‖χ(0)‖α

+

∫ t

0

(t− τ)−αe−β(t−τ)
(
b‖xu(τ)− y(τ ; t)‖α + a‖χ(τ)‖α

)
dτ

+

∫ 0

−∞
(t− τ)−αe−β(t−τ)b‖y(τ ; 0)− y(τ ; t)‖αdτ.
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In light of (4.24) and (4.27), we deduce

‖χ(t)‖α ≤Me−βt‖χ(0)‖α + a

∫ t

0

(t− τ)−αe−β(t−τ)‖χ(τ)‖αdτ

+ ab

∫ t

0

(t− τ)−αe−β(t−τ)

∫ t

τ

e−(β−b)(r−τ)‖χ(r)‖αdrdτ

+ ab

∫ 0

−∞
(t− τ)−αe−β(t−τ)

∫ t

0

e−(β−b)(r−τ)‖χ(r)‖αdrdτ

:= Me−βt‖χ(0)‖α + a

∫ t

0

(t− τ)−αe−β(t−τ)‖χ(τ)‖αdτ + U + V.

We first calculate

U ≤ ab
∫ t

0

(
(t− r)−αe−

β(t−r)
2

)
e−

β(t−τ)
2

∫ t

τ

‖χ(r)‖αdrdτ

≤ ab
∫ t

0

e−
β(t−τ)

2 dτ

∫ t

0

(t− r)−αe−
β(t−r)

2 ‖χ(r)‖αdr

≤ 2ab

β

∫ t

0

(t− r)−αe−
β(t−r)

2 ‖χ(r)‖αdr,

where we have used the condition (4.21), i.e., β > b. Similarly,

V ≤ ab
∫ 0

−∞

(
(t− r)−αe−

β(t−r)
2

)
e−

β(t−τ)
2

∫ t

0

‖χ(r)‖αdrdτ

≤ ab
∫ 0

−∞
e−

β(t−τ)
2 dτ

∫ t

0

(t− r)−αe−
β(t−r)

2 ‖χ(r)‖αdr

≤ 2ab

β

∫ t

0

(t− r)−αe−
β(t−r)

2 ‖χ(r)‖αdr.

Consequently,

e
β
2 t‖χ(t)‖α ≤M‖χ(0)‖α + C

∫ t

0

(t− τ)−α
(
e
β
2 τ‖χ(τ)‖α

)
dτ, (4.28)

where

C := 4ab/β + a.

Applying Gronwall inequality (see e.g. [19, Lemma 7.1.1]) to (4.28), we obtain that
there is a constant K > 0 (depending only on α) such that

‖χ(t)‖α ≤ KM‖χ(0)‖αe−γt,

where

γ =
β

2
−
(
C

∫ ∞
0

τ−αe−τdτ

)1/(1−α)

.

By condition (4.22), γ > 0. The proof is complete.

5. Application to stochastic partial differential equations with additive
white noise. In the section, we apply the main results obtained in Section 4 to
stochastic partial equation with additive white noise.

Let X be a Polish space with norm ‖ · ‖. We first recall some basic concepts in
random dynamical systems (RDSs).



SYNCHRONISING BEHAVIOR WITH NONAUTONOMOUS FORCING 19

5.1. RDSs. An RDS consists of a “metric dynamical system” and a “cocycle semi-
flow” that is in some sense driven by the metric dynamical system.

Definition 5.1. Let (Ω,F ,P) be a probability space and ϑ := {ϑt}t∈R be a family
of measure preserving transformations on Ω such that (t, ω) → ϑtω is measurable,
ϑ0 = idΩ, and ϑt+s = ϑt ◦ ϑs for all t, s ∈ R. Then the quadruple (Ω,F ,P, ϑ) is
called a metric dynamical system.

Definition 5.2. A cocycle semiflow on X is a mapping

φ : R+ × Ω×X → X,

which is
(
B(R⊗F⊗B(X)),F

)
-measurable such that (t, x)→ φ(t, ω, x) is continuous

for all ω ∈ Ω and the family φ(t, ω) := φ(t, ω, ·) : X → X satisfies

• φ(0, ω) = idX ,
• φ(t + s, ω) = φ(t, ϑsω) ◦ φ(s, ω) for all s, t ∈ R+ and all ω ∈ Ω (cocycle

property).

For a comprehensive exposition on RDS see [1, 12,13].

Definition 5.3. A random variable Ξ is called a random equilibrium of φ if for
each ω ∈ Ω, γ(t) := Ξ(ϑtω), t ∈ R is a full solution of φ.

Definition 5.4. Let Ξ be a random equilibrium of φ. For each ω ∈ Ω, the ω-section
unstable (resp. stable) manifold of Ξ is defined to be the set

Wu (Ξ, ω) =

{
x ∈ X

∣∣∣∣ there is a ω-solution γ(t) on (−∞, 0] with γ(0) = x
such that limt→−∞ d(γ(t),Ξ(ϑtω)) = 0

}
.(

resp.W s (Ξ, ω)=

{
x ∈ X

∣∣∣∣ there is a ω-solution γ(t) on [0,∞) with γ(0) = x
such that limt→+∞ d(γ(t),Ξ(ϑtω)) = 0

}
.

)
Definition 5.5. A random variable Λ on (Ω,F ,P) with values in X is called tem-
pered if for each ω ∈ Ω, the mapping t → ‖Λ(ϑtω)‖ is subexponentially growing,
namely, t→ ‖Λ(ϑtω)‖ is µ-subexponentially growing for any µ > 0.

5.2. Stochastic hyperbolic equilibrium and synchronising behavior. In what
follows we suppose that (Ω,F ,P) is the classic Wiener space, i.e., Ω = {ω : ω(·) ∈
C(R, X), ω(0) = 0} endowed with the open compact topology, F is the associ-
ated Borel-σ-algebra, P is the Wiener measure and the σ-fields {Ft}t∈R, called a
filtration, given by

Ft := σ{ω(τ)− ω(s) : s, τ ≤ t}.

Remark 4. Denote

ω−(t) = ω(−t), t ∈ R.
Since ω ∈ Ω if and only if ω− ∈ Ω, we may assume without loss of generality that
each ω ∈ Ω is an even function, i.e.,

ω(−t) = ω(t), t ∈ R.

We can define a measurable dynamical system ϑ := {ϑt}t∈R on (Ω,F ,P) by
ϑtω(·) = ω(· + t) − ω(t). It is well-known that P is invariant and ergodic under
ϑ. Then (Ω,F ,P, ϑ) is a metric dynamical system. A Wiener process {W (t)}t∈R
defined on (Ω,F ,P, ϑ) is given by

W (t, ω) = ω(t), W (t, ϑsω) = ω(t+ s)− ω(s) = W (t+ s, ω)−W (s, ω).
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We now consider stochastic partial differential equations (SPDEs) with additive
noise on X which have the form:

du+Audt = f(u)dt+ dW (t), (5.1)

where A is a hyperbolic sectorial operator inX, f : Xα → H is a Lipshitz continuous
mapping with Lipschitz constant Lf , W is a X valued Wiener process on (Ω,F ,P)
with covariance operator Q.

Let B : Xα → X be a Lipschitz continuous Hilbert-Schmidt operator. When
the noise term dW in (5.1) is replaced by B(u)dW , we will obtain a more general
SPDE. The existence theory for such general equations is formulated as in Da Prato
and Zabczyk [14]. Specifically, for any initial data u0 ∈ Xα, there exists a unique
mild solution given by

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)f(u(s))dτ +

∫ t

0

e−A(t−s)B(u(s))dW (s), t ≥ 0.

The above mild solution is only defined almost surely where the exceptional set
may depend on the initial data u0. Such a dependence contradicts the definition of
an RDS. In fact, it is still an open problem to interpret general SPDEs as RDSs.
However, for the special additive noise in (5.1), using a perfection procedure, the
equation (5.1) indeed generates an RDS (see [1, 17]). The key idea is to transform
this SPDE into a random evolutionary equation with random coefficients. For this
purpose, we first need to construct a stationary solution of linear Langevin SPDE
in Xα:

dz +Azdt = dW (t). (5.2)

The following existence result of stationary solution for equation (5.2) is inspired
by the works of Brune and Schmalfuss [2, Lemma 4.2].

Lemma 5.6. Suppose the Wiener process W (t), t ∈ R has a covariance operator Q
such that Tr(Q(−Au)2α−1+ε) <∞ and Tr(QA2α−1+ε

s ) <∞ for some ε > 0. Then
the equation (5.2) possesses a stationary solution R × Ω 3 (t, ω) → Z(ϑtω) ∈ Xα,
which is {F|t|}t∈R-adapted and is given by a tempered and F0-measurable random
variable Z ∈ Xα. Moreover, t→ Z(ϑtω) is continuous.

Proof. Split (5.2) into two linear equations

dzs +Aszsdt = ΠsdW (t), (5.3)

dzu +Auzudt = ΠudW (t). (5.4)

Since the real part of the spectrum Reσ(As) > 0 and Tr(QA2α−1+ε
s ) <∞, from [2,

Lemma 4.2], there is a tempered and F0-measurable random variable Zs ∈ Xα
s such

that the stochastic process Zs(ϑtω) ∈ Xα
s is an {Ft}t∈R-adapted and continuous

(in t) stationary solution for (5.3), where

Zs(ϑtω) =

∫ t

−∞
e−As(t−τ)ΠsdW (τ, ω), t ∈ R.

Meanwhile, we use a coordinate transform y(t) = zu(−t) for (5.4), then y solves

dy −Auydt = ΠudW (−t), (5.5)

where −Au is a bounded linear operator on Xα with Reσ(−Au) > 0. By Remark
4, we can rewrite (5.5) as

dy −Auydt = ΠudW (t).
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Since Tr(Q(−Au)2α−1+ε) <∞, repeating the argument above, there is a tempered
and F0-measurable random variable Yu ∈ Xα

u such that the stochastic process
Yu(ϑtω) ∈ Xα

u is an {Ft}t∈R-adapted and continuous (in t) stationary solution for
(5.5), where

Yu(ϑtω) =

∫ t

−∞
eAu(t−τ)ΠudW (τ, ω), t ∈ R.

Then

Zu(ϑtω) = Yu(ϑ−tω) =

∫ −t
−∞

e−Au(t+τ)ΠudW (τ, ω), t ∈ R

is an {F−t}t∈R-adapted stationary solution for (5.4).
Consequently,

Z(ϑtω) := Zu(ϑtω) + Zs(ϑtω) ∈ Xα, t ∈ R

is the desired stationary solution for (5.2), and Z : Ω→ Xα is tempered.

Let v(t) = u(t) − Z(ϑtω). Then v(t) satisfies the following random evolution
equation

vt +Av = f
(
v + Z(ϑtω)

)
. (5.6)

Let x(t, 0; v0, ω) denote the unique globally defined solution of (5.6) for the initial
value v0 ∈ Xα. Define

φ(t, ω)v0 := x(t, 0; v0, ω), ω ∈ Ω, v0 ∈ Xα.

Suppose φ is an RDS on Xα driven by the base flow ϑ on Ω.
We summarise our conclusions in the following theorem.

Theorem 5.7. Suppose the assumptions of Lemma 5.6 hold and the Lipschitz con-
stant Lf of f is sufficiently small such that

MLf

∫ ∞
0

(
1 + τ−α

)
e−βτdτ < 1.

Then

(a) the RDS φ has a unique tempered stochastic hyperbolic equilibrium Ξ : Ω →
Xα, with its the ω-section unstable and stable manifolds being represented as

Wu(Ξ, ω) = {y + ξω(y) : y ∈ Xα
u }

W s(Ξ, ω) = {ζω(y) + y : y ∈ Xα
s }

respectively, where

ξω : Xα
u → Xα

s and ζω : Xα
s → Xα

u

are the graphs for the two manifolds.
Moreover,

lim
t→−∞

‖γu(t)− Ξ(ϑtω)‖α = 0, γu(0) ∈Wu(Ξ, ω);

lim
t→∞

‖γs(t)− Ξ(ϑtω)‖α = 0, γs(0) ∈W s(Ξ, ω)

exponentially fast;
(b) the ω-section unstable manifold Wu(Ξ, ω) completely characterizes the dynam-

ics of φ, i.e., for every x0 ∈ Xα,

lim
t→∞

‖φ(t, ω)x0 −Wu(Ξ, ω)‖α = 0. (5.7)
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Proof. For each ω ∈ Ω, let h(t) = Z(ϑtω) and v(t) = u(t)−h(t). Then v(t) satisfies
the following evolution equation

vt +Av = f
(
v + h(t)

)
. (5.8)

We learn from Lemma 5.6 that h : R→ Xα is subexponentially growing.
Let

H := H[h] = {h(τ + ·); τ ∈ R}
C(R,Xα)

be the hull of h, and

θt : H → H, t ∈ R, as θtp(·) = p(t+ ·)
be the shift operator on H. Now we embed (5.8) into the following cocycle system

vt +Av = f
(
v + p(t)

)
, p ∈ H. (5.9)

The unique solution of (5.9) will generate a cocycle semiflow ϕ on Xα driven by
the base flow θ on H, namely,

ϕ(t, p)x0 := x(t, 0;x0, p), x0 ∈ Xα.

Employing the same techniques used in the Theorem 4.2, we know that ϕ has a
unique subexponential hyperbolic equilibrium Γ : H → Xα such that its p-section
unstable and stable manifolds being represented as

Wu(Γ, p) = {y + ξp(y) : y ∈ Xα
u },

W s(Γ, p) = {ζp(y) + y : y ∈ Xα
s }.

Moreover, Γ : H → Xα is continuous;

lim
p→q

δXα
(
Wu(Γ, p), Wu(Γ, q)

)
= 0, ∀ q ∈ H, (5.10)

lim
p→q

δXα
(
W s(Γ, p), W s(Γ, q)

)
= 0, ∀ q ∈ H; (5.11)

and
lim

t→−∞
‖γu(t)− Γ(θtp)‖α = 0, γu(0) ∈Wu(Γ, p), (5.12)

lim
t→+∞

‖γs(t)− Γ(θtp)‖α = 0, γs(0) ∈W s(Γ, p)

exponentially fast. Furthermore, by Theorem 4.3, we know that

lim
t→∞

‖ϕ(t, p)x0 −Wu(Γ, θtp)‖α = 0, ∀x0 ∈ Xα. (5.13)

Let p = h = Z(ϑ·ω) and define a random variable Ξ : Ω→ Xα by

Ξ(ω) = Γ
(
h) = Γ

(
Z(ϑ·ω)

)
. (5.14)

By the uniqueness of the solution of (5.8), we have for any s ≥ 0,

φ(s, ω)Ξ(ω) = ϕ
(
s, Z(ϑ·ω)

)
Γ
(
Z(ϑ·ω)

)
= (by the invariance of Γ under ϕ) = Γ

(
θsZ(ϑ·ω)

)
= (by the definition of θ) = Γ

(
Z(ϑs+·ω)

)
= Γ

(
Z(ϑ·ϑsω)

)
= (by (5.14)) = Ξ(ϑsω),

(5.15)

that is, Ξ is invariant under the RDS φ. Notice that the full solution

Ξ(ϑtω) = Γ
(
θtZ(ϑ·ω)

)
, t ∈ R

is subexponentially growing. Accordingly, Ξ is a tempered equilibrium of φ.
Now let us demonstrate the hyperbolicity of Ξ. Let

Wu(Ξ, ω) := Wu
(
Γ, Z(ϑ·ω)

)
= {y + ξω(y) : y ∈ Xα

u }
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and
W s(Ξ, ω) := W s

(
Γ, Z(ϑ·ω)

)
= {ζω(y) + y : y ∈ Xα

s },
where ξω(y) := ξZ(ϑ·ω)(y) and ζω(y) := ζZ(ϑ·ω)(y). We can see that Wu(Ξ, ω) and
W s(Ξ, ω) are invariant under φ by a similar argument used in (5.15). For each
γu(0) ∈Wu(Ξ, ω) = Wu

(
Γ, Z(ϑ·ω)

)
, by (5.14) and (5.12),

lim
t→−∞

‖γu(t)− Ξ(ϑtω)‖α = lim
t→−∞

‖γu(t)− Γ
(
θtZ(ϑ·ω)

)
‖α = 0 (5.16)

exponentially fast. Similarly, we can verify

lim
t→∞

‖γs(t)− Ξ(ϑtω)‖α = 0, γs(0) ∈W s(Ξ, ω) (5.17)

exponentially fast. Equalities (5.16) and (5.17) indicate thatWu(Ξ, ω) andW s(Ξ, ω)
are ω-section unstable and stable manifolds of Ξ respectively. Consequently, Ξ :
Ω→ Xα is hyperbolic.

To complete the proof of the theorem, we show that Wu(Ξ, ω) completely char-
acterizes the dynamics of φ. Indeed, by (5.13), one has for every x0 ∈ Xα,

lim
t→∞

‖φ(t, ω)x0 −Wu(Ξ, ω)‖α = lim
t→∞

‖ϕ
(
t, Z(ϑ·ω)

)
x0 −Wu

(
Γ, Z(ϑ·ω)

)
‖α = 0.

The proof is complete.

Remark 5. The continuity of Γ : H → Xα, (5.10), (5.11) and (5.7) manifest that
for each ω ∈ Ω, the original system (5.1) exhibits a global synchronising behavior
(in the sense of Remark 2) with h(t) = Z(ϑtω), t ∈ R.
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