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a b s t r a c t

In this paper, we consider the optimal investment problem for both an insurer and a
reinsurer. The insurer’s wealth process is described by a jump diffusion risk model and
the insurer can purchase proportional reinsurance from the reinsurer. Both the insurer
and the reinsurer are allowed to invest in a risk-free asset and a risky asset whose price
process follows the constant elasticity of variance (CEV) model. Moreover, the correlation
between risk model and the risky asset’s price is considered. The objective is maximizing
the expected utility of the insurer’s and the reinsurer’s terminalwealth. Applying stochastic
control theory, we establish the corresponding Hamilton–Jacobi–Bellman (HJB) equations
and derive optimal investment–reinsurance strategies for exponential utility function.
Finally, numerical examples are provided to analyze the effects of parameters on the
optimal strategies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, optimal investment and reinsurance problem for an insurer has been extensively studied in the literature. For
example, Browne [1] investigated the problem for maximizing the utility of terminal wealth andminimizing the probability
of ruin for an insurer with the diffusion risk model. A similar problem to Browne [1] for a jump diffusion risk model was
studied by Yang and Zhang [2]. For compound Poisson risk model, Hipp and Plum [3] assumed the insurer can invest in a
risky asset andobtained the optimal investment strategy for ruin probabilityminimization. Later Liu andYang [4] generalized
the research of Hipp and Plum [3] by allowing the insurer to invest in a risky-asset and a risk-free asset. Wang et al. [5]
obtained the optimal investment strategies for an insurer under different criteria by martingale approach. With regard to
reinsurance, Schmidli [6] studied the optimal reinsurance policy to minimize the ruin probability. Promislow and Young [7]
obtained the optimal reinsurance–investment strategy for an insurer to minimize the ruin probability. Bai and Guo [8]
studied the optimal investment–reinsurance problemwithmultiple risky assets for utilitymaximization and ruin probability
minimization. Cao and Wan [9] obtained the optimal proportional reinsurance and investment strategies for an insurer to
maximize the expected exponential and power utilities of terminal wealth. Liang and Bayraktar [10] considered the optimal
reinsurance and investment problem for an insurerwhose claim process is governed by an unobservableMarkov-modulated
compound Poisson process. For a jump diffusion risk model, Irgens and Paulsen [11] obtained the proportional reinsurance
and investment strategies of utility maximization for three different utility functions; Huang et al. [12] studied the optimal
control problem for an insurer with constrained control variables.

In the above-mentioned literatures, they generally assume that the risky asset’s prices are driven by geometric Brownian
motions (GBMs), which implies the volatilities of the risky asset’s prices are constant and deterministic. But empirical
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analysis has shown that the volatility is not constant, see [13], and the references therein. In this paper, we assume that
the price process of the risky asset follows the constant elasticity of variance (CEV) model, which is a natural extension of
geometric Brownianmotion (GBM) andmore practical. Moreover, the CEVmodel can explain the implied volatility skew and
it is analytically tractable in comparison with other stochastic volatility models. The CEV model was proposed by Cox and
Ross [14]. Beckers [15], Davydov and Linetsky [16], Jones [17] studied the option pricing problems under the CEVmodel. Xiao
et al. [18] applied the CEV model to investigate the investment problem for pension plan and derived the optimal strategy
for logarithm utility function by using Legendre transform and dual theory. Gao [19,20] studied the investment problem for
pension plan and obtained the optimal solutions for CRRA and CARA utility functions. Nowadays, the CEV model has also
been commonly used in optimal reinsurance and investment problems. Gu et al. [21] considered optimal investment and
proportional reinsurance problem for utility maximization. Liang et al. [22] and Lin and Li [23] assumed the price of risky
asset followed the CEV model and studied the proportional reinsurance problem under the jump diffusion risk model.

However, most of the researches mentioned previously only consider the optimal strategy for an insurer. But in practice,
the optimal reinsurance strategy for an insurer may not be optimal for a reinsurer. Thus, it is necessary to take the
management of the reinsurer into account. Currently, some researchers began to study optimal investment–reinsurance
problem for both the insurer and the reinsurer. For example, Li et al. [24,25] studied the optimal investment problem for an
insurer and a reinsurer for utility maximization. Zhao et al. [26], Li et al. [27] investigated the time-consistent reinsurance–
investment strategy for an insurer and a reinsurer under a mean–variance framework. But most of them describe the basic
risk process by a Brownian motion with drift. In this paper, we describe the insurer’s wealth process by jump diffusion
risk model, which is a compound Poisson process perturbed by a Brownian motion. Both the insurer and the reinsurer are
allowed to invest in a risk-free asset and a risky asset whose price process follows the CEVmodel. Moreover, we consider the
correlation between risk model and the risky asset’s price. The objective is to maximize the expected utility of the insurer’s
and the reinsurer’s terminal wealth. By solving the corresponding Hamilton–Jacobi–Bellman (HJB) equations via Legendre
transform and dual theory, closed-form solutions to the problems of expected exponential utility maximization are derived
under some given assumptions. Furthermore, numerical examples are presented to analyze the effects of parameters on the
optimal strategies.

This paper is organized as follows. In Section 2, we introduce the formulation of themodel. Section 3 and Section 4 derive
the optimal investment–reinsurance strategies to maximize the utility of the insurer’s and reinsurer’s terminal wealth. In
Section 5, numerical examples are carried out to analyze the effects of parameters on the optimal strategies. Finally, we give
conclusions in Section 6.

2. Model formulation

In this paper, we consider a filtered complete probability space (Ω,F , {Ft}t∈[0,T ], P) satisfying the usual condition,where
Ft is the information of the market available up to time t, [0, T ] is a fixed and finite time horizon. All stochastic processes
introduced below are assumed to be well-defined and adapted to {Ft}t∈[0,T ].

2.1. Wealth process of the insurer

Without reinsurance and investment, the wealth process of the insurer is described by the jump diffusion risk model

dX(t) = cdt − d

(N(t)∑
i=1

Zi

)
+ βdW (t), (2.1)

where c is premium rate of the insurer,
∑N(t)

i=1 Zi is a compound Poisson process representing the cumulative amount of claims
in time interval [0, t]. {N(t), t ≥ 0} is a homogeneous Poisson process with intensity λ > 0 and the claim sizes {Zi(i ≥ 1)} are
independent and identically distributed (i.i.d.) positive randomvariableswith common distribution F (z) and independent of
N(t). Denote the mean value E[Zi] = µz , and moment generating functionMZ (r) = E[erZi ]. We assume that E[ZerZ ] = M ′

Z (r)
exists for 0 < r < ζ and that limr→ζ E[ZerZ ] = ∞ for some 0 < ζ ≤ +∞. β ≥ 0 is a constant, and {W (t)}t≥0 is a standard
Brownian motion. Suppose the premium is calculated according to the expected value principle, i.e., c = (1+ η)λµz , where
η > 0 is the positive safety loading of the insurer. The diffusion term βdW (t) represents the uncertainty related to the
insurer’s wealth process at time t .

The insurer is allowed to purchase proportional reinsurance from the reinsurer to hedge insurance risk. Let q1(t) ∈ [0, 1]
be the reinsurance proportion, that is, when the ith claim Zi occurs, the insurer pays only q1(t)Zi while the reinsurer pays
(1 − q1(t))Zi. The reinsurance premium is calculated according to the expected value principle, i.e., δ(q1) = (1 + θ )(1 −

q1(t))λµz , where θ > η is the safety loading of the reinsurer. Moreover, the insurer is allowed to invest in a risk-free asset
and a risky asset. The price process of the risk-free asset S0(t) is given by

dS0(t) = rS0(t)dt, S0(0) = s0, (2.2)

where r > 0 is the risk-free interest rate. The price process of the risky asset S(t) is described by the CEV model:

dS(t) = r1S(t)dt + σ (S(t))k+1dW (t), S(0) = s, (2.3)
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where r1 > r is the appreciation rate of the risky asset S(t), {W (t)} is a standard Brownian motion defined on (Ω,F , P). k is
the elasticity parameter and satisfies the general condition k ≤ 0 according to Gao [19]. σ (S(t))k stands for the instantaneous
volatility of risky asset. The correlation coefficient ofW (t) and W (t) are denoted by ρ, i.e., E[W (t)W (t)] = ρt .

Let π1(t) be the money amount invested in the risky asset at time t by the insurer, then X(t)−π1(t) is the money amount
invested in the risk-free asset. An investment–reinsurance strategy is described by a pair process u1(t) = (π1(t), q1(t)). Given
a strategy u1(t), the insurer’s wealth process X(t) follows the following dynamic:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dX(t) = [rX(t) + (r1 − r)π1(t) + (η − θ + (1 + θ )q1(t))λµz]dt + βdW (t)

+π1(t)σ (S(t))kdW (t) − q1(t)d

(N(t)∑
i=1

Zi

)
,

X(0) = x0.

(2.4)

An investment–reinsurance strategy {u1(v) := (π1(v), q1(v)), v ∈ [t, T ]} is said to be admissible if it is {Ft}t∈[0,T ]-
progressively measurable and satisfies (π1(t), q1(t)) ∈ Π1, where Π1 = {(π1(t), q1(t)) : 0 ≤ q1(t) ≤ 1, E[

∫ T
0 (π1(t))2dt] <

∞}.
Suppose that the insurer has a utility function U1(·) which is strictly concave and continuously differentiable on

(−∞,+∞). The insurer aims to maximize the expected utility of terminal wealth, i.e.,

max
(π1,q1)∈Π1

E[U1(X(T ))]. (2.5)

2.2. Wealth process of the reinsurer

In the presence of the proportional reinsurance contract, the wealth process of the reinsurer Y (t) is given by:

dY (t) = (1 + θ )(1 − q2(t))λµzdt − (1 − q2(t))d

(N(t)∑
i=1

Zi

)
, (2.6)

where q2(t) is the reinsurance strategy chosen by the reinsurer. In reality, the reinsurer will accept the optimal retention
level chosen by the insurer when the reinsurance strategy of the reinsurer is smaller than that of the insurer. While in the
opposite case, in order to prevent large losses, the reinsurermay not accept the optimal retention level chosen by the insurer.

Letπ2(t) represent themoney amount invested in the risky asset at time t by the reinsurer, then Y (t)−π2(t) is themoney
amount invested in the risk-free asset. The wealth process Y (t) is given by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dY (t) = [rY (t) + π2(t)(r1 − r) + (1 + θ )(1 − q2(t))λµz]dt + π2(t)σ (S(t))kdW (t)

− (1 − q2(t))d

(N(t)∑
i=1

Zi

)
,

Y (0) = y0.

(2.7)

{u2(v) := (π2(v), q2(v)), v ∈ [t, T ]} is said to be admissible if it is {Ft}t∈[0,T ]-progressively measurable and satisfies
(π2(t), q2(t)) ∈ Π2, whereΠ2 = {(π2(t), q2(t)) : 0 ≤ q2(t) ≤ 1, E[

∫ T
0 (π2(t))2dt] < ∞}.

The objective of the reinsurer is assumed to maximize the expected utility of terminal wealth Y (T ), i.e.,

max
(π2,q2)∈Π2

E[U2(Y (T ))]. (2.8)

3. Optimal strategy for the insurer

In this section, we first provide the general framework for the optimization problem (2.5) by using the classical tools of
stochastic optimal control, and then try to find optimal strategy for exponential utility function via Legendre transform and
dual theory.

3.1. General framework

Suppose the insurer has an exponential utility function

u1(x) = −
1
γ1

e−γ1x, γ1 > 0. (3.1)

By using stochastic optimal control, we define the value function as

V (t, s, x) = sup
(π1,q1)∈Π1

E[u1(X(T ))|X(t) = x, S(t) = s], 0 ≤ t < T (3.2)

with V (T , s, x) = u1(x).
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According to Fleming and Soner [28], if V (t, s, x) ∈ C1,2,2([0, T ]×R×R), then V satisfies the following Hamilton–Jacobi–
Bellman (HJB) equation:

sup
(π1,q1)∈Π1

A π1,q1V (t, s, x) = 0, 0 ≤ t < T (3.3)

with the boundary condition V (T , s, x) = u1(x). Here A π1,q1 is an operator and

A π1,q1V (t, s, x) = Vt + r1sVs + [rx + π1(r1 − r) + (η − θ + (1 + θ )q1)λµz]Vx

+
1
2
(β2

+ π2
1σ

2s2k + 2βρπ1σ sk)Vxx + (ρβσ sk+1
+ π1σ

2s2k+1)Vsx

+
1
2
σ 2s2k+2Vss + λE(V (t, s, x − q1z) − V (t, s, x)).

(3.4)

The first order maximizing condition for the optimal investment strategy is

π∗

1 = −
(r1 − r)Vx + βρσ skVxx + σ 2s2k+1Vsx

σ 2s2kVxx
. (3.5)

Putting (3.4) and (3.5) into HJB equation (3.3), after simplification, we have

Vt + r1sVs + [rx + (η − θ )λµz]Vx +
1
2
β2Vxx + ρβσ sk+1Vsx +

1
2
σ 2s2k+2Vss

−
((r1 − r)Vx + βρσ skVxx + σ 2s2k+1Vsx)2

2σ 2s2kVxx
+ sup

q1∈[0,1]
[(1 + θ )q1λµzVx

+ λE(V (t, s, x − q1z) − V (t, s, x))] = 0.

(3.6)

3.2. Optimal results

To solve Eq. (3.6), we try to conjecture a solution in the following form

V (t, s, x) = −
1
γ1

exp[−γ1xer(T−t)
+ h(t, s)], (3.7)

with h(T , s) = 0. Then we have

Vt = (γ1xrer(T−t)
+ ht )V , Vs = hsV ,

Vss = (h2
s + hss)V , Vx = (−γ1er(T−t))V ,

Vxx = (γ 2
1 e

2r(T−t))V , Vxs = (−γ1er(T−t)hs)V ,

E[V (t, s, x − q1z) − V (t, s, x)] = V (MZ (γ1q1er(T−t)) − 1).

Substituting these into (3.6) yields

Vt + r1sVs + [rx + (η − θ )λµz]Vx +
1
2
β2Vxx + ρβσ sk+1Vsx +

1
2
σ 2s2k+2Vss

−
((r1 − r)Vx + βρσ skVxx + σ 2s2k+1Vsx)2

2σ 2s2kVxx
+ sup

q1∈[0,1]
f (q1, t) = 0,

(3.8)

where f (q1, t) = (1 + θ )q1λµz(−γ1er(T−t))V + λV (MZ (γ1q1er(T−t)) − 1).
Differentiating f (q1, t) with respect to q1, we get

∂ f (q1, t)
∂q1

= −(1 + θ )λµzγ1er(T−t)V + λγ1er(T−t)E[Zeγ1q1e
r(T−t)Z

]V ,

∂2f (q1, t)
∂q21

= λγ 2
1 e

2r(T−t)E[Z2eγ1q1e
r(T−t)Z

]V < 0.

Thus, f (q1, t) is concave in q1, and its maximizer q1(t) satisfies the equation

(1 + θ )µz = M ′

Z (n), (3.9)

where n := γ1q1er(T−t). According to Liang et al. [22], we have the following result.

Lemma 3.1. Eq. (3.9) has a unique positive root ξ .
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From Lemma 3.1, we get q1(t) =
ξ

γ1
e−r(T−t)

≥ 0. Here ξ is a constant, and it only depends on the safety loading θ and the
claim sizes distribution F (z).

Since the optimal reinsurance proportion q∗

1(t) ∈ [0, 1], if 0 ≤ q1(t) ≤ 1, the optimal reinsurance proportion q∗

1(t)
coincides with q1(t); if q1(t) ≤ 0, we let q∗

1(t) be 0; and if q1(t) ≥ 1, we set q∗

1(t) = 1. Therefore, we discuss the optimal
reinsurance strategy in the following three cases.

Case 1. ξ ≤ γ1.
In this case, ξ

γ1
≤ 1, and thus, q1(t) ≤ 1 for any t ∈ [0, T ], then the optimal reinsurance strategy is

q∗

1(t) = q1(t), 0 ≤ t ≤ T . (3.10)

Case 2. γ1 < ξ < γ1erT .
Let t0 = T +

1
r ln

γ1
ξ
, then ξ

γ1
> 1, and hence, q1(t) < 1 for t ∈ [0, t0), q1(t) ≥ 1 for t ∈ [t0, T ], thus the optimal reinsurance

strategy is

q∗

1(t) =

⎧⎨⎩
ξ

γ1
e−r(T−t), 0 ≤ t < t0,

1, t0 ≤ t ≤ T .
(3.11)

Case 3. ξ ≥ γ1erT .
In this case, q1(t) ≥ ert ≥ 1 for any t ∈ [0, T ], then the optimal reinsurance strategy is

q∗

1(t) ≡ 1, 0 ≤ t ≤ T . (3.12)

Substituting q∗

1(t) into f (q1, t), we can get the value of f (q∗

1, t) as

f (q∗

1, t) =

{
V [−(1 + θ )ξλµz + λ(MZ (ξ ) − 1)], q∗

1(t) = q1(t),
V [−(1 + θ )λµzn + λ(MZ (n) − 1)], q∗

1(t) = 1.
(3.13)

where n = γ er(T−t).
Replacing the supremum in (3.8) by f (q∗

1, t) yields the following equation:

Vt + r1sVs + [rx + (η − θ )λµz]Vx +
1
2
β2Vxx + ρβσ sk+1Vsx +

1
2
σ 2s2k+2Vss

−
((r1 − r)Vx + βρσ skVxx + σ 2s2k+1Vsx)2

2σ 2s2kVxx
+ Vf1(q∗

1, t) = 0,
(3.14)

where f1(q∗

1, t) =
f (q∗

1,t)
V .

Here, the stochastic control problem has been transformed into a non-linear second order PDE, it is difficult to solve it
directly. Therefore, we transform the problem into a dual one and get a linear PDE by applying Legendre transform and dual
theory.

Definition 3.2. Let g : Rn
→ R be a convex function; for ω > 0, define the Legendre transform

L(ω) = max
x

{g(x) − ωx}. (3.15)

The function L(ω) is called the Legendre dual of function g(x) (cf. [18]).

If g(x) is strictly convex, the maximum in (3.15) will be attained at just one point, which we denote by x and then

L(ω) = g(x) − ωx. (3.16)

Following Xiao et al. [18] and Gao [19], we define a Legendre transform

V̂ (t, s, ω) := sup
x>0

{V (t, s, ω) − ωx|0 < x < ∞}, (3.17)

where 0 < t < T , and ω > 0 denotes the dual variable to x. The value of x where this optimum is attained is denoted by
p(t, s, ω). Therefore,

p(t, s, ω) := inf
x>0

{x|V (t, s, x) ≥ ωx + V̂ (t, s, ω)}, (3.18)

where 0 < t < T . The function V̂ is related to p by:

p = −V̂ω. (3.19)
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At the terminal time, we denote

Û(x) = sup
x>0

{U(x) − ωx|0 < x < ∞},

P(x) = inf
x>0

{x|U(x) ≥ ωx + Û(x)}.

As a result,

P(x) = (U ′)−1(x). (3.20)

Since V (T , s, x) = U(x), we have

P(T , s, x) = inf
x>0

{x|U(x) ≥ ωx + V̂ (T , s, ω)},

V̂ (T , s, ω) = sup
x>0

{U(x) − ωx}.

Therefore,

p(T , s, ω) = (U ′)−1(x). (3.21)

According to (3.16) and (3.17), we derive

Vx = ω, (3.22)

and thus

V̂ (t, s, ω) = V (t, s, p) − ωp, p(t, s, ω) = x. (3.23)

Differentiating (3.22) and (3.23) with respect to t , s and x, we obtain the following derivatives of V and V̂

Vt = V̂t , Vs = V̂s, Vss = V̂ss −
V̂ 2
sω

V̂ωω
, Vxx = −

1

V̂ωω
, Vxs = −

V̂sω

V̂ωω
. (3.24)

Substituting (3.22) and (3.24) into (3.14), and let ρ2
= 1, differentiating V̂ with respect to ω, we derive:

pt + rsps − ((η − θ )λµz + rp) +
1
2
σ 2s2k+2pss +

ω2(r1 − r)2

2σ 2s2k
pωω

+

[
(r1 − r)2

σ 2s2k
− r − f1(q∗

1, t)
]
ωpω − (r1 − r)sωpsω +

(r1 − r)βρ
σ sk

= 0.
(3.25)

From (3.5), (3.19), (3.22), (3.23) and (3.24), the optimal investment strategy (3.5) can be rewritten as

π∗

1 (t) =
psσ 2s2k+1

− ωpω(r1 − r) − βρσ sk

σ 2s2k
. (3.26)

Here, the non-linear second-order PDE (3.14) has been transformed into a linear PDE (3.25). The problem now is to solve
(3.25) for the dual p and replace it in (3.26) so as to obtain the optimal strategy.

From the exponential utility given by (3.1) and the dual (3.21), the boundary condition is

p(T , s, ω) = −
1
γ1

lnω.

Thus, we try to conjecture a solution to (3.25) in the following way:

p(t, s, ω) = −
1
γ1

[b(t)(lnω + m(t, s))] + a(t), (3.27)

with b(T ) = 1,m(T .s) = 0 and a(T ) = 0. Then we have

pt (t, s, ω) = −
1
γ1

[b′(t)(lnω + m(t, s)) + b(t)mt ] + a′(t), ps = −
1
γ1

b(t)ms,

pω = −
b(t)
γ1ω

, pωω =
b(t)
γ1ω2 , pss = −

b(t)
γ1

mss, psω = 0.

Substituting the above derivatives into (3.25), we derive:

1
γ1

lnω[b′(t) − rb(t)] + [ra(t) − a′(t) + (η − θ )λµz] +
b(t)
γ1

[
mt + rsms − rm

+
1
2
σ 2s2k+2mss +

(r1 − r)2

2σ 2s2k
− r − f1(q∗

1, t) +
b′(t)
b(t)

m(t, s) −
γ1

b(t)
(r1 − r)βρ

σ sk

]
= 0.

(3.28)
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Again we can split (3.28) equation into three equations:

b′(t) − rb(t) = 0. (3.29)

a′(t) − ra(t) − (η − θ )λµz = 0. (3.30)

mt + rsms − rm +
1
2
σ 2s2k+2mss +

(r1 − r)2

2σ 2s2k
− r − f1(q∗

1, t) +
b′(t)
b(t)

m(t, s) −
γ1

b(t)
(r1 − r)βρ

σ sk
= 0. (3.31)

Taking the boundary conditions b(T ) = 1 and a(T ) = 0 into account, we obtain the solutions to (3.29) and (3.30):

b(t) = er(t−T ). (3.32)

a(t) = (θ − η)λµz

[
1 − er(t−T )

r

]
. (3.33)

It is difficult to solve Eq. (3.31), so we use a power transformation and a variable change technique to transform it into a
linear one.

Let

m(t, s) = G(t, l), l = s−2k (3.34)

with the boundary condition G(T , l) = 0.
So that

mt = Gt , ms = −2ks−2k−1Gl, mss = 2k(2k + 1)s−2k−2Gl + 4k2s−4k−2Gll.

Putting the above derivatives into (3.31), we get the following linear PDE:

Gt + [σ 2k(2k + 1) − 2rkl]Gl + 2k2σ 2lGll +
(r1 − r)2

2σ 2 l − f1(q∗

1, t) − r −
γ1(r1 − r)βρ

σ
er(T−t)

√
l = 0. (3.35)

In the following, we derive the solution to (3.35) for special cases.
We try to conjecture a solution to (3.35) in the following way:

G(t, l) = d(t) + i(t)
√
l + j(t)l, (3.36)

with d(T ) = 0, i(T ) = 0 and j(T ) = 0. Then

Gt = dt + it
√
l + jt l, Gl =

1
2
l−

1
2 i(t) + j(t), Gll = −

1
4
l−

3
2 i(t).

Substituting these derivatives in (3.35) leads to

[dt + σ 2k(2k + 1)j(t) − r − f1(q∗

1, t)] +
√
l
[
it − rki(t) −

γ1(r1 − r)βρ
σ

er(T−t)
]

+ l
[
jt − 2rkj(t) +

(r1 − r)2

2σ 2

]
+

i(t)σ 2

2
√
l

[k(2k + 1) − k2] = 0.
(3.37)

Again we can split (3.37) into four equations:

dt + σ 2k(2k + 1)j(t) − r − f1(q∗

1, t) = 0. (3.38)

it − rki(t) −
γ1(r1 − r)βρ

σ
er(T−t)

= 0. (3.39)

jt − 2rkj(t) +
(r1 − r)2

2σ 2 = 0. (3.40)

k(2k + 1) − k2 = 0. (3.41)

From (3.41), we have k = −1 or k = 0.
Next, we try to solve (3.37) for the above two cases.
Case 1. k = −1.
Suppose that k = −1, the price process of the risky asset satisfies the special CEV model, namely

dS(t) = r1S(t)dt + σdW (t), S(0) = s, (3.42)
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and Eq. (3.37) reduces to

[dt + σ 2j(t) − r − f1(q∗

1, t)] +
√
l
[
it + ri(t) −

γ1(r1 − r)βρ
σ

er(T−t)
]

+ l
[
jt + 2rj(t) +

(r1 − r)2

2σ 2

]
= 0. (3.43)

Decomposing (3.43) into three equations, we have

dt + σ 2j(t) − r − f1(q∗

1, t) = 0. (3.44)

it + ri(t) −
γ1(r1 − r)βρ

σ
er(T−t)

= 0. (3.45)

jt + 2rj(t) +
(r1 − r)2

2σ 2 = 0. (3.46)

Taking the boundary condition d(T ) = 0, i(T ) = 0 and j(T ) = 0 into account, we obtain the solutions to (3.44)–(3.46)

j(t) =
(r1 − r)2

2σ 2

[
e2r(T−t)

− 1
2r

]
. (3.47)

i(t) = −
γ1(r1 − r)βρ

σ
(T − t)er(T−t). (3.48)

d(t) = −
(r1 − r)2[1 − e2r(T−t)

]

8r2
+

(
(r1 − r)2

4r
+ r

)
(t − T ) −

∫ T

t
f1(q∗

1, s)ds, (3.49)

where∫ T

t
f1(q∗

1, s)ds =

⎧⎨⎩
[−(1 + θ )ξλµz + λ(MZ (ξ ) − 1)](T − t), q∗

1(t) = q1(t),

1
r
(1 + θ )λµzγ1(1 − er(T−t)) − λ(T − t) + λ

∫ T−t

0
MZ (γ1eru)du, q∗

1(t) = 1.

According to (3.26), (3.27), (3.32), (3.34), (3.36), (3.47) and (3.48), we have

π∗

1 (t) =
psσ 2s−1

− ωpω(r1 − r) − βρσ s−1

σ 2s−2

=

−
σ2s−1

γ1
b(t)ms +

1
γ1
b(t)(r1 − r) − βρσ s−1

σ 2s−2

=

−
2σ2

γ1
b(t)

[ 1
2 s

−1i(t) + j(t)
]
+

1
γ1
b(t)(r1 − r) − βρσ s−1

σ 2s−2

=
(r1 − r)s2er(t−T )

γ1σ 2

[
1 +

r1 − r
2r

(1 − e2r(T−t))
]

+
sβρ(r1 − r)(T − t)

σ
−

sβρ
σ
.

Case 2. k = 0.
When k = 0, then the price process of the risky assets are governed by geometric Brownian motion (GBM). Similar to the

case of k = −1, the solutions to (3.38)–(3.40) are

j(t) =
(r1 − r)2

2σ 2 (T − t). (3.50)

i(t) =
γ1βρ(r1 − r)

σ r
(1 − er(T−t)). (3.51)

d(t) = r(T − t) +

∫ T

t
f1(q∗

1, s)ds, (3.52)

where∫ T

t
f1(q∗

1, s)ds =

⎧⎨⎩
[−(1 + θ )ξλµz + λ(MZ (ξ ) − 1)](T − t), q∗

1(t) = q1(t),

1
r
(1 + θ )λµzγ1(1 − er(T−t)) − λ(T − t) + λ

∫ T−t

0
MZ (γ1eru)du, q∗

1(t) = 1.
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According to (3.26), (3.27), (3.32), (3.34), (3.36), (3.50) and (3.51),we have

π∗

1 (t) =
psσ 2s − ωpω(r1 − r) − βρσ

σ 2

=
−ωpω(r1 − r) − βρσ

σ 2

=
(r1 − r)er(t−T )

γ1σ 2 −
βρ

σ
.

The following theorem summarizes the above derivation.

Theorem 3.3. Assume that ξ is the unique positive root to Eq. (3.9), let t0 = T +
1
r ln

γ1
ξ
. Then the optimal reinsurance strategy

for the optimal investment–reinsurance problem (2.5) is given as follows:
(1) If

ξ ≤ γ1,

then the optimal reinsurance strategy is given by

q∗

1(t) = q1(t), 0 ≤ t ≤ T . (3.53)

(2) If

γ1 < ξ < γ1erT ,

then the optimal reinsurance strategy is given by

q∗

1(t) =

⎧⎨⎩
ξ

γ1
e−r(T−t), 0 ≤ t < t0,

1, t0 ≤ t ≤ T .
(3.54)

(3) If

ξ ≥ γ1erT ,

then the optimal reinsurance strategy is given by

q∗

1(t) ≡ 1, 0 ≤ t ≤ T . (3.55)

Furthermore, we have the following cases for the optimal investment strategy:
(i) If the elasticity parameter k = −1, the optimal investment strategy under the exponential utility is

π∗

1 (t) =
(r1 − r)s2er(t−T )

γ1σ 2

[
1 +

r1 − r
2r

(1 − e2r(T−t))
]

+
sβρ(r1 − r)(T − t)

σ
−

sβρ
σ
. (3.56)

(ii) If the elasticity parameter k = 0, the CEV model reduces to the GBM model and the optimal investment strategy under the
exponential utility is

π∗

1 (t) =
(r1 − r)er(t−T )

γ1σ 2 −
βρ

σ
. (3.57)

Remark 3.4. For the case of k = 0, note that ∂π1(t)
∂β

= −
ρ

σ
. Thus, the optimal investment strategy is a decreasing function

with β when ρ > 0. It is because when ρ > 0, the correlation between the risk model and the risky asset’s price is positive,
as β increases, the underwriting risk becomes larger, thus the insurer will put less money in the risky asset to reduce the
financial risk. On the contrary, in the case that ρ < 0, the correlation between the risk model and the risky asset’s price is
negative, the optimal investment strategy increases with β . As β becomes larger, the insurer will get more profits from risky
asset. Therefore, the insurer would like to put more money in the risky asset to gain more profits.

Remark 3.5. If β = 0, the jump diffusion risk process (2.1) reduces to the classical Cramér–Lundberg (C–L) model

dX(t) = cdt − d

(N(t)∑
i=1

Zi

)
. (3.58)
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In this case, the risk model is independent with the risky asset’s price and the optimal investment strategy is

π∗

1 (t) =
(r1 − r)er(t−T )

γ1σ 2s2k

[
1 +

(r1 − r)
2r

(1 − e2rk(t−T ))
]
. (3.59)

Proof. For β = 0, (3.35) reduces to

Gt + [σ 2k(2k + 1) − 2rkl]Gl + 2k2σ 2lGll +
(r1 − r)2

2σ 2 l − f1(q∗

1, t) − r = 0. (3.60)

We try to conjecture a solution of (3.60) with the following structure:

G(t, l) = e(t) + g(t)l, (3.61)

with e(T ) = 0 and g(T ) = 0. Then

Gt = et + gt l, Gl = g(t), Gll = 0.

Putting these derivatives in (3.60) yields

[et + σ 2k(2k + 1)g(t) − f1(q∗

1, t) − r] + l
[
gt − 2rkg(t) +

(r1 − r)2

2σ 2

]
= 0. (3.62)

In order to eliminate the dependence on l, we decompose (3.62) into two equations:

et + σ 2k(2k + 1)g(t) − f1(q∗

1, t) − r = 0. (3.63)

gt − 2rkg(t) +
(r1 − r)2

2σ 2 = 0. (3.64)

In terms of the boundary conditions e(T ) = 0 and g(T ) = 0, the solutions to (3.63) and (3.64) are

e(t) =

[
(2k + 1)(r1 − r)2

4r
− r

]
(T − t) −

(2k + 1)(r1 − r)2

8kr2
(1 − e2kr(t−T )) −

∫ T

t
f1(q∗

1, s)ds, (3.65)

where∫ T

t
f1(q∗

1, s)ds =

⎧⎨⎩
[−(1 + θ )ξλµz + λ(MZ (ξ ) − 1)](T − t), q∗

1(t) = q1(t),

1
r
(1 + θ )λµzγ1(1 − er(T−t)) − λ(T − t) + λ

∫ T−t

0
MZ (γ1eru)du, q∗

1(t) = 1.

g(t) =
(r1 − r)2

2σ 2

[
1 − e2rk(t−T )

2rk

]
. (3.66)

From (3.26), (3.27), (3.32), (3.34), (3.61), (3.66), we have

π∗

1 (t) =
psσ 2s2k+1

− ωpω(r1 − r)
σ 2s2k

=

−
b(t)
γ1

msσ
2s2k+1

+
b(t)
γ!

(r1 − r)

σ 2s2k

=
b(t)

γ1σ 2s2k
[(r1 − r) + 2kσ 2Gl]

=
(r1 − r)er(t−T )

γ1σ 2s2k

[
1 +

(r1 − r)
2r

(1 − e2rk(t−T ))
]
.

Remark 3.6. For the case of β = 0, if k = 0, the CEV model reduces to the GBMmodel, and the optimal investment strategy
is

π∗

1 (t) =
(r1 − r)er(t−T )

γ1σ 2 . (3.67)

Compared to (3.67), the optimal investment strategy under the CEV model can be decomposed into two parts. One is

M(t) =
(r1 − r)er(t−T )

γ1σ 2s2k
, (3.68)
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which is similar to the optimal investment strategy under the GBM model, but the volatility is stochastic. Hence, we call
(3.68) as a modified GBM strategy. The second part

N(t) = 1 +
(r1 − r)

2r
(1 − e2rk(t−T )) (3.69)

is called a modification factor, which reflects the insurer’s decision to hedge the volatility risk.
The following corollary shows the properties of the modification factor.

Corollary 3.7. The modification factor N(t) is a monotone increasing function with respect to time t and satisfies

1 +
(r1 − r)

2r
(1 − e−2rkT ) ≤ N(t) ≤ 1. 0 ≤ t ≤ T (3.70)

Proof. Note that r1 > r > 0 and k < 0, then

N ′(t) = −k(r1 − r)e2rk(t−T ) > 0,

thus the modification factor N(t) is a monotone increasing function with respect to time t .
Since N(0) = 1 +

(r1−r)
2r (1 − e−2rkT ) and N(T ) = 1, we have

1 +
(r1 − r)

2r
(1 − e−2rkT ) ≤ N(t) ≤ 1, 0 ≤ t ≤ T .

Corollary 3.7 shows that the insurer will invest less in the risky asset at initial time, and steadily increase the amount as
time goes on under the CEV model.

4. Optimal strategy for the reinsurer

In this section, we derive the optimal strategy for the reinsurer to maximize the reinsurer’s expected exponential utility
of terminal wealth.

The utility function of the reinsurer is given by exponential utility

u2(y) = −
1
γ2

e−γ2y, γ2 > 0. (4.1)

We define the value function of the reinsurer as

ψ(t, s, y) = sup
(π2,q2)∈Π2

E[u2(Y (T ))|Y (t) = y, S(t) = s], 0 ≤ t < T (4.2)

with ψ(T , s, y) = u2(y).
The corresponding HJB equation is

ψt + r1sψs + [ry + (1 + θ )λµz]ψy +
1
2
σ 2s2k+2ψss + sup

π2

{
π2(r1 − r)ψy +

1
2
π2
2σ

2s2kψyy + σ 2s2k+1π2ψsy

}
+ sup

q2
{−(1 + θ )λµzq2ψy + λE(ψ(t, s, y − (1 − q2)z) − ψ(t, s, y))} = 0, 0 ≤ t < T

(4.3)

with the boundary condition ψ(T , s, y) = u2(y), where ψt , ψs, ψy, ψss, ψyy, ψsy denote partial derivatives of first and second
orders with respect to time t , risky asset’s price s and wealth y.

According to the exponential utility function described by (4.1), we construct the solution to (4.3) with the following
form:

ψ(t, s, y) = −
1
γ2

exp[−γ2yer(T−t)
+ h(t, s)], (4.4)

with h(T , s) = 0. Then we have

ψt = (γ2yrer(T−t)
+ ht )ψ, ψs = hsψ,

ψss = (h2
s + hss)ψ, ψy = (−γ2er(T−t))ψ,

ψyy = (γ 2
2 e

2r(T−t))ψ, ψys = (−γ2er(T−t)hs)ψ,

E[ψ(t, s, y − (1 − q2)z) − ψ(t, s, y)] = ψ(MZ (γ2(1 − q2)er(T−t)) − 1).

Plugging these back into HJB equation (4.3) yields

ht − (1 + θ )λµzγ2er(T−t)
+ r1shs +

1
2
σ 2s2k+2(h2

s + hss) − λ+ inf
π2

{g1(π2, t)} + inf
q2

{g2(q2, t)} = 0, (4.5)
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where

g1(π2, t) = −(r1 − r)π2γ2er(T−t)
+

1
2
π2
2σ

2s2kγ 2
2 e

2r(T−t)
− σ 2s2k+1π2γ2er(T−t)hs,

and

g2(q2, t) = (1 + θ )λµzγ2er(T−t)q2 + λMZ (γ2(1 − q2)er(T−t)).

Differentiating g1(π2, t) with respect to π2 yields the minimizer

π∗

2 (t) =
1
γ2

er(t−T )
[
r1 − r
σ 2s2k

+ shs

]
, (4.6)

and the corresponding minimum value is

g1(π∗

2 , t) = −
1
2

(
r1 − r
σ sk

+ σ sk+1hs

)2

.

Similarly, differentiating g2(q2, t) with respect to q2, we get
∂g2(q2, t)
∂q2

= (1 + θ )λµzγ2er(T−t)
− λγ2er(T−t)E[Zeγ2(1−q2)er(T−t)Z

].

∂2g2(q2, t)
∂q22

= λγ 2
2 e

2r(T−t)E[Z2eγ2(1−q2)er(T−t)
] > 0.

Thus, g2(q2, t) is a convex function with respect to q2, and its minimizer q2(t) satisfies

(1 + θ )µz = M ′(n), (4.7)

where n := γ2(1 − q2)er(T−t).
From Lemma 3.1, we get that ξ is the unique positive root of Eq. (4.7).
Therefore, we get q2(t) = 1 −

ξ

γ2
e−r(T−t)

≤ 1. In the following, we analyze the optimal problem under three cases.
Case 1.ξ ≥ γ2.
In this case, 1 −

ξ

γ2
≤ 0, and thus, q2(t) ≤ 0 for any t ∈ [0, T ], then the optimal reinsurance strategy is

q∗

2(t) ≡ 0, 0 ≤ t ≤ T . (4.8)

Case 2.e−rTγ2 < ξ < γ2.
Let t1 = T +

1
r ln

γ2
ξ
, then q2(t) > 0 for t ∈ [0, t1), q2(t) ≤ 0 for t ∈ [t1, T ], thus the optimal reinsurance strategy is

q∗

2(t) =

⎧⎨⎩ 1 −
ξ

γ2
e−r(T−t), 0 ≤ t < t1,

0, t1 ≤ t ≤ T .
(4.9)

Case 3.ξ ≤ γ2e−rT .
In this case, q2(t) ≥ 0 for any t ∈ [0, T ], then the optimal reinsurance strategy is

q∗

2(t) ≡ q2(t), 0 ≤ t ≤ T . (4.10)

The value of g2(q2, t) at q∗

2(t) is

g2(q∗

2, t) =

⎧⎨⎩ (1 + θ )λµzγ2

[
er(T−t)

−
ξ

γ2

]
+ λMZ (ξ ), q∗

2(t) = q2(t),

λMZ (γ2er(T−t)), q∗

2(t) = 0.
(4.11)

Substituting g1(π∗

2 , t) and g2(q∗

2, t) into (4.5) yields

ht − (1 + θ )λµzγ2er(T−t)
+ rshs +

1
2
σ 2s2k+2hss − λ−

(r1 − r)2

2σ 2s2k
+ g2(q∗

2, t) = 0. (4.12)

Through the similar method, let

h(t, s) = A(t, l), l = s−2k (4.13)

with the boundary condition A(T , l) = 0.
Thus,

ht = At , hs = −2ks−2k−1Al, hss = 2k(2k + 1)s−2k−2Al + 4k2s−4k−2All.
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With the use of this transformation, (4.12) becomes

At − 2klrAl + σ 2k(2k + 1)Al + 2σ 2k2lAll −
(r1 − r)2

2σ 2 l − (1 + θ )λµzγ2er(T−t)
+ g2(q∗

2, t) − λ = 0. (4.14)

To solve (4.14), we try a solution with the following form:

A(t, l) = I(t)l + J(t), (4.15)

with the boundary condition I(T ) = 0 and J(T ) = 0.
Then (4.14) is transformed into[

It − 2krI(t) −
(r1 − r)2

2σ 2

]
l + Jt + σ 2k(2k + 1)I(t) − (1 + θ )λµzγ2er(T−t)

+ g2(q∗

2, t) − λ = 0. (4.16)

In order to eliminate the dependence on l, we decompose (4.16) into

It − 2krI(t) −
(r1 − r)2

2σ 2 = 0, (4.17)

and

Jt + σ 2k(2k + 1)I(t) − (1 + θ )λµzγ2er(T−t)
+ g2(q∗

2, t) − λ = 0. (4.18)

Taking the boundary conditions into account, we get

I(t) =
(r1 − r)2

4rkσ 2 [e−2rk(T−t)
− 1], (4.19)

J(t) = B(t) +

∫ T

t
g2(q∗

2, s)ds, (4.20)

where

B(t) =
(r1 − r)2(2k + 1)

8r2k
[1 − e−2kr(T−t)

] −
1
r
(1 + θ )λµzγ2(er(T−t)

− 1) −

(
(r1 − r)2(2k + 1)

4r
+ λ

)
(T − t),

∫ T

t
g2(q∗

2, s)ds =

{
C1(t), q∗

2(t) = q2(t),
C2(t), q∗

2(t) = 0

where⎧⎪⎪⎨⎪⎪⎩
C1(t) =

(1 + θ )λµzγ2

r
(1 − er(T−t)) − [(1 + θ )λµzξ − λMZ (ξ )](T − t),

C2(t) = λ

∫ T−t

0
MZ (γ2eru)du.

(4.21)

The following theorem summarizes the above derivation and gives the optimal investment–reinsurance strategy for the
reinsurer.

Theorem 4.1. The optimal investment strategy for problem (2.8) under the exponential utility function is given by

π∗

2 (t) =
(r1 − r)er(t−T )

γ2σ 2s2k

[
1 −

r1 − r
2r

(e−2rk(T−t)
− 1)

]
. (4.22)

Furthermore, define{
h1(t, s) = I(t)s−2k

+ B(t) + C1(t),
h2(t, s) = I(t)s−2k

+ B(t) + C2(t)

the optimal reinsurance strategies and the corresponding value function of the reinsurer are as follows:
(1) If ξ ≥ γ2, the optimal reinsurance strategy is

q∗

2(t) ≡ 0, 0 ≤ t ≤ T (4.23)

and the value function is

ψ(t, s, y) = −
1
γ2

exp[−γ2yer(T−t)
+ h2(t, s)]. (4.24)
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(2) If e−rTγ2 < ξ < γ2, the optimal reinsurance strategy is

q∗

2(t) =

⎧⎨⎩ 1 −
ξ

γ2
e−r(T−t), 0 ≤ t < t1,

0, t1 ≤ t ≤ T ,
(4.25)

where t1 = T +
1
r ln

γ2
ξ
, and the value function is

ψ(t, s, y) =

⎧⎪⎪⎨⎪⎪⎩
−

1
γ2

exp[−γ2yer(T−t)
+ h1(t, s) + τ ], 0 ≤ t < t1,

−
1
γ2

exp[−γ2yer(T−t)
+ h2(t, s)], t1 ≤ t ≤ T ,

(4.26)

where τ = h2(t1, s) − h1(t1, s).
(3) If ξ ≤ γ2e−rT , the optimal reinsurance strategy is

q∗

2(t) ≡ q2(t), 0 ≤ t ≤ T . (4.27)

and the value function is

ψ(t, s, y) = −
1
γ2

exp[−γ2yer(T−t)
+ h1(t, s)]. (4.28)

Proof. According to (4.6), (4.13), (4.15) and (4.19), we have

π∗

2 (t) =
1
γ2

er(t−T )
[
r1 − r
σ 2s2k

+ shs

]
=

1
γ2

er(t−T )
[
r1 − r
σ 2s2k

− 2ks−2kAl

]
=

1
γ2

er(t−T )
[
r1 − r
σ 2s2k

− 2ks−2kI(t)
]

=
(r1 − r)er(t−T )

γ2σ 2s2k

[
1 −

r1 − r
2r

(e−2rk(T−t)
− 1)

]
.

Moreover, because h2(t1, s) = h1(t1, s) + τ , ψ(t, s, y) is a continuous function on [0, T ] × R × R. Furthermore,

h′

1(t1, s) = I ′(t1)s−2k
+ B′(t1) − λMZ (ξ ) = h′

2(t1, s),

where h′

i(t1, s) is the first derivative of hi(t, s) with respect to t at t1. Thus,ψ ∈ C1,2 is a classical solution of the HJB equation
(4.3).

Remark 4.2. If k = 0, the CEV model reduces to the GBMmodel, and the optimal investment strategy is

π∗

2 (t) =
(r1 − r)er(t−T )

γ2σ 2 . (4.29)

Similarly, the optimal investment strategy π∗

2 (t) can be decomposed into two parts. One part has an analogical form of
the optimal strategy under the GBMmodel, i.e.,

M̂(t) =
(r1 − r)er(t−T )

γ2σ 2s2k
. (4.30)

The other is the modification factor

N̂(t) = 1 −
r1 − r
2r

(e−2rk(T−t)
− 1). (4.31)

The modification factor N̂(t) is a monotone increasing function with respect to time t and satisfies

1 +
(r1 − r)

2r
(1 − e−2rkT ) ≤ N̂(t) ≤ 1, 0 ≤ t ≤ T . (4.32)

Therefore, the reinsurer will invest less wealth in the risky asset at initial time, and steadily increase money amount as
time goes on.
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Fig. 5.1. (a) The effect of β on π∗

1 (t) when ρ = 1. (b) The effect of β on π∗

1 (t) when ρ = −1.

5. Numerical analysis

In this section, we provide some numerical simulations to illustrate our results. Here we assume that the claim size Zi are
independent and exponentially distributedwith parameter 1

µz
. Throughout the numerical analysis, the basic parameters are

given by: r = 0.3, r1 = 0.4, k = −1, T = 10, t = 5, s = 5, γ1 = 0.2, γ2 = 0.2, σ = 1, ρ = ±1, η = 1, θ = 1, λ = 0.5,
µz = 1.

5.1. Sensitivity analysis of insurer’s investment strategy

For the case of k = −1, the optimal investment strategy is

π∗

1 (t) =
(r1 − r)s2er(t−T )

γ1σ 2

[
1 +

r1 − r
2r

(1 − e2r(T−t))
]

+
sβρ(r1 − r)(T − t)

σ
−

sβρ
σ
. (5.1)

The effects of β on the optimal investment strategy are shown in Fig. 5.1. From Fig. 5.1(a), we can see that the optimal
investment strategy π∗

1 (t) decreases with β in the case of ρ = 1. When ρ > 0, the correlation between risk model and risky
asset’s price is positive. As β increases, the underwriting risk becomes larger, in order to reduce overall risk, the insurer will
put less money in the risky asset. From Fig. 5.1(b), π∗

1 (t) is an increasing function of β when ρ = −1. In the case of ρ < 0,
the correlation between risk model and risky asset’s price is negative. As β becomes bigger, the insurer will get more profits
from risky asset. Therefore, the insurer would like to put more money in the risky asset to gain more profits.

5.2. Sensitivity analysis of reinsurance strategies

Example 5.1. In this example, sensitivity analysis of the reinsurer’s strategy for jump diffusion risk model are shown in
Fig. 5.2.

Fig. 5.2(a) shows the effects of the safety loading parameter θ on the optimal reinsurance strategies. From Fig. 5.2(a), we
find that θ exerts a positive effect on q∗

1(t). As θ becomes larger, the reinsurance premium will be more expensive. Thus
the insurer prefers to retain a greater share of each claim and purchase less reinsurance. q∗

2(t) is a decreasing function of θ .
When the reinsurance premium becomes more expensive, the reinsurer prefers to take more share of reinsurance to gain
more profits.

Fig. 5.2(b) shows the effects of risk aversion coefficient on the reinsurance strategies. The insurer’s risk aversion coefficient
γ1 has a negative effect on the reinsurance proportion q∗

1(t). The insurer is risk averse and it will purchase more reinsurance
to hedge risk as the risk aversion coefficient becomes higher. The reinsurance strategy of the reinsurer q∗

2(t) increases with
γ2. As γ2 increases, the reinsurer is more conservative and it will accept lower reinsurance proportion.

In reality, the reinsurance proportion is decided by both the insurer and the reinsurer. If the optimal retention level
chosen by the insurer is larger than that of the reinsurer, the reinsurer will accept the strategy. But in the opposite case, the
reinsurer may not accept the optimal retention level chosen by the insurer. We discuss the optimal reinsurance strategy in
the following three cases.

Case 1. ξ =
γ1γ2
γ1+γ2

er(T−t).
In this case, q∗

1(t) = q∗

2(t), both the insurer and reinsurer obtain themaximumvalue of terminalwealth, thus, the reinsurer
will accept the optimal reinsurance strategy chosen by the insurer.

Case 2. ξ > γ1γ2
γ1+γ2

er(T−t).
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Fig. 5.2. (a) The effect of θ on the optimal reinsurance strategies. (b) The effect of risk aversion on the optimal reinsurance strategies.

In this case, q∗

1(t) > q∗

2(t), the insurer’s retention proportion is larger than that chosen by the reinsurer, thus, the reinsurer
has enough wealth to accept the optimal reinsurance strategy chosen by the insurer.

Case 3. ξ < γ1γ2
γ1+γ2

er(T−t).
In this case, q∗

1(t) < q∗

2(t), the reinsurer may not accept the optimal reinsurance strategy chosen by the insurer.

Example 5.2. In this example, sensitivity analysis of the reinsurer’s strategy for diffusion approximation risk model are
shown in Fig. 5.3.

Let C(t) =
∑N(t)

i=1 Zi, according to Grandell [29], the claim process C(t) can be approximated by the following diffusion risk
model

dĈ(t) = α1dt − α2dŴ (t), (5.2)

where α1 = λE[Zi], α2
2 = λE[Z2

i ]. By using the similar methods in Sections 3 and 4, we obtain the optimal reinsurance
strategies for the diffusion model.

Let t̂0 = T −
1
r ln

λµzθ

α22γ1
, the optimal reinsurance strategy of the insurer with the diffusion risk model are as follows:

(1)if λµzθ

α22γ1
≤ 1, then t̂0 ≥ T , thus the optimal reinsurance strategy is given by

q̂∗

1(t) =
λµzθ

α2
2γ1

e−r(T−t), 0 ≤ t ≤ T ; (5.3)

(2) if 1 < λµzθ

α22γ1
< erT , the optimal reinsurance strategy is

q̂∗

1(t) =

⎧⎨⎩
λµzθ

α2
2γ1

e−r(T−t), 0 ≤ t < t̂0,

1, t̂0 ≤ t ≤ T ;

(5.4)

(3) if λµzθ

α22γ1
≥ erT , the optimal reinsurance strategy is

q̂∗

1(t) ≡ 1, 0 ≤ t ≤ T . (5.5)

Let t̂1 = T −
1
r ln

λµzθ

α22γ2
, the optimal reinsurance strategy of the reinsurer with the diffusion risk model are as follows:

(1) if λµzθ

α22γ2
≤ 1, then t̂1 ≥ T , thus the optimal reinsurance strategy is given by

q̂∗

2(t) = 1 −
λµzθ

α2
2γ2

e−r(T−t), 0 ≤ t ≤ T ; (5.6)

(2) if 1 < λµzθ

α22γ2
< erT , the optimal reinsurance strategy is

q̂∗

2(t) =

⎧⎨⎩ 1 −
λµzθ

α2
2γ2

e−r(T−t), 0 ≤ t < t̂1,

0, t̂1 ≤ t ≤ T ;

(5.7)
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Fig. 5.3. (a) The effect of θ on the optimal reinsurance strategies. (b) The effect of risk aversion on the optimal reinsurance strategies.

(3) if λµzθ

α22γ2
≥ erT , the optimal reinsurance strategy is given by

q̂∗

2(t) ≡ 0, 0 ≤ t ≤ T . (5.8)

Fig. 5.3 illustrates the effects of the safety loading parameter θ and the risk aversion coefficient on the optimal reinsurance
strategies. q̂∗

1(t) increases with θ and decreases with γ1, while q̂∗

2(t) decreases with θ and increases with γ2. The effects are
similar to those under the jump diffusion riskmodel. Thus, it is reasonable to approximate the compound Poisson process by
the Brownian motion with drift. But the reinsurance strategy is more sensitive with θ when the claim process is described
by the diffusion risk model. Moreover, when θ ≥

α22γ1γ2
λµz (γ1+γ2)

er0(T−t), then q̂∗

1(t) ≥ q̂∗

2(t), thus the reinsurer will accept the
optimal retention level chosen by the insurer.

6. Conclusion

In this paper, we study the optimal investment–reinsurance problem for both an insurer and a reinsurer. We consider
an insurer with a jump diffusion risk model, and she/he can purchase proportional reinsurance from the reinsurer. Both
the insurer and the reinsurer are allowed to invest in a risky asset and a risk-free asset. Moreover, we adopt the constant
elasticity of variance (CEV)model to describe risky asset’s price process. By applying stochastic control approach,we establish
the corresponding Hamilton–Jacobi–Bellman (HJB) equations. For exponential utility maximization, we obtain closed-form
reinsurance–investment strategies for insurer and reinsurer, respectively. Finally, a numerical simulation is presented to
analyze the properties of the optimal strategies. Some interesting results are found: (1) The insurer’s reinsurance strategy is
different from the reinsurer’s strategy. (2) In comparison with the GBMmodel, the optimal investment strategies under the
CEV model contain an extra modification factor, which reflects the insurer’s and reinsurer’s decisions to hedge the volatility
risk.
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