

Available online at www.sciencedirect.com

ScienceDirect

indagationes mathematicae

Indagationes Mathematicae 29 (2018) 986-996

www.elsevier.com/locate/indag

Hypercyclic composition operators on the little Bloch space and the Besov spaces

Yu-Xia Liang, Ze-Hua Zhou*

School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, PR China

Received 11 December 2017; accepted 24 March 2018

Communicated by J.M.A.M. van Neerven

Abstract

Let $S(\mathbb{D})$ be the collection of all holomorphic self-maps on \mathbb{D} of the complex plane \mathbb{C} , and C_{φ} the composition operator induced by $\varphi \in S(\mathbb{D})$. We obtain that there are no hypercyclic composition operators on the little Bloch space \mathcal{B}_0 and the Besov space \mathcal{B}_p .

© 2018 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Hypercyclic; Composition operator; Bloch space; Besov space

1. Introduction

Let $\mathbb{D}=\{z\in\mathbb{C}: |z|<1\}$ be the unit disk in the complex plane \mathbb{C} and $S(\mathbb{D})$ be the collection of all holomorphic self-maps on \mathbb{D} . We denote dA(z)=dxdy the Lebesgue area measure on \mathbb{C} . For the composition operator C_{φ} induced by $\varphi\in S(\mathbb{D})$ is defined as

$$C_{\varphi}f(z) = f \circ \varphi(z), \ f \in H(\mathbb{D}), \ z \in \mathbb{D}.$$

The one-to-one holomorphic functions that map \mathbb{D} onto itself, called the *Möbius* transformations, and denoted by \mathcal{M} (also $Aut(\mathbb{D})$), have the form $\lambda \varphi_a$, where $|\lambda| = 1$ and φ_a is the basic

 $\label{lem:email$

^{*} Corresponding author.

conformal automorphism defined by

$$\varphi_a(z) = \frac{a-z}{1-\bar{a}z}, \quad z \in \mathbb{D},$$

for $a \in \mathbb{D}$. The following identities are easily verified:

$$1 - |\varphi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \bar{a}z|^2}$$

and

$$(1 - |z|^2)|\varphi_a'(z)| = 1 - |\varphi_a(z)|^2. \tag{1.1}$$

A linear space X of analytic functions on the open unit disk \mathbb{D} is said to be *Möbius-invariant*, if $f \circ S \in X$ for all $f \in X$ and all $S \in \mathcal{M}$ and X has a seminorm $\| \ \|_X$ such that $\| f \circ S \|_X = \| f \|_X$ for each $f \in X$ and each $S \in \mathcal{M}$.

The well-known *Möbius-invariant* function space — the Besov spaces B_p (1 < p < ∞) are defined as follows

$$B_p = \{ f \in H(\mathbb{D}) : \|f\|_{B_p}^p = \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2} dA(z) < \infty \},$$

that is, $f \in B_p$ if and only if the function $(1 - |z|^2)f' \in L^p(\mathbb{D}, d\lambda)$, where

$$d\lambda(z) = \frac{dA(z)}{(1 - |z|^2)^2}.$$

Although the measure λ is not a finite measure on \mathbb{D} , it is a *Möbius-invariant*. Indeed, by (1.1)

$$d\lambda(\varphi_a(z)) = \frac{|\varphi_a'(z)|^2}{(1 - |\varphi_a(z)|^2)^2} dA(z) = \frac{dA(z)}{(1 - |z|^2)^2} = d\lambda(z).$$

Hence we have the following change-of-variable formula

$$\int_{\mathbb{D}} f \circ \varphi_a(z) d\lambda(z) = \int_{\mathbb{D}} f(u) d\lambda(u),$$

for every positive measurable function f on \mathbb{D} , from which it is easily seen that

$$||f \circ \varphi_a||_{B_p} = ||f||_{B_p},\tag{1.2}$$

and the above identity also holds for $S = \lambda \varphi_a \in \mathcal{M}$ with $|\lambda| = 1$. Thus

if
$$f \in B_p$$
 then $f \circ S \in B_p$ for all $S \in \mathcal{M}$.

That is, B_p (1 < p < ∞) are Möbius-invariant spaces.

For p=1, the Besov space B_1 consists of the analytic functions f on $\mathbb D$ that admit the representation

$$f(z) = \sum_{n=1}^{\infty} a_n \varphi_{\lambda_n}(z), \quad z \in \mathbb{D},$$

where $\{a_n\} \in l^1$ and $\lambda_n \in \mathbb{D}$ for $n \in \mathbb{N}$. The norm in B_1 is defined as

$$||f||_{B_1} = \inf \left\{ \sum_{n=1}^{\infty} |a_n| : f(z) = \sum_{n=1}^{\infty} a_n \varphi_{\lambda_n}(z), z \in \mathbb{D} \right\}.$$

It is evident that B_1 is the *Möbius* invariant subset of the bounded analytic functions space H^{∞} . On the other hand, B_1 has the following definition,

$$B_1 = \{ f \in H(\mathbb{D}) : \| f \|_{B_1} = \int_{\mathbb{D}} |f''(z)| dA(z) < \infty \},$$

even though the above semi-norm is not *Möbius-invariant*, the Besov space B_1 is the minimal *Möbius-invariant* space (see, e.g. [1,2]).

It is well-known that B_p $(1 are Banach spaces endowed with the norm denoted by <math>||f||_p$,

$$||f||_p^p = |f(0)|^p + ||f||_{B_n}^p$$

Another *Möbius-invariant* space of analytic functions on \mathbb{D} is the Bloch space \mathcal{B} ,

$$\mathcal{B} = \{ f \in H(\mathbb{D}) : \|f\|_{\mathcal{B}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty \}.$$

By (1.1) it follows that

$$||f \circ \varphi_{a}||_{\mathcal{B}} = \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |(f \circ \varphi_{a})'(z)|$$

$$= \sup_{z \in \mathbb{D}} (1 - |z|^{2}) |f'(\varphi_{a}(z))\varphi'_{a}(z)|$$

$$= \sup_{z \in \mathbb{D}} (1 - |\varphi_{a}(z)|^{2}) |f'(\varphi_{a}(z))|$$

$$= ||f||_{\mathcal{B}}, \qquad (1.3)$$

for all $a \in \mathbb{D}$, and the above identities also hold for all $S \in \mathcal{M}$. That is,

if
$$f \in \mathcal{B}$$
 then $f \circ S \in \mathcal{B}$ for all $S \in \mathcal{M}$.

Hence \mathcal{B} is a *Möbius-invariant* space.

The little Bloch space \mathcal{B}_0 consists of all $f \in \mathcal{B}$ such that

$$\lim_{|z| \to 1} (1 - |z|^2) |f'(z)| = 0.$$

Replacing " $\sup_{z\in\mathbb{D}}$ " by " $\lim_{|z|\to 1}$ " in (1.3), we get that $f\circ\varphi_a\in\mathcal{B}_0$ for every $f\in\mathcal{B}_0$ and $a\in\mathbb{D}$. Similarly, \mathcal{B}_0 is also a *Möbius-invariant* space. Both the Bloch space \mathcal{B} and the little Bloch space \mathcal{B}_0 are Banach spaces under the norm

$$|| f ||_{Bloch} = |f(0)| + || f ||_{\mathcal{B}}.$$

The above $M\ddot{o}bius$ -invariant spaces have the relationship $B_1 \subset B_p \subset B_q \subset \mathcal{B}$ for each $1 (see, e.g. [19, Lemma 1.1]). Moreover, <math>B_1$ is a subset of the little Bloch space \mathcal{B}_0 (see [21]) and the Bloch space \mathcal{B} is maximal among all $M\ddot{o}bius$ -invariant Banach spaces of analytic functions on \mathbb{D} (see, e.g. [17]). The Besov space B_2 is often referred to as the Dirichlet space \mathcal{D} , which is a Hilbert space with inner product

$$\langle f, g \rangle = f(0)\overline{g(0)} + \int_{\mathbb{D}} f'(z)\overline{g'(z)}dA(z)/\pi.$$

The problem of boundedness and compactness of C_{φ} has been studied in many function spaces, we refer the readers to the books [6,19,22,23]. In the recent time, the papers [4,5,7, 8,10,16] play important parts in the theory of the hypercyclicity of composition operators C_{φ} acting on analytic function spaces.

In the following, we introduce some definitions in dynamic systems. Let L(X) denote the space of all linear continuous operators on a *separable infinite dimensional Banach space X*. For a positive integer n, the nth iterate of $T \in L(X)$ denoted by T^n , is the function obtained by composing T with itself n times.

A continuous linear operator $T \in L(X)$ is called *hypercyclic* provided there is some $f \in X$ such that the orbit

$$Orb(T, f) = \{T^n f : n = 0, 1, ...\}$$

is dense in X. Such a vector f is said to be a *hypercyclic* vector for T. Therefore, if a Banach space X admits a *hypercyclic* operator, X must be separable and infinite dimensional.

Since the polynomials are dense in the little Bloch space \mathcal{B}_0 (see, e.g. [22, Proposition 3.10]) and the polynomials are dense in B_p ($1 \le p < \infty$) (see, e.g. [22, Proposition 6.2]), thus the little Bloch space \mathcal{B}_0 and B_p ($1 \le p < \infty$) are separable infinite dimensional Banach spaces. This is why we investigate the composition operators on \mathcal{B}_0 and B_p ($1 \le p < \infty$). For motivation, examples and background about linear dynamics we refer the reader to the books [3] by Bayart and Matheron, [7] by Grosse-Erdmann and Manguillot, and articles by Godefroy and Shapiro [9]. The papers [12–14] investigate other aspects of the hypercyclic property.

This paper is inspired by the result [7, Theorem 1.8]: "No linear fractional composition operator is hypercyclic on the Dirichlet space \mathcal{D} ". We refer the readers to the paper [20], which contains the proof. Now in this paper, we want to characterize the hypercyclicity of composition operator C_{φ} acting on \mathcal{B}_0 and \mathcal{B}_p ($1 \leq p < \infty$). We will show that "No linear fractional composition operator is hypercyclic on the little Bloch space \mathcal{B}_0 , \mathcal{B}_1 and \mathcal{B}_p ($2 \leq p < \infty$)". Since the Besov space \mathcal{B}_2 is the Dirichlet space \mathcal{D} , hence we generalize the above result to some extend. The paper is organized as follows: some lemmas are listed in Section 2 and the main results are given in Sections 3 and 4.

Throughout the remainder of this paper, C will denote a positive constant, the exact value of which will vary from one appearance to the next.

2. Auxiliary results

A linear fractional transformation is a mapping of the form

$$\varphi\left(z\right) = \frac{az+b}{cz+d},$$

where $ad - bc \neq 0$. We will write $LFT(\mathbb{D})$ to refer to the set of all such maps, which are self-maps of the unit disk \mathbb{D} . Those maps that take \mathbb{D} onto itself are precisely the members of $Aut(\mathbb{D})$, so that $Aut(\mathbb{D}) \subset LFT(\mathbb{D}) \subset S(\mathbb{D})$.

We classify those maps according to their fixed point behavior, see [18, p. 5]:

- (a) *Parabolic* members of $LFT(\mathbb{D})$ have their fixed point on $\partial \mathbb{D}$.
- (b) *Hyperbolic* members of $LFT(\mathbb{D})$ must have an attractive fixed point in $\overline{\mathbb{D}}$, with the other fixed point outside \mathbb{D} , and lying on $\partial \mathbb{D}$ if and only if the map is an automorphism of \mathbb{D} .
- (c) *Loxodromic* and *elliptic* members of $\varphi \in LFT(\mathbb{D})$ have a fixed point in \mathbb{D} and a fixed point outside $\overline{\mathbb{D}}$. The elliptic ones are precisely the automorphisms in $LFT(\mathbb{D})$ with this fixed point configuration.

The following two lemmas are well-known, so we omit the details.

Lemma 2.1 ([22, p. 82 (3.5)]). For each $f \in \mathcal{B}$, we have

$$|f(z)| \le ||f||_{Bloch} \log \frac{2}{1 - |z|^2}.$$

Lemma 2.2 ([21, Theorem 8]). For every $f \in B_p$ with 1 , we have

$$|f(z)| \le C ||f||_{B_p} \left(\log \frac{2}{1 - |z|^2} \right)^{1 - 1/p}.$$

Remark 2.3. From Lemmas 2.1 and 2.2, we obtain that the norm convergence in \mathcal{B}_0 (respectively, B_p (1)) implies pointwise convergence.

Lemma 2.4. Let $\varphi \in S(\mathbb{D})$ with an interior fixed point on \mathbb{D} . Suppose that C_{φ} is bounded on \mathcal{B}_0 (respectively, B_p $(1). Then the operator <math>C_{\varphi}$ is not hypercyclic on \mathcal{B}_0 (respectively, B_p (1).

Proof. We prove for the little Bloch space \mathcal{B}_0 . Let $a \in \mathbb{D}$ be the fixed point of φ . Suppose that $f \in \mathcal{B}_0$ is hypercyclic for C_{φ} and for each $g \in \mathcal{B}_0$ there exists a sequence $\{n_k\}$ such that $C_{\varphi}^{n_k} f$ tends to g in \mathcal{B}_0 , that is,

$$||C_{\varphi}^{n_k}f-g||_{Bloch}\to 0 \text{ as } k\to\infty.$$

By Remark 2.3 and $f(\varphi^{n_k}(a)) = f(a)$ for every $k \in \mathbb{N}$, it follows that

$$g(a) = \lim_{k \to \infty} (C_{\varphi}^{n_k} f)(a) = \lim_{k \to \infty} (C_{\varphi^{n_k}} f)(a) = \lim_{k \to \infty} f(\varphi^{n_k}(a)) = f(a),$$

that is not the case for every $g \in \mathcal{B}_0$. Thus the operator C_{φ} is not hypercyclic on \mathcal{B}_0 . The proof for the Besov spaces B_p is similar, so we omit the details. This ends the proof. \square

Remark 2.5. In the following, we need only consider φ is *parabolic* or *hyperbolic* case.

The following lemma is a necessary condition of the hypercyclic composition operator C_{φ} on \mathcal{B}_0 and \mathcal{B}_p .

Lemma 2.6. Suppose that $\varphi \in S(\mathbb{D})$ and the bounded composition operator C_{φ} is hypercyclic on \mathcal{B}_0 (respectively, B_p $(1), then the compositional symbol <math>\varphi$ is univalent.

Proof. We prove for the space \mathcal{B}_0 . Suppose that $\varphi(z_1) = \varphi(z_2)$ for some $z_1, z_2 \in \mathbb{D}$ with $z_1 \neq z_2$. We pick $g \in \mathcal{B}_0$ such that $g(z_1) \neq g(z_2)$, and let $f \in \mathcal{B}_0$ be a hypercyclic vector for C_{φ} . By Lemma 2.1, for each $n \in \mathbb{N}$,

$$|C_{\varphi}^{n} f - g|(z) \le ||C_{\varphi}^{n} f - g||_{Bloch} \log \frac{2}{1 - |z|^{2}}.$$

So for $\epsilon := |g(z_1) - g(z_2)| > 0$, we choose $n \in \mathbb{N}$ large enough so that

$$|C_{\varphi}^{n}f - g|(z) < \epsilon/4 \text{ for } z = z_1, z_2.$$
 (2.1)

On the other hand, since $\varphi(z_1) = \varphi(z_2)$, it follows that

$$\begin{split} \epsilon &= |g(z_1) - g(z_2)| \le |g(z_1) - C_{\varphi}^n(f)(z_1)| + |C_{\varphi}^n(f)(z_1) - g(z_2)| \\ &= |g(z_1) - C_{\varphi}^n(f)(z_1)| + |f(\varphi^n(z_1)) - g(z_2)| \\ &= |g(z_1) - C_{\varphi}^n(f)(z_1)| + |f(\varphi^n(z_2)) - g(z_2)| \\ &= |g(z_1) - C_{\varphi}^n(f)(z_1)| + |C_{\varphi}^n(f)(z_2) - g(z_2)| \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}, \end{split}$$

we get a contraction. So φ must be univalent. The proof for the B_p $(1 is similar. This completes the proof. <math>\Box$

Lemma 2.7 ([15, Schwarz–Pick Lemma]). For $\varphi \in S(\mathbb{D})$, we have

$$\frac{1 - |z|^2}{1 - |\varphi(z)|^2} |\varphi'(z)| \le 1$$

for all $z \in \mathbb{D}$.

Lemma 2.8 ([11, Theorem 6.7]). Let T be an operator on a complex Fréchet space X. If $x \in X$ is such that $\{\lambda T^n x, \ \lambda \in \mathbb{C}, \ |\lambda| = 1, \ and \ n \in \mathbb{N}_0\}$ is dense in X, then $orb(x, \lambda T)$ is dense in X for each $\lambda \in \mathbb{C}$ with $|\lambda| = 1$.

In particular, for any $\lambda \in \mathbb{C}$ *with* $|\lambda| = 1$, T *and* λT *have the same hypercyclic vectors, that is,*

$$HC(T) = HC(\lambda T).$$
 (2.2)

3. Hypercyclicity on the little Bloch space \mathcal{B}_0

For $\varphi \in S(\mathbb{D})$ and by the Schwarz–Pick lemma (Lemma 2.7), we obtain that

$$||C_{\varphi}f||_{Bloch} = |f(\varphi(0))| + \sup_{z \in \mathbb{D}} (1 - |z|^{2})|f'(\varphi(z))\varphi'(z)|$$

$$\leq |f(\varphi(0))| + \sup_{z \in \mathbb{D}} (1 - |\varphi(z)|^{2})|f'(\varphi(z))|$$

$$\leq |f(\varphi(0))| + ||f||_{\mathcal{B}} < \infty,$$

then the composition operator C_{φ} is always a bounded operator from \mathcal{B} into \mathcal{B} . Moreover, if $\varphi \in \mathcal{B}_0$, then C_{φ} maps \mathcal{B}_0 into \mathcal{B}_0 . In this section, we always assume C_{φ} is bounded on \mathcal{B}_0 . Case I. $\varphi \in Aut(\mathbb{D})$.

Theorem 3.1. Suppose $\varphi \in Aut(\mathbb{D})$ and the composition operator C_{φ} is bounded on \mathcal{B}_0 . Then C_{φ} is not hypercyclic on \mathcal{B}_0 .

Proof. Suppose that there is an $f \in \mathcal{B}_0$ such that the set $\{C_{\varphi}^k f : k \in \mathbb{N} \cup \{0\}\}$ is dense in \mathcal{B}_0 . By (1.3) it follows that

$$||C_{\varphi}^{k} f||_{Bloch} = |f(\varphi^{k}(0))| + ||f \circ \varphi^{k}||_{\mathcal{B}}$$
$$= |f(\varphi^{k}(0))| + ||f||_{\mathcal{B}}.$$

For $f_1(z) = z \in \mathcal{B}_0$, there exists a subsequence $\{\varphi^{k_j}\}_j$ such that

$$\|C_{\varphi}^{k_j} f - f_1\|_{Bloch} \to 0 \text{ as } j \to \infty,$$
 (3.1)

from which and Remark 2.3, it is clear that for z = 0,

$$f(\varphi^{k_j}(0)) \to 0 \text{ as } j \to \infty.$$
 (3.2)

By (3.1) and (3.2), we have

$$||f||_{Bloch} = |f(0)| + ||f||_{\mathcal{B}}$$

= $|f(0)| + ||C_{\varphi}^{k_j} f||_{Bloch} - |f(\varphi^{k_j}(0))|$

On the other hand, there exists another sequence $\{\varphi^{\vec{k}j}\}_j$ such that

$$\|C_{\omega}^{\bar{k}_j} f - f_1^2\|_{Bloch} \to 0 \text{ as } j \to \infty.$$

Similarly, $f \circ \varphi^{\bar{k}_j}(0) \to 0$ as $j \to \infty$. Besides

$$||f||_{Bloch} = |f(0)| + ||f||_{\mathcal{B}}$$

$$= |f(0)| + ||C_{\varphi}^{\bar{k}_{j}} f||_{Bloch} - |f \circ \varphi^{\bar{k}_{j}}(0)|$$

$$\to |f(0)| + ||f_{1}^{2}||_{Bloch}, \quad j \to \infty$$

$$= |f(0)| + \frac{2\sqrt{3}}{9}.$$
(3.4)

Combining (3.3) and (3.4), we get a contraction. Therefore, the composition operator C_{φ} is not hypercyclic on \mathcal{B}_0 . This completes the proof. \square

Case II. $\varphi \notin Aut(\mathbb{D})$. For this case, we only consider φ with no interior fixed point in \mathbb{D} by Remark 2.5.

Theorem 3.2. Suppose $\varphi \notin Aut(\mathbb{D})$ and φ has no interior fixed point in \mathbb{D} . Further assume that the composition operator C_{φ} is bounded on \mathcal{B}_0 , then C_{φ} is still not hypercyclic on \mathcal{B}_0 .

Proof. Suppose that C_{φ} is hypercyclic on \mathcal{B}_0 and $f \in \mathcal{B}_0$ is a hypercyclic vector for C_{φ} . Hence for every $g \in \mathcal{B}_0$, there exists $\{\varphi^k\}_k$ satisfying

$$||C_{\omega}^{k}f - g||_{Bloch} \to 0 \text{ as } k \to \infty.$$

In particular, we choose g(z) = nz for a fixed $n \in \mathbb{N}$, then there exists a subsequence $\{\varphi^{k_j}\}_j$ such that

$$\|C_{\varphi}^{k_j}f - nz\|_{Bloch} \to 0 \text{ as } j \to \infty.$$

From which and Remark 2.3, it follows that

$$f(\varphi^{k_j}(0)) \to 0 \text{ as } j \to \infty.$$
 (3.5)

By Schwarz-Pick Lemma (Lemma 2.7) and (3.5), we get

$$\begin{split} &\|C_{\varphi}^{k_{j}}f\|_{Bloch} = |f(\varphi^{k_{j}}(0))| + \sup_{z \in \mathbb{D}} (1 - |z|^{2})|(f \circ \varphi^{k_{j}})'(z)| \\ &= |f(\varphi^{k_{j}}(0))| + \sup_{z \in \mathbb{D}} (1 - |z|^{2})|f'(\varphi^{k_{j}}(z))(\varphi^{k_{j}})'(z)| \\ &= |f(\varphi^{k_{j}}(0))| + \sup_{z \in \mathbb{D}} \frac{1 - |z|^{2}}{1 - |\varphi^{k_{j}}(z)|^{2}}|(\varphi^{k_{j}})'(z)|(1 - |\varphi^{k_{j}}(z)|^{2})|f'(\varphi^{k_{j}}(z))| \\ &\leq |f(\varphi^{k_{j}}(0))| + \sup_{z \in \mathbb{D}} (1 - |\varphi^{k_{j}}(z)|^{2})|f'(\varphi^{k_{j}}(z))| \\ &\leq |f(\varphi^{k_{j}}(0))| + ||f||_{\mathcal{B}} \\ &\to ||f||_{\mathcal{B}} = ||f||_{Bloch} - |f(0)| < \infty, \quad j \to \infty. \end{split}$$
(3.6)

At the same time, since

$$||nz||_{\mathcal{B}} = \sup_{z \in \mathbb{D}} (1 - |z|^2)n = n \to \infty \text{ as } n \to \infty.$$

Thus

$$\|C_{\varphi}^{k_j} f\|_{Bloch} \to \infty, \quad j \to \infty.$$
 (3.7)

Combining (3.6) and (3.7), we get a contraction. Thus C_{φ} is not hypercyclic on \mathcal{B}_0 . This completes the proof. \square

From Lemma 2.8, we obtain that $HC(C_{\varphi}) = HC(\lambda C_{\varphi})$ for $|\lambda| = 1$, hence the following corollary holds.

Corollary 3.3. For every $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and $\varphi \in S(\mathbb{D})$. Suppose that the composition operator C_{φ} is bounded in \mathcal{B}_0 , then the operator λC_{φ} is not hypercyclic on \mathcal{B}_0 .

Since the Besov space $B_1 \subset \mathcal{B}_0$, we obtain the following corollary.

Corollary 3.4. For every $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and $\varphi \in S(\mathbb{D})$. Suppose that the composition operator C_{φ} is bounded in B_1 , then the operator λC_{φ} is not hypercyclic on B_1 .

4. Hypercyclicity on B_p

This section is similar to Section 3, we include the brief proof for the convenience of the readers.

Case I. $\varphi \in Aut(\mathbb{D})$.

Theorem 4.1. Suppose $\varphi \in Aut(\mathbb{D})$ and the composition operator C_{φ} is bounded on B_p $(1 , then <math>C_{\varphi}$ is not hypercyclic on B_p .

Proof. Suppose that there is an $f \in B_p$ such that $\{C_{\varphi}^k f : k \in \mathbb{N} \cup \{0\}\}$ is dense in B_p . By (1.2) it follows that

$$\begin{split} \left\| C_{\varphi}^{k} f \right\|_{p}^{p} &= \left| f(\varphi^{k}(0)) \right|^{p} + \left\| f \circ \varphi^{k} \right\|_{B_{p}}^{p} \\ &= \left| f(\varphi^{k}(0)) \right|^{p} + \left\| f \right\|_{B_{p}}^{p}. \end{split}$$

For $f_1(z) = z \in B_p$, there exists a subsequence $\{\varphi^{k_j}\}$ such that

$$\|C_{\omega}^{k_j}f - f_1\|_p \to 0 \text{ as } j \to \infty,$$

from which and Remark 2.3, it is clear that for z = 0,

$$f(\varphi^{k_j}(0)) \to 0 \text{ as } j \to \infty.$$

By the above three formulas, we have

$$||f||_{p}^{p} = |f(0)|^{p} + ||f||_{B_{p}}^{p}$$

$$= |f(0)|^{p} + ||C_{\varphi}^{k_{j}} f||_{p}^{p} - |f(\varphi^{k_{j}}(0))|^{p}$$

$$\to |f(0)|^{p} + ||f_{1}||_{p}^{p}, \quad j \to \infty$$

$$= |f(0)|^{p} + \frac{1}{2(p-1)}.$$
(4.1)

On the other hand, there exists another sequence $\{\varphi^{\hat{k}_j}\}$ such that

$$\|C_{\varphi}^{\hat{k}_j} f - f_1^2\|_p \to 0 \text{ as } j \to \infty.$$

Similarly, $f \circ \varphi^{\hat{k}_j}(0) \to 0$ as $j \to \infty$. Using the *Beta* function

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$$
, for $p > 0$, $q > 0$,

it follows that

$$||f||_{p}^{p} = |f(0)|^{p} + ||f||_{B_{p}}^{p}$$

$$= |f(0)|^{p} + ||C_{\varphi}^{\hat{k}_{j}} f||_{p}^{p} - |f \circ \varphi^{\hat{k}_{j}}(0)|$$

$$\to |f(0)|^{p} + ||f_{1}^{2}||_{p}^{p}, \quad j \to \infty$$

$$= |f(0)|^{p} + 2^{p-1}B(\frac{p}{2} + 1, p - 1). \tag{4.2}$$

From (4.1) and (4.2), we get a contraction. Thus the composition operator C_{φ} is not hypercyclic on B_p (1 < p < ∞). This completes the proof. \square

Case II. $\varphi \notin Aut(\mathbb{D})$, we only consider the case $p-2 \geq 0$.

Theorem 4.2. Suppose $\varphi \notin Aut(\mathbb{D})$ and φ has no interior fixed point in \mathbb{D} . Further assume that the composition operator C_{φ} is bounded on B_p $(2 \leq p < \infty)$, then C_{φ} is still not hypercyclic on B_p .

Proof. Suppose that C_{φ} is hypercyclic on B_p and $f \in B_p$ is a hypercyclic vector for C_{φ} . Then for each $g \in B_p$, there exists $\{\varphi^k\}_k$ satisfying

$$||C_{\varphi}^k f - g||_p \to 0 \text{ as } k \to \infty.$$

In particular, we choose $g(z) = nz^2$ for a fixed $n \in \mathbb{N}$, then there exists a subsequence $\{\varphi^{k_j}\}_j$ such that

$$\|C_{\omega}^{k_j} f - nz^2\|_p \to 0$$
 as $j \to \infty$.

From which and Remark 2.3, it follows that

$$f(\varphi^{k_j}(0)) \to 0 \text{ as } j \to \infty.$$
 (4.3)

For $p \ge 2$, by Schwarz–Pick lemma (Lemma 2.7) and Lemma 2.6, we get that

$$\begin{aligned} &\|C_{\varphi}^{k_{j}}f\|_{p}^{p} = |f(\varphi^{k_{j}}(0))|^{p} + \|f \circ \varphi^{k_{j}}\|_{B_{p}}^{p} \\ &= |f(\varphi^{k_{j}}(0))|^{p} + \int_{\mathbb{D}} |(f \circ \varphi^{k_{j}})'(z)|^{p} (1 - |z|^{2})^{p-2} dA(z) \\ &= |f(\varphi^{k_{j}}(0))|^{p} + \int_{\mathbb{D}} |f'(\varphi^{k_{j}}(z))(\varphi^{k_{j}})'(z)|^{p} (1 - |z|^{2})^{p-2} dA(z) \\ &= |f(\varphi^{k_{j}}(0))|^{p} + \int_{\mathbb{D}} \frac{(1 - |\varphi^{k_{j}}(z)|^{2})^{p} |f'(\varphi^{k_{j}}(z))|^{p}}{(1 - |\varphi^{k_{j}}(z)|^{2})^{p}} |(\varphi^{k_{j}})'(z)|^{p} (1 - |z|^{2})^{p-2} dA(z) \\ &= |f(\varphi^{k_{j}}(0))|^{p} \end{aligned}$$

$$+ \int_{\mathbb{D}} \left(\frac{(1 - |z|^{2})|(\varphi^{k_{j}})'(z)|}{1 - |\varphi^{k_{j}}(z)|^{2}} \right)^{p-2} \frac{(1 - |\varphi^{k_{j}}(z)|^{2})^{p} |f'(\varphi^{k_{j}}(z))|^{p} |(\varphi^{k_{j}})'(z)|^{2}}{(1 - |\varphi^{k_{j}}(z)|^{2})^{2}} dA(z)$$

$$\leq |f(\varphi^{k_{j}}(0))|^{p} + \int_{\mathbb{D}} \frac{(1 - |\varphi^{k_{j}}(z)|^{2})^{p} |f'(\varphi^{k_{j}}(z))|^{p} |(\varphi^{k_{j}})'(z)|^{2}}{(1 - |\varphi^{k_{j}}(z)|^{2})^{2}} dA(z) \quad (\varphi \text{ is univalent})$$

$$= |f(\varphi^{k_{j}}(0))|^{p} + \int_{\varphi^{k_{j}}(\mathbb{D})} |f'(w)|^{p} (1 - |w|^{2})^{p-2} dA(w)$$

$$\leq |f(\varphi^{k_{j}}(0))|^{p} + \int_{\mathbb{D}} |f'(w)|^{p} (1 - |w|^{2})^{p-2} dA(w)$$

$$= |f(\varphi^{k_{j}}(0))|^{p} + ||f||_{B_{p}}^{p}$$

$$\to ||f||_{B_{p}}^{p} = ||f||_{p}^{p} - |f(0)|^{p} < \infty, \quad j \to \infty.$$

$$(4.4)$$

At the same time, since

$$\begin{split} \|nz^2\|_p^p &= 0 + \|nz^2\|_{B_p}^p = \int_{\mathbb{D}} \left| (nz^2)' \right|^p (1 - |z|^2)^{p-2} dA(z) \\ &= \int_{\mathbb{D}} (2n)^p |z|^p (1 - |z|^2)^{p-2} dA(z) \\ &= \int_0^{2\pi} \frac{d\theta}{2\pi} \int_0^1 (2n)^p r^p (1 - r^2)^{p-2} dr \\ &= \int_0^1 2^{p-1} n^p (r^2)^{p/2 + 1 - 1} (1 - r^2)^{p-1 - 1} d(r^2) \\ &= n^p 2^{p-1} B\left(\frac{p}{2} + 1, p - 1\right) \to \infty \text{ as } n \to \infty. \end{split}$$

Thus

$$\|C_{\varphi}^{k_j}f\|_p^p \to \infty \text{ as } j \to \infty.$$
 (4.5)

From the above, comparing (4.4) with (4.5), we get a contraction. Thus C_{φ} is not hypercyclic on B_p (2 $\leq p < \infty$). This completes the proof. \square

Corollary 4.3. For any $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and $\varphi \in S(\mathbb{D})$. Suppose that the composition operator C_{φ} is bounded in B_p ($2 \le p < \infty$), then the operator λC_{φ} is not hypercyclic on B_p .

Open question: Is the composition operator C_{φ} hypercyclic on the space B_p (1 < p < 2) with $\varphi \notin Aut(\mathbb{D})$?

Acknowledgment

The authors were supported in part by the National Natural Science Foundation of China (Grant Nos. 11771323, 11701422).

References

- J. Arazy, S.D. Fisher, Some aspects of the minimal, Möbius-invariant space of analytic functions on the unit disc, in: Interpolation Spaces and Allied Topics in Analysis (Lund, 1983), in: Lecture Notes in Math., vol. 1070, Springer, Berlin, 1984, pp. 24–44.
- [2] J. Arazy, S.D. Fisher, The uniqueness of the Dirichlet space among Möbius-invariant Hilbert spaces, Illinois J. Math. 29 (1985) 449–462.

- [3] F. Bayart, E. Matheron, Dynamics of Linear Operators, Camberidge University Press, 2009.
- [4] P.S. Bourdon, J.H. Shapiro, Cyclic composition operators on H², Proc. Sympos. Pure Math. 51 (Part 2) (1990) 43–53
- [5] P.S. Bourdon, J.H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 596 (1997) 1–150.
- [6] C.C. Cowen, B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995.
- [7] E.A. Gallardo-Gutiérrez, A. Montes-Rodríguez, The role of the spectrum in cyclic behavior of composition operators, Mem. Amer. Math. Soc. (2004).
- [8] R.M. Gethner, J.H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987) 281–288.
- [9] G. Godefroy, J.H. Shapiro, Operators with dense invariant cyclic vector manifolds, J. Funct. Anal. 98 (1991) 229–269.
- [10] K.G. Grosse-Erdmann, Recent developments in hypercyclicity, Rev. R. Acad. Cien. Serie A. Mat. 97 (2003) 273–286.
- [11] K.G. Grosse-Erdmann, A.P. Manguillot, Linear Chaos, Springer, New York, 2011.
- [12] Y.X. Liang, Z.H. Zhou, Hereditarily hypercyclicity and supercyclicity of different weighted shifts, J. Korean Math. Soc. 51 (1) (2014) 125–135.
- [13] Y.X. Liang, Z.H. Zhou, Hypercyclic behaviour of multiples of composition operators on the weighted Banach space, Bull. Belg. Math. Soc. Simon Stevin 21 (2014) 1–17.
- [14] Y.X. Liang, Z.H. Zhou, Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces, Bull. Iranian Math. Soc. 41 (1) (2015) 121–139.
- [15] B.D. Maccluer, K. Stroethoff, R.H. Zhao, Generalized Schwarz–Pick estimates, Proc. Amer. Math. Soc. 131 (2002) 593–599.
- [16] A. Miralles, E. Wolf, Hypercyclic composition operators on $H_{\nu,0}^{\infty}$ spaces, Math. Nachr. 286 (2013) 34–41.
- [17] L.A. Rubel, R. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979) 45–49.
- [18] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
- [19] M. Tjani, Compact composition operators on some Möbius invariant Banach spaces, doctor of philosophy, 1996.
- [20] X.H. Wang, G.F. Cao, Cyclic composition operators on Dirichlet space, Acta Math. Sci. Ser. A Chin. Ed. 23A (2003) 91–95 (in Chinese).
- [21] K. Zhu, Analytic Besov spaces, J. Math. Anal. Appl. 157 (1991) 318–336.
- [22] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, in: Graduate Texts in Mathematics, vol. 226, Springer, New York, 2005.
- [23] N. Zorboska, Composition operators on weighted Dirichlet spaces, Proc. Amer. Math. Soc. 126 (1998) 2013–2023.