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ABSTRACT. We consider positive solutions for the fractional heat equation
with critical exponent

ur = —(—A)Su—l—u% in Q x (0, 00),

u=0on (R"\ Q) x (0,00),

u(+,0) = ug in R",
where ) is a smooth bounded domain in R?, n > 4s, s € (0,1), u : R® x
[0,00) — R and ug is a positive smooth initial datum with ug|gn\o = 0. We
prove the existence of ug such that the solution blows up precisely at prescribed

distinct points q1,--- ,qr in Q as t — +00. The main ingredient of the proofs
is a new inner-outer gluing scheme for the fractional parabolic problems.

1. INTRODUCTION

Let Q2 be a smooth bounded domain in R™, n > 1. We consider the fractional
heat equation with critical exponent

ug = —(—A)%u+ Wi in Q x (0,00),
u=0on (R"\ Q) x (0,00), (1.1)
u(-,0) = up in R™,

for a function u : R™ x [0, 00) — R and a smooth, positive initial datum wug satisfying

ug|lgmyo = 0, s € (0,1). Here, for any point x € R, the fractional Laplace operator
(=A)*u(x) is defined as

(A u(z) = C(n, sy, [ U =uW)
o [T — Y[
with a suitable positive normalizing constant C'(n, s). We refer to [27] for an intro-
duction to the fractional Laplace operator and to the appendix of [18] for a heuristic

physical motivation in nonlocal quantum mechanics of the fractional operator con-
sidered here.

Parabolic problems like (1.1) and related ones have attracted much attention in
recent years, for example, [2], [3], [8], [9], [10], [L1], [12], [15], [28], [29], [*1], [42] and
the references therein. As in the case of s = 1, problem (1.1) is the formal negative
L?-gradient flow of the functional

1 s 19 n—2s _2n_
E(u) = §/n [(—A)zu|*dx — o /Q|u| = dy
1
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n

Hj(Q) = {u € L*(R") : / |(—=A)2u|?dz < 400 and u = 0

n

almost everywhere in R™ \ Q},

ie, LE(u(-,t)) = — [gu lu[>dz. If the function u(z,t) is independent of ¢, (1.1)
is a semilinear elliptic problem with fractional Laplacian, which has been studied
extensively, for instance, in [16] and [10].

When s = 1, problem (1.1) is the classical parabolic equation with critical expo-
nent

ut:Au—I—uZ*tg in © x (0, 00),
u=20 on 99 x (0, 00), (1.2)
u(+,0) = uog in €.
Many authors are interested in the blow-up phenomenon of (1.2), for example, [17],
[25], [26], [31], [36], [37], [38], [39]. In [17], Cortazar, del Pino and Musso obtained

the following result. Suppose n > 4, let @(m,y) be the Green’s function of —A in
Q with Dirichlet boundary value and H (z,y) be its regular part. Given k distinct

points g1, -+, g in Q such that the matrix
ﬁA(qu q) jé'((h, Q@) - *(?(Qh )
5 —G(q2, 1) H(gz,q2) -+ —Gla2,q)
Gla) = : : - :
*G(Qkalh) *G(Qkﬂh) ﬁ(Qk,Qk)
is positive definite, they proved the existence of an initial datum uy and smooth
parameter functions &;(t) = ¢;, 0 < p;(¢t) = 0, as t = 400, j =1,--- , k, such that

there exists an infinite time blow-up solution ug of (1.2) which has the approximate

form
n—2

k 2
v~ o pi(t)
> "(u?(t)+lx—€j(t)|2>

with p;(t) = ﬂjtfni‘l (1+0(1)) for certain positive constants ;. The aim of this
paper is to show that this phenomenon also occurs in problem (1.1). Our starting
point is the positive entire solutions of the equation

n+2s

—(=A)’U+Un»-—2 =0in R",

which are given by the bubbles

n—2s

Uu’g(l‘) = ,U,_ngzs Uy (:C ; 5) = Qps (M) o , (13)

w2+ e =&

where
n—2s

1 2

U =ans | —3
o(y) = o, <1+|y|2
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and o, s is a constant depending only on n and s, see, [14] and [35]. Let G(z,y)
be the Green’s function for the following nonlocal problem

(—A)9G<$, y) = C(”? 8)5(37 - y) in Qa
G(y) =0 in R\ 0,
where §(z) denotes the Dirac measure at the origin and ¢(n, s) satisfies

(—A)SF({E) = C(n7 S)(S(QI,‘)’ ]_-\(x) _ Qnp s

‘m|n—23 !

The regular part of G(z,y) is denoted by H(z,y), namely H(z,y) solves the fol-
lowing problem

H(,y)=T(—-y) mnR"\Q
Let ¢ = (q1,- -+ ,qr) be the collection of k distinct points in Q and define

{(—A)SH(x,y) =0 1inQ,

H(qi,q1) —G(q1,q2) - —G(q1,qk)
-G, 1) H(qz,q2) -+ —G(g2,qx)
G(q) == : : . . (1.4)

_G(QIw(h) _G(Qkafh) H(qk7Qk‘)
Our main result is stated as follows.
Theorem 1.1. Assume n > 4s, s € (0,1) and q1,--- ,qx are distinct points in
Q such that the matriz (1.4) is positive definite. Then there exist ug and smooth
parameter functions £;(t) — q;, 0 < p;(t) — 0, ast — +oo, j = 1,--- ,k, such
that there exists solution uq to problem (1.1) with the form

n=2s

k 2
= @ 10 e .0 n "
= 2 o (u?(t)er—fj(t)Q) gt OH@ ) +p " [e(t),

where p(x,t) is bounded satisfying ¢(x,t) — 0 as t — +o0, uniformly away from
q;. Furthermore, there exists a submanifold M with codimension k in X = {u €
CY(R™) : ulgm\q = 0} containing ug(x,0) such that, if ug is a small perturbation of
ugq(z,0) in M, then the solution u(x,t) of (1.1) still has the form

n—2s

k ~ p)
L fi (t) e ) 5
e 2 (ﬂj<t>+|x—éj<t>|2> Ayt OH@G) 47,7 Op0)

where the point q; is close to q; for j=1,--- k.

j=1

j=1

In order to prove this theorem, we shall develop a new inner-outer gluing scheme
for fractional parabolic problems. It is well-known that gluing methods have been
proven to be very useful in singular perturbation elliptic problems, for example, [22],
[23], [24]. This method has also been applied in various parabolic flows recently,

such as the infinite time blow-up for critical nonlinear heat equation [17], [26] and
half-harmonic map flow [43], the singularity formation for two dimensional harmonic
map flow [20], finite time blow-up for critical nonlinear heat equation [25], type II

ancient solution for Yamabe flow [21].

When dealing with parabolic problems, a crucial step in the scheme is to find a
solution of the linearized parabolic equation around the bubble with sufficiently fast
decay. However, it seems that the local argument in [17] for the classical critical heat
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equation does not work in the fractional case. Inspired by Lemma 4.5 of [20] and the
linear theory of [43], we will use a blow-up argument based on the nondegeneracy of
bubbles and a removable singularity property for the corresponding limit equations.
(See Section 5 below.)

As mentioned, the case of fractional parabolic problems is much more intricate.
For the semilinear equation, Sugitani [14] proved non-existence below the Fujita
exponent p, = 1+ % The case of global existence above the exponent remains
open since all the known techniques fail in this case. Related to a similar question,
the paper [33] provides an optimal initial trace theory (see also [4] for the case
of the homogeneous fractional heat equation). As far as blow-up is concerned, a
theory in the spirit of the one developed for instance by Giga and Kohn [32] | is
missing. A crucial step in these approaches is to exhibit a monotone quantity. For
the operator 9y + (—A)®, such a quantity is missing. On the other hand, as far
as nonlocal operators are concerned, the fractional power of the heat equation, i.e.
(0 — A)®, on the other hand exhibits monotonicity (see for instance [?]). Notice
that the latter operator has the same stationary solutions as the former one.

The proof of Theorem 1.1 is rather long. We outline the proof and point out
key arguments here. To explain the idea, we assume that £ = 1 in the rest of this
section.

Step 1. Construction of approximation. Our aim is to find a solution u(z,t)
in the following approximate form

u(,t) = Uy, ()

with £(t) = ¢, u(t) — 0 as t — oo and Uy, y),¢(x)(2) is defined in (1.3). Denote the
error operator as

S(u) = —ur — (—A)°u + uP,

where p = Zi‘gi . Then the error of Uy, ¢t () is
SWawew) =n~ = iZan(y) +pm 2 6 VU(Y).
Here y = %ﬁt()t) It turns out that the terms u_%%_lﬂZnH(y) and u_n%%_lé .

VU (y) do not have enough decay to perform the gluing method we shall use. (For
s = 1, this is enough.) So we add a nonlocal term ®*(z,t) = ®°(z,t) + ®!(x,t) to
cancel them out at main order. Since u = 0 in R™\ Q, a better approximation than
Uiy e () 1

n—2s n—2s

Upe(z,t) =Upe(a) +p 2 (2, t) —p 2 H(z,q).
The error of u,¢ can be computed as

n+2s

poz S(upe) = pEo + pky

with
Eo=pU(y)P~ " (=" 2" H(q,q)) + pU(y)* " 2710%q,1)

.. n—2s 1
+ 1R (Zn+1(y)+ 5 s 5 w,_25>
(1+1y?) 2
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and
Ey =pU(y)*~" (—u""?*VH(q,q)) -y +pU(y)? ' p" 710 (q,1)
+ aps(n — ?S)MQS”&'—%_QS-
(L+yPR) =

We shall look for solutions with the form

u(x,t) = Upg + QZE(Z'ﬂf),

~ _no2 z—£
P(x,t) = p ¢>< . J)-

By S(u) = S(up e + d(x,t)) = 0, the equation for ¢(y,t) is
s _ n+2s
—(=A) o +pUW)P "o+ 2 S(uue)+ Alg] =0
for a small term A[¢]. Note that in the expansion of uE S(upue), the largest

term is puFEy, so ¢(y,t) should equal a solution ¢g(y,t) of the following elliptic type
equation at main order

— (=A);00 +pU(y)P " ¢o = —poLo in R", do(y,t) = 0as [y = oco.  (1.5)

Equation (1.5) is a special case of

where

Lolt)] == —(=A)y1 +pU(y)" "' = h(y) in R", ¢(y) = O as |y| = co.  (1.6)
It is well known that every bounded solution of Ly[t)] = 0 in R™ is the linear
combination of the functions
Ziy Do

where

ou ) n—2s

Zi(y) =5 —-(y), i=1-.n  Znu(y) = Uly) +y-VU(y).

8yi 2

The above non-degeneracy result can be found in [19]. Furthermore, problem (1.6)

is solvable for h(y) = O(|y|~™), m > 2s, if it holds that

/ hy)Z(y)dy=0 for i=1,--- ,n+1

By choosing fig = bug(t) for suitable positive constant b and &, = ¢, the solvability
conditions

can be achieved at main order. Here pg(t) = cn_,stfnfléls for some constant c, s.
Under the solvability condition (1.7), (1.5) has a solution ®(y,t), which leads to
the following corrected approximation

u:;f (.T, t) = uﬁhf (.1?, t) + é(.ﬁ, t)7

d(z,t) =p "7 B (x — 5,15)
I
and p(t) = buo(t) + A(t). Finally, we use the ansatz
u=uy ¢+ o
We shall show the details and the general case k > 1 in Section 2.

where
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Step 2. The inner-outer gluing procedure. Denote

(l;(fvv t) = z/;(x, t) + ¢m(x’ t)a where ¢m (xv t) = 77R<l~5($7 t)
with

B 1) = (bao)~ "5 6 (“””f,t)

nr(z,t) =7 (2;5') -

The cut-off function 7(7) satisfies () =1 for 0 < 7 <1 and n(r) = 0 for 7 > 2.
The number R is independent of ¢ and fixed sufficiently large. In terms of ¢,
problem (1.1) can be expressed as

6}03 = —(=A) 6 +pup, )P+ N(G) + S, o), in Q2 x (to, 00),
= —u, in (R™\ Q) x (to, ).
(1.8)

and

Let
* \p—1 —n—32s x _€ Pt * \p—1
Vie=p|(upe)’ —|p 2 U . nr +p(1—nr)(uy )P~

Then ¢ solves problem (1.8) if ¢ and ¢ satisfy the following two coupled equations
respectively,

Db = ~(~ D) + Vgt + (—(=A))p+-+ . in Qx (fo,00),
b=t in (R \ ) x (fo, %)
(1.9)

and
157 0rp = — (—=A)5¢ + pUP " (y)o

n—2s ;28
+ {puo : %U’H (ljfy> V(€ + poy,t) + - }szg(O)(y),y eR"™.

(1.10)
(1.9) is the so-called outer problem and (1.10) is the inner problem. Note that
the inner problem is solved in the whole space with error supported in Bag(0). See
Section 3 for details.
Step 3. The outer problem. For a fixed a > 2s, we solve the outer problem
(1.9) for ¢ under the initial condition (-, tg) = 1 in R™. Suppose

cHp ()

1+ [yl
holds for a small constant ¢ > 0 and small € > 0. Using the super-sub solu-
tion method, we solve (1.9) and obtain the existence of a unique solution 9 =
[N & N €, @] satistying

(1 + [yDIVyo(y: )X Bar(0) (¥) + [6(y, D) S to (1.11)

n—2s

< to" o’ +U(t) —5(t—to)
|'I/J(£C,t)| ~ Ra—2s | + |y|a_25 +e ||1/}0||L°°(R”)
and .
_ n— S+a_
to" g ?
[W(2, )] .Bne) S B2 0 ®) for |y| < 2R,

Ra—ZS 1+ |y|a—25+n
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where y = wu;oﬁ This is the content of Section 4.

After substituting ¢ = \II[A,g,}\,é,gb] into the inner problem (1.10) and using
the change of variables j—ﬁ = u2*(t), the full problem is reduced to the solvability
of the following nonlinear nonlocal equation

6T¢ = _(_A);¢ + pUp_l(y)¢ + H[Aa f? )‘7 fa (b](:% t(T))7 Y€ Rn’ T 70,
P(y,m0) = €0 Zo(y), y € R",
(1.12)
for some constant ey, and Z; is the bounded eigenfunction corresponding to the
only negative eigenvalue \g to the following eigenvalue problem

—(=A) ¢ +pUP™ o+ Ao =0, ¢ € L=(R").

Step 4. Linear theory for (1.12). To solve the problem (1.12), we first consider
the following linear parabolic problem

{M = (=AY +pUP  (y)¢ + h(y,7), yeER™, 7>,

1.13
#(y,70) = e0Zo(y), y € R™. (1.13)

Assuming h(-,7) is supported in Byr(0) for any 7 > 79, ||hl|2s+a,0,n < +00 and
/ h(y,7)Z;j(y)dy =0 forall 7€ (r,00), j=1,---,n+1,
B2r(0)

we prove the existence of a fast-decaying solution ¢ = ¢[h](y, ) and eg = eg[h](7)
(1 € (10, +00),y € R™) solving problem (1.13). In addition, the following estimates
hold,
(1 + |y|)|vy¢(y7 T)IXB2R(0) (y) + |¢(ya T)|
ST+ ) Whllas s € (o, +00),y € R”

and

eoll| S lIhll2s o
It seems that the linear theory in [17] does not work in the fractional case, instead,
we will use the blow up argument similar to [20]. Here we need the technical

assumption a > 2s to ensure the integrability. This is the reason why we add two
nonlocal terms in Step 1 and there is a term ﬁ in the estimation of v, see
Section 5.1.

Step 5. The solvability condition for (1.12). From Step 4, we see that
problem (1.12) is solvable for functions ¢ satisfying (1.11), provided £ and A are
chosen such that

HINENE B (y,t(7) Zi(y)dy = 0, for all 7> 19,1 =1,2,--- ,n+1.
Bar
By the orthogonality conditions above, our original problem is reduced to a non-
linear nonlocal system of ODEs for A and &, which is achieved in Section 5.2.
Step 6. The inner problem: gluing. We finally solve the nonlinear nonlocal
problem (1.12) based on the linear theory for (1.13) and the Contraction Mapping
Theorem. See Section 6 for details.
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2. CONSTRUCTION OF THE APPROXIMATION

2.1. Setting up the problem. Let tg > 0. We consider the following evolution
problem

up = —(—A)Su—i—u% in  x (tg, ), 2.1)
u=0 in (R™\ Q) x (to, 00), .
which provides a solution u(z,t) = u(x,t —tg) to (1.1). Given k points ¢1,- - ,qr €

R™, our aim is to find a solution u(z,t) of (2.1) in the following approximate form

Z 3 (8),€5 (t

with &;(t) — q;, p;(t) = 0ast — oo for all j = 1,---  k and Uy, 1)¢,1)(7) is
defined in (1.3). Denote the error operator as

S(u) = —up — (—A)°u + uP,

where p = Zi‘g; . Then the error of U#j(t))gj(t)(x) is

0
SWUu;.60) = =5,V (@) = o

Hg 573 . .
(N] Zn+1(y]) + 1 VU(Z/J)>

n—2s __ n—=2s

=p; 7 Zeay)tpy 7 & VUy,).

n—=2s _n—2s_ 1.
Herey; = . It turns out that the terms p; 7 ,[:LjZnJ,_l(yj) and p1; Z 1§j-
VU (y,;) do not have enough decay to perform the gluing method, so we add nonlocal

terms to cancel them out at main order. Note that the main order of

n—2s 1— |y|?
ZTL-‘rl(y) = 2 Qn,s | ;4,1
(L+yl?) 2
is
n—2s 1
- Qs n—2s
2 (1+Jy) =
Therefore, we consider the equation
. —(n—2s)
_9 ) ;
—or— (—A)p — n 3 San,sﬂ ) —— =01in R" X (tp, +00). (2.2)
z=§&;

Hj 2 3
(+[)

.. —(n—2s) /1~
. . S
<I>Oa:t // (t—3s a:—y)u (? H ()nfzsdydg
to n

)<1+ y—£,3) 2) 2

Tni(3)
is a bounded solution for (2.2). Here the function p(t,z) is the heat kernel for the

fractional heat operator — 2 —(—A)?*, see [7] for its definition and properties. Using

the super-sub solution argument (see Lemma 4.1), it is easy to see that ®9(x,1)
—n+4s

=% Aa B
2 Tl

M

Then

satisfies the estimate @?(x, t) ~
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Similarly, for y; = HE we consider the equation
s —(n—2s)—1 |yj|2 - _ . n
_Qot_(_A) S0+Oén,s(n—25)/ij (1 | ‘z)n—25+2£j'yj =0inR X(t0,+OO).
+ |y; 2
(2.3)
Its solution defined by
. &) -
[ bt T B
to JR" 15 (8)
‘y—fjgé) g
g (5) s dyd3
L4 |=a@ )
Thi(3)
tisfies the estimate ®(z,#) ~ S5 Define &% (a,f) = (.1
satisfies the estimate ®j(z,t) ~ T . Define i(xt) = ®i(x,t) +

®J(x,t). Since u =0 in R™\ Q, a better approximation than Zle Uy (0),6;(1) () 18

k n—2s n—2s
upe(x,t) = Zuj(x,t) with w;(z,t) := Uy, ¢, (x) + p;® @;(x,t) Uk H(z,q;).
j=1

(2.4)
The error of u,,e can be computed as

k
n— 2s

% P
S(upe) Z&‘tuz (Zuz> —Z s i Zyl —APOI(x,t). (2.5)

2.2. The error S(u,¢). Near a given point ¢;, we have the following estimate.
Lemma 2.1. Consider the region |x — q;| < %min#l |gi — qi| for a fized index j,
denote x = &; + 11;y;, then we have

_ n42s

S(upe) =p; = (njEoj + pjEr; +R;)

with
n— 257 s
on :pU(yj)pA Nn 25 1H lvaj +Z‘uj Hy 2 G(qj’Qi)
i#]
+pU ()P =271 89 (g5, 1)
. n— 2s 1
+uf %1 (Zn+1(yj)+ 5 Qs n—2>’
(1 +[y;l?) =

n—2s n—2s

By =pU(y;)P~" | =u) P VH(gj ) + Y iy 2 w2 VG(g,a)| -y
i#]

n—2s— s— §y
+pU (y;)P =27 D (g, 1) + s (n — 26) 5" T
(1+1y;?) 2
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and
n—2s+2 n—2s -

k k
Ho 9 Ko 9 n+2s n—1 . n P
j = + (&5 + + E i Ji + E i Jis
J 1+ \yj|48‘2 1+ ‘/yj|4s (5] ) Ho J+ g 2 i fi + o 2 & - fi

where f, fi, f; are smooth, bounded functions depending on (y7u51,u7§,,ujyj), and
g, § depend on (y, jig " 11, €).
Proof. We write

n— 2< 2s " n—2s x_gi
ngfL‘t Zul ’ y’ +Mz (Di(xvt)_ui2 H(£7Qi)7 Yi =

i
and
S(umg) =51 + 59,
where .
S1=" (1 7 VU@ T il ()
i=1
n — 2s n722571 77.225 *
+ 5 i 33%) Zat( @xt))
p
Sy = (Zﬂz g U(y:) +Nz ‘Iﬁ(x,t) —p H(%Qi))
_ n+2s k n—2s
—ZMQIMV—ZMQFM%WM~
i=1 i=1
Let
Sy = So1 + S22
with "
Sor=p; 7 [(U(y;) +©5)" = Uly)"],
k
n+2$ n—2s .
Sag = ZM 2 _Z“i 2 (=A)P (x,t)
i#£] =1
and
0, M;L 2s (H(x q;) — @;(x,t))
n—2s n—2s % 2.
+§:[Mm FU() — () "7 (He,0) - ¥ ()] (20

i#]

Observe that |©;| < pg~>° uniformly in small §, we assume U(y;) !0, < 1 in the
considered region. By Taylor expansion, we have

n+2s

Sor =p; ° [pU(yj)”_lej +p(p - 1)/0 (1=s)(Uly;) + 8@j)p_2d5@§] :

For i # j,

TR R = n—2s
R e Ry myrrTe==
Hhi (i + |y +& = &l12) =
Qi s,uf:t 2

2 2
Ty A& — & U i),
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where f is smooth in its arguments and f(g,0,0) = 0. Then

0; = — uj > (H(pjy; + &2 05) — @5 (5 +&501))
+ Z [ 145 14:) = Gujy; + & ai) + mi =2 £(6 s 155)
i#j

n—2s
+ (Njﬂz) 7 ®F (p“]yj + &5 )} .
By further expansion, we get
©; =—ui > (H(gj,q5) — ®5 (g5, 1)) + Z(Mjﬂi)
i#]
n—2s n-—2s
TR b gy) F () @5 (Y + &) + (g5 + &5 — 45)-

n—2s

WV (H g5, 05) = 5 (05,0) + (i) = VGlaj, )
i#£j

1
+/0 { — DY (H = @5) (q; + sy + & — 45):45)
n—2s
+ > (uim) 7 DIG(q; + s(uys + & — 47), Qi)}[ﬂjyj +& —q)?(1 — s)ds.
i#]
We conclude that

n—2s

0, = —ui 7% (H(gj, 45) = ®5(a5,0)) + D (wjpi) "= Glg5, 1)

i
n—2s n—2s
=TI H (g, )+ Y iy 7w 2 VG(g5a) |y
i#5
b (&G = a) - FE iy o )+ pb (G gy, o ) [ys]

e A { (TRTT )

where f and F' are smooth and bounded in its arguments. On the other hand, we
have

7n+25 n— 25
Sep=—=> mi Zuz —A)®; (x,1)
i#]
nt2s A
I n+2s n—2s .
|q n78q74|n+28 + My 2 f(gnuﬂﬂlyz) - Z,U/l 2 (_A>sq)l (m,t),
i#£] J i=1
SO
n+2s 1 k n—2s o
Saz =po * f(& 1o P‘v“jyj)_z,ui (A9 (1),
i=1

where f is smooth in its arguments and f(g,0,0) = 0.
Decompose S7 = S11 + S12, where

n—2s . n—2s n—2s

_ —1 —===—1. —5 *
Sui=py 0 5 VU + g 2 i Znva(yy) — kg 2 0e®G (w4 t),
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Sig == Z 1 =

& VU — (0w, ™ ) @5(w1)

i#]
—ns2s_ g, M n—2s no2s_q
+ friZnir () + I fri (, ;)
i=1
i#j
We write
g, — s g — g g
12 —Z—an,s(n—%)ui & w+fi(€7ﬂaujy)
vy lgi — qj
]
Cn
+Y quing + fil& s ujy)}
i#]

+Z”_25 7 i (0000 = 930050 + filw. ),

where f; are smooth in their arguments vanishing in the limit. In total, we can
write

n—2s

S12 = pig ? Zﬂzfzo 1o € gy) + pg ® Z& Fir (o 11, €, 1)

i=1 i=1

for functions f;g, ﬁl smooth in their arguments. This concludes the proof of the
lemma. ([

Next, we try to find a solution with the following form
u(z,t) = ulhi(z? t) + J)(I, t),

where gzNS is a small term. By S(u, ¢ + quS) = 0, our main equation can be expressed
with respect to ¢ as

— 019 — (=) ¢+ pub b+ S(upe) + Nue (), (2.7)
where
Nu,g(ci;) = (upe + &)p - uz ¢ puu ¢ ¢ (2.8)
Write ¢(x,t) in self-similar form around q;
) =, o (). (2.9)
Hj

By a direct computation, we obtain from (2.7)-(2.9) that

n+2s ~ n+25

0=p; % S(upe+0)=—(=A);¢+pUW)P'o+p; *
with

S(upe) + Algl - (2.10)

Alg] = — p3° 0 + p3> i ][

y¢:| +Vy¢ ,u28 15]

+p (U@ +6,)" ™ — U 6+ Uly) + 05+ )"
~(UW)+6,)" —p Uy +6," ¢,
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where ©; is defined in (2.6). We assume that ¢ decays in the y variable and A[¢]
is small when t is large.

2.3. Improvement of the approximation. To improve the approximation, ¢(y,t)
should be equal to the solution ¢g;(y,t) of the following elliptic type equation of

order 2s
nt2s .
— (=A)5¢0; +pU )" poj = —p; = S(upe) m R™, ¢o;(y,t) — 0 as y| — oo
(2.11)
at main order.
Equation (2.11) is a special case of

Lo[¢] := —(=A);¢ +pU(y)* 'y = h(y) m R, ¢(y) = 0 as [y] — oo,  (2.12)

It is well known (see [19]) that every bounded solution of Lg[i)] = 0 in R™ is the
linear combination of the functions

Zla e 7Zn+1a
where
oU . n—2s
Furthermore, problem (2.12) is solvable for h(y) = O(|y|~™), m > 2s, if it holds
that

/h(y)Zi(y)dyZO forall i=1,---,n+1.

First, we consider the solvability condition for (2.11),

nt2s
[ 8000 Zua )y =0 (2.13)

We claim that by choosing po; = bjuo(t) for suitable positive constant b;, j =
1.k, po(t) = cn,st_ﬁ with ¢, s be a positive constant depending only on n
and s, this identity can be achieved at main order. Note that, we have fg(t) =
—m o=45t1(4). The main contribution to the integral comes from the
term

1 n—2s—1 n—2s 1 n-—2s
Eoj =pU(y)P 7" |—p "2 Higgq) + > gy 0 w2 Glag,a)
i#]
+ pU (y;)P~ =27 109 (q5, 1)
3. n—2s 1
+M?S 2,uj (Zn+1<yj) + B Qn,s 5 n25> .
(L+y;?) 2
Now, let us compute the nonlocal term @?(qj,t). Since the heat kernel function
p(t, x) satisfies

t—3s

[(t = 8)% +la; — yl?]

p(t—35,q; —y) <

nt2s )
2

we have
~ JUN q; —Y
p(t—35,q; —y) = (t—3) 281?(17 : l)
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and
t (n 25)(5)
d)?(qj,t)——/ / p(t—3,q; —y)M]() . s dyds
to JR™ Mj(s) y—£,(3) 2 3
1*‘ 5 (3)
t ~ —(n—2s) /~
(8 12 (5)
——o) [ [ pt= g -t ayas
to JR® J ¥y—q
(152
t g —y '\ i1(5)
:—1+01/ Mdé/p(l, — >J~
( ( )) to (t_8)25 n (tfs)zq M](S)
L TEE-E g
n—2s L
o gy 2\ z (t—3§)%
1+ ;i (3) (t,g)ﬁ
_ _(1+o(1))/t —ﬂj(‘f)uﬂ”—?s)(g)dg/ P <1,qj Y )
N CICI n (t—35)z
o 1 __ ty iqi
— 2s
1+ (t—g)i -y ? ’ ( 2
/1,]-(5) (t_g)zfls
t - g/~ ~\ L
f15(8) —(n-2s) oy [ (E=8)% ) o
=—(1+o(1 /fuv S)F | ——=— | ds,
(1+0(1)) . ,(5)" (3) e
where .
F(a) :/ p(l,2) —————dx.
S Wk ala)

We claim that

8%(g;,1) = —(1+0(1)) /t A55) ~n=29) 5y p (“_S)) ds = c(140(1)) (2.14)

1o My (8)"7 115(3)
for a suitable positive constant ¢ depending on n, s and b;, j =1,--- k.
Indeed, for a small constant 6 > 0, we decompose the integral

C(3) —nas o (E= 9
/t“ ROl ()F< 5 (3) )d
t:u‘](g) —(n—2s) 3 ﬂ 5
/m 1;(3)" ()F< 115(3) )d
_/to w@t O o)

K /-11]7(5) —(n—2s) 3 (7’L_§)i 3
e 12 ”F< ) >d

= I]_ + IQ.

as




FRACTIONAL HEAT EQUATION WITH CRITICAL EXPONENT 15

For the first integral we have ¢t — § > 4, therefore

—(n—2s)
t—0 t—o L
t— t—5)3
0<-I < / u;zs(é)F Q ds<C u;25(5) ﬁ ds
to 15 (3) to 15 (8)
t—§ Cbn 4s = 4s
= Cbn o 2548/ i ! 5 ds < Croo 2 "n,];4s :
o S(t—3)"= to n —4s §%5

Here we have used the ansatz po; = bjcn’st_ﬁ and the fact that |a|"2*F(a) < C.
For the second integral

[t ) e p (C=DF o
. _/H (3" ( )F< 11;(3) )d :

using change of variables (t;?()g)s = §, we obtain
J

N‘H

ds = —— N’“‘H(Sl) —ds
5o (t—58)2 7+ f1;(5)3

and the integral becomes

[t ) e p (E=DF o
= /t—(S 1i(3)" BF ( 11;(3) ) d

1

. % L(E) —(n—2s) 3 5 Mj(g) 3
=T ere) "

Note that (¢ —8)2 1+ j1;(8)8 = 55(t — 8571 — 52t = 8) > %(t —
(1+

§)z1(1 — md), ds = ﬁ 0O(0))d3 for & small and
2s

2sphis—n % 25b457”
e ([P @ ds o) | = - ol)
0

h=——2
2 (n —4s)en s (n —4s)cy, s

1
as long as % is large. Here A = [° §**7'F(5)d5 < +oc since n > 4s. Thus
we have

@?(qg‘,t) =—(1+ 0(1))/ ﬂj(%) M;(n—zs)(g)F <(t—§~)2> "

to 15 (3) 145(3)

(2.15)
25b457” de
~ A oll) = BT o)
n—4s)cns

when ¢; is chosen sufficiently large. Here B = B,, 5 :=
(2.14).

A. This proves

(n—4s )611 s
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By direct computations, we have

T () A Eoj(y, 1) Znt1(y)dy

n— 2571 n—2s

o bn 28 1H (95,45) Zb b, * Glgj,q) (2.16)
i#£]

2sc1A+co prs1
(n —4s)cn 7

with
o= [ UG Zun()dy,
n—2s 1
c2 = / (Zn+1(y) g ans n_Q> Zn+1(y)dy.
" (1+yl?) =
Denote

1
/uj(t) = j/lo(t) =bjcp st "1,

Then the solvability conditions (2.13) can be achieved at main order if

n—2s n—2s 2sc1 A +c R .
b H (g q5)— Y (bib)® Glaj,q1)———————b2* =0 forall j=1,--- k.
e (n—4s8)ens°eq
(2.17)
By imposing — ( 2161)Aﬂtc42s = ——2°_ namely
n—4s)cy, s C1 n—zs
S (2sc1 A+ c2)(n — 2s) =
e 2s(n — 4s)cy ’
we have
. 2sc n—
fro(t) = — 5 T ()} (2.18)

(2sc1 A+ co)(n —2s)"°
From (2.17) and (2.18), the constants b; satisfy the system

2_371

1 n—2s
b2 H (g q) — S by 2 b Glgai) =
i#]

forall j=1,--- k.

(2.19)
System (2.19) is equivalent to the variational problem VI (b) = 0 with

1 n—=2s 25 n— 25 s
I(b) = —- Zb 2 H(gjoqs) ~ Y b % b, * Glaj.a) sz . (2.20)

i#]

b k 4s
(n=25)I(b) = I(A) = | > H(gj,q;)A] = Y Glaj,a)hily =Y A

j=1 i#] =1
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Standard argument shows that system (2.19) has a unique solution if and only if
the following matrix

H(q,q1) -Glqi,q2) - —Glq1,qx)

-G(g2,q1) H(g,q2) - —G(q2,qr)
G- | A

—G(ak,q1) —G(qk.q2) -+  H(qw, k)

is positive definite.
Next, we consider the solvability conditions for (2.11),

/, Hj ’ S(uﬂaé)(yvt)zi(y)dy =0, i=1--,n

It is clear that these conditions are fulfilled at main order by simply setting o; = g;.
Now we fix the function po(t) and the positive constants b; satisfying (2.19) and
denote

fio = (pto1, -+ pok) = (bipto, -+, bepto)-
Let ®; be the unique solution to (2.11) for u = fig. Then we have
—(=A);®; + pU(y)* ' ®; = —po; Eojlito, froj] in R™, ©;(y,t) — 0 as |y| — oc.
From the definition of ;o and b;, one has

n—2s

toj Eoj = —vitg~ q0(y),
where the constant «y; is positive and

pU (y)P~ " eab?® b2 n—2s 1
qo(y) = Aoy s T 48)cn s Zna(y) + g s 5
(n—4s)cns*cr  (n—4s)chs (L+yl?) 2

(2.21)

with [p. qo(y)Zns1dy = 0.
Let po = po(|y|) be the radial solution of Lo(po) = go. Then po(ly|) = O(|y|~%*)
as |y| — oo since we have (2.21). Therefore,

©;(y,t) = 5 > "po(y)- (2.22)
Thus we can define the corrected approximation as
U (2,) = wpe(x,t) + Bz, 1) (2.23)

with

k _n—2 JC—§'
D=y cpj( u_j,t>.
j=1 J

2.4. Estimating the error S(uy, ). In the region [z —¢;| > d foralli=1,--- k,
S(uy, ¢) can be described as

S(ut o) (z,t) = Zuyfﬂruo Zsj Fivu® f, (2.24)

where the functions f;, fJ, f are smooth bounded and depend on (x, g L1, €). Now
we consider the region near each of the points ¢;. By direct computations, S(u* n 6)
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is given by

n42s

1o; Eojliio, fog) +ZMJ B
Jj=1

k
S(upue) =5 (upg) Z i {—M?Sat‘bj(?/jvt)

s n —2s s— '

2
+ (e + 9)7 pZMJ ¥ U(y;)P~ @5 (y;, 1),
(2.25)
where y; = m;f] )
From (2.10), for a given fixed j and |z — ¢;| < 6, we have
w2 S(uye) =y * S(upe) — pojEojlfto, frog] + A;(y)- (2.26)
After direct computations,
4 ) 2n—4s L T — £
Ay = g™ f (g s & pgy) + 9o 1 py), Yy = L, (2.27)
1+ y;1 14

where f and g are smooth and bounded.
Finally we set

(t) = fio + A(t) with A(t) = (Aa(8),-- -, Au(t)):

From (2.26), we have

_nit2s A _ A .
S(upe) =p; ° {Mo;‘ (Eojlu, £15] — Eojlito, fui]) + NjEojli, 1]

+ B, €]+ Ry + Aj}-

Recall Lemma 2.1 that

n—2s n—2s
Eojlu, jis) = pU ()Pt | =) > T Higjoq) + > _ny ® oy ° Glgj,qi)

i#j

1 n_2s_ o n—2s 1
+pU(y)P~ 27109 (gs, t) 4+ 152y (Zn+1(y)+ 5 Cns “>
1+ ]yl

Note that <I>? depends on p, ;1 and

pg 2 0o + X, bijio + Ajl(a5, 1) — pg T @70, bjfio] (5, 1)
= —(bjuo)> 225 AN, — pun =" 2(n—4s—|—1)b§s—2B}\j
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which can be deduced by similar arguments as (2.15), we have

Eo;lfio + A\ bifio + N;] — Eojlito, bjfio]

‘ n—2s 1
= (bjuo) 2, <Zn+1(y) + 5 ans ”>
(1+1y?) =
25—3 . S n—2s 1
+ (25 = 2)(bjp0) ™ A (bjfio + Ag) | Znt1(y) + =5, —
(L+1[y?) 2

k k
=g I TIU W) Y Mighi+ Y fian(g M)A
i=1

il=1
+ =2 2pU (y)P (i — 25 — 1)b§S*QB)\j
— pU(y)P L (bjp0) %7225 AN — =25 2pU (y)P~ L (n — 45 + 1)b?s_2B)\j,

where f;;; are smooth functions and for ¢ = j,

25— n —2s n—2s o n—2s
M;; = (n—28—1)bj : zH(anQj)_(T_l)ij : b; > G(45.4),

i#]
for i # j,
n — 2s n—2s | n—2s 1
M;j = — 2 ij : b, * G(g5,i)-
i#j
M = D?Iy(b) with
]. k n—2s n—=2s n—2s
Io(b) == ——— | D0y Hlgj.05) = Y 0,7 b 7 Glajoa)
j=1 i#j

Since D?I(b) is positive definite, we denote its positive eigenvalues corresponding

to the eigenvectors w; by &; for j =1,--- , k. Thus
D?1(b) = PTdiag(cy,--- ,54)P (2.28)
and P is the k x k matrix given by P := (@1, --- ,W). From the definition of b; in

(2.19), one has

25(2s — 1
M =D?Iy(b) = D*I(b) + 8(872)diag(b§s’2, )
n—24as
25(2s — 1 25(25 — 1
ZPTdiag(51 + Ml)?*a e Gk + Mbisf%p_
n

— 2s n — 2s
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Now we estimate \;Eo;[u, t;]. Indeed, we have

Aj Eoj, 1]

_ : n—2s 1
= (bj10)* 2 Aj A (Zn+1(y) t s nz)
(L+[yl*) =
25—312 . \ n—2s 1
+ (25 = 2)(bypo) A (bj 10 + X)) | Zna(y) + —5— s =
(L+[y[*) =
_ 9. n—2s 1
+ A]b_?g ! [ﬂgs 2,LLO (Zn+1(y) + 9 Qs ,,,_25>
(L+y?) =

n—6s n—2s
+pU )P g > | =0 H g q5) + ) by 7 b 7 Glay,a)
i#]
+ pU(y)p—lb?sfllu/ngsle)\j

k
— g2 pU (y)P Z Fit(pg " M)A,

il=1

where functions f;;; are smooth in its arguments.
Collecting all the above estimates, we have the full expansion for S(uj ).

Lemma 2.2. We consider the region |r — g;| < %mini# lgi — qi| for a fized index
j. Let u=fig + A and |\(t)| < po(t)'+9 for some 0 < o < & with & be a constant
satisfying 0 < & < "gfsﬁjbif%, Jj =1, ,k. Then for large t, S(uy, ;) can be
expressed as

n+2s

k
St =D ny
j=1

—9 1
1 5 % s — —2sApU(yj)p‘1>
(1 +1y?) =

{/mj (bjuo)** 2\, (Zn+1 (y;) +

k
— hojpy > 7?pU (y;)P Z Mij i + M?Silams(n —25) 3 yi,
= ()=

2s +1

_1 _9 n—2s n—2s
+ 15U (y;)* {—/‘? VH(qa) + Y k7 m VG(q],qi)} Y

i)
k _nt2s 951
D omy T AT
j=1
9. n—2s 1
[(28—1)%3 ?fi0 <Zn+1(yj)+ 5 Qs ; Hs)
(I +[yl?) =

n—6s n—2s
+pU(yj)p_1u82“<— by Y H(qj,q;)+ Y b, % b ? G(QjaQi))
oy
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+pU (y;)P g > (2s — 1)B

nt2s n—2s+2 k 2n—4s k n—2s .
— g2 l Ho 9j Ho 9j Ho —Gj ]

— + : -\
=~ 1+ |yj‘46_2 ~ 1+ |yj|2.s =~ 14+ |yj‘46 J

k n—2s >
_n+2s U G
’ [ O (& — g5)

L+ Jy;|*s

k k
_ n+42s Coe_ B fz 0 .
+ o ? [.Ug 2o Z pU(y;)" 1fz’jl)\i)\l+ Z W&)\l
J

1,5,1=1 i,9,l=1

k k
_ n+2s i _ ) .
s [ug%fwg 1zuifi+ugzgifi],

i=1 i=1
where x = & + [4Yj, f;, fis £, fiji are smooth and bounded functions depending on
(Maluv 57 {IT) and 95, ?jj depend on (;U’alﬂw 57 yj)

3. THE INNER-OUTER GLUING PROCEDURE

We are looking for a solution to (2.1) with the form
U=ty e+ o

when tg is sufficiently large. The function qg(x, t) is a smaller term and we will find
it by means of the inner-outer gluing procedure.
Let us write

k
O(x,t) = P(a,t) + ¢ (x,1) where ¢ (x,t) =Y r(,1)¢;(,t)

=1

with

oj(@,t) == uaﬁ% b; (I — ,gj’t> s Hoj(t) = bjuo(t)
Hoj

nj,r(x,t) =1 (iER;OEJ') .
]

Here n(7) is a smooth cut-off function defined on [0, +00) with (1) = 1 for 0 <
7 <1 and n(r) = 0 for 7 > 2. The number R is defined as

and

R=th with 0<p<1. (3.1)

Problem (2.1) can be written with respect to ¢ as

{?tﬂg =—(-A)*¢ +p(uz,§)p_1¢~5 + N(¢) + S(uy, ) in Qx (tg,00),

¢=—uj ¢ in (R™\ Q) x (to,00),
o ) ) (3.2)
where N(¢) = (uj e + @)” — p(uj, )P ~'d — (u; )P and S(uj ) = —Oyuy e —

(—A)%uy, ¢ + (uf, )"
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According to Lemma 2.2, we let y; = xfj and denote

J
- (
* 2
S(he) =Y Suej+5°)
j=1

where

_ n+2s

Sueg=H; ° {MOj(ijO)zszj\j

n—2s 1 _
X <Zn+1(yj)+ ) Qns =D — 2sApU (y,)? 1)
(1+[yl?) =

k
—poj gy~ U (y;)P Y Mg
i=1

s— s—2 . n—2s 1
+ )‘]bf ! [(25 - 1):“’3 2:“0 (Zn+1(yj) + 9 Qs n—2s )
(L+1y;1?) 2

+pU(yj>p-1u3281(—674SH<qj,qj>+ij2 b G(qj,qn)
i#£]

+pU(y;)P =7 (25— 1)B

&Yy
n—2s
14y = ™

u?sfzan,s(n —2s)

+ 1

n—2s n—2s
+pU(y) P | =i PV H (g5, 05) + Y ny 2 p ° VG(4,a) | -y }

i#£]
Set
k n—2s x—&; p-1 k
Ve =Y (™ = o T o ()| ) mats- Y
=1 M =1
- (3.3)
Then ¢ solves problem (3.2) if
(1) 9 solves the outer problem
O = —(=A)"Y + Ve
k
3 [ A min —(=8)365] + &5 (— (—A)° = 0)nyn }
j=1 (3.4)
+ N (@) + Sours 10 Q2 x (to, 0),
ES —qu in (R™\ Q) x (tg,00),
where
k
2
Sour = SCL+ (1= 11R)Spe. (3.5)

Jj=1
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and

Wl

b =G, [ 1) =B o) - 0,

[—(=A)3n, 5, —(—A) e y. (3.6)

(2) ¢; solves

1j,50:0; = Nj.R [*(*A)S&j +pUP ' + pUP ™ + Spej| in R™ x (o, 00), (3.7)

n—2s

forallj=1,--- k,Uji=p; > U (%) In terms of ¢;(y,t), (3.7) becomes the
inner problem

165 0id5 = —(=A)3 05 + pUP " (y)¢;

2
+ e Sues (& + oy t) + %“OiUp‘l(@ (& + pojys t)
lu’Oj w,&,5 (S5 ,LL[)]y7 p/J‘OJ ,u23 1L Yy J NOJ?/;
j J

+ Bj [¢J] + B?[Q%}}XBQR(O)(Z/) in R™x (t07 OO))

(3.8)

for j =1, -+, k, where

Bild: = 257170 n—2s ) . 2s—Iv7 4. . €.
o5 == Hoj — Hoj 9 ¢ +y-Vyd; | + Mo Vo;-§&; (3.9)
and
BY[;] = p [U”‘l (iojy) - U”‘l(y)} ¢j +p {uﬁj(u;i,g)”‘l -urt (’;ijﬂ ;.
J J

(3.10)

Here X B, (0)(y) is the characteristic function of Byg(0).

The rest of the paper is organized as follows. In Section 4, we solve the outer
problem (3.4). In Section 5.1, a linear theory for the inner problem (3.8) is de-
veloped. We study the solvability conditions for (3.8) in Section 5.2 and the full
problem is finally solved in Section 6.

4. THE OUTER PROBLEM

In this section, we shall solve the outer problem for a given smooth function ¢
which is sufficiently small. We consider the initial boundary value problem

Oy = =(=A)P + Vet

k
LD IEICTSEEREY

&;] + &5 (— (=A)* — 3:&)%,1%}

Wl

= (4.1)
+ Nu,§(¢) + Souta in  x (to,OO),

Y=—u;,. in (R"\Q)x(t,00),
Y(,to) =1 in R"

with a smooth and sufficiently small initial condition ).
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4.1. The model problem. To solve problem (4.1), we first consider the linear
problem

at'(/J = —(—A)si/}—f—vu)g’l/}-i-f(ﬂ?,t) in Qx (tQ,OO),
Y=g in (R™\ Q) x (to, 00), (4.2)
P(-,to) =h in R™,
where f(x,t), g(x,t) and h(z) are given smooth functions and V), ¢ is defined in
(3.3). Furthermore, we assume f satisfies

_2 _
"t |z =&l

flz, )| <M Y; = 4.3
) Zmyw = (43)

for a, 8 > 0. Denote the least M > 0 in (4.3) by [|f|l+,8,25+a-

In what follows, we use the symbol a < b to denote a < Cb for a positive constant
C independent of ¢t and t3. Then we have the following a priori estimate for the
model problem (4.2).

Lemma 4.1. Suppose that || f||+ g2s+a < +00 for some o, 8 >0, 0 < o <« 1,
Al oo mny < +o0 and || TPg(z, T)|| oo (Rr\Q) x (t0,00)) < F+00. Let ¢ = Y[f,g,h] be
the solution of problem (4.2). Then there exists 6 = 6(2) > 0 small such that for
all (x,t) we have

k 8
(@, )] S N1 fll,p.254a ; T+ (4.4)
+ e TR poe ny + 2177 g (@, 7) || Loe (Rr\Q) x (t0100))
where y; = m;f] Moreover, the following Hélder estimate
LR
96O e % Wleaoen | 3275 o (45)
holds for some n € (0,1) and |y;| <2R. Here
is the Hélder seminorm.
Proof. Let 1g[g, h] be the solution of the fractional heat equation
Otpo = —(—A)%hy  in Q X (tg,0),
Yo =g in (R™\ ) x (to, 00), (4.6)

¢0(',t0) =h in R™.
Let v(x) be the bounded solution of —(—A)%v +1=0in Q with v =1 on R™\ Q.
Then v > 1 in © and by direct computations, the function
P(z,t) = (675(t7t°)||h||mc(w) +fﬁHTﬁg(%T)\|L<>c((Rn\Q)x(to7oo))) v(x)

is a supersolution to (4.6) if = §(€2) > 0 is sufficiently small. Then |¢| < 9 by
the maximum principle (see, for example, [5] and [6]). Thus, it suffices to prove the
estimates (4.4) and (4.5) for the case g =0, h = 0.
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Let p(]z|) be the radial positive solution of the equation
—(—A)’p+4¢=0in R"

Then by Riesz kernel, we get p(z) ~ For a given

with ¢(|2]) = Trppers-
sufficiently small 6 > 0, we have

_1
T+[z]>

—(—A)Y’p+ p+2q <0in R™

1+ |2

Thus p(z) := Zf P (w £J) satisfies

0 quOinR"

——— | P+
1+‘Lufa|25

Hj

with g := Z§=1 uj_zsq (zf&j ) From the definition of V,, ¢, we have

2s
Viel S ZMJ T fly = (4.7)
For a given number # > 0, it is easy to see that v(x,t) = 2t=Pp is a positive
supersolution to

Op = —(=A) Y+ Ve +177,
ie.,

Op > —(=A) P+ Vb +177g
for t > tg and tg is sufficiently large. Therefore, one has

k

_ 1
(@ ) St 2N fllepsia D
J

_ 4.8
— 1+ [y;]° 48)

and (4.4) is proved.
To prove (4.5), let

vty = b (200

Hj
where 7(t) = ,uj_Qs (t), namely 7(t) ~ ¢7=15 . Without loss of generality, we assume
7(to) > 2 by fixing to. Then ¢ satisfies
0r = —(=A)*¢ +a(z,t) - Vo + b(z, 1) + f(2,7) (4.9)
for |z| < gt and f(z,7) = ,u?sf(fj + pj2,t(7)). The uniformly small coefficients
a(z,t) and b(z,t) in (4.9) are given by
a(z,t) = 5" Nz + T, bz t) = 13 Ve (& + y2).

Then from assumption (4.3) and (4.8) we have

; —g lf1l,8,25+a
Flem)l S ) e
and

: 1S les20ra
2,7)| < t(r) A lLlxB2s e
907 S tr) PR
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Now fix 0 < 7 < 1, from the regularity estimates for parabolic integro-differential
equations (see [41]), for 7 > 7(tg) + 2, we have
[( )]0 Bio(0) S W]z + 1 fllzee

Str = D)7 flls p2sta

S ) N g 2srac
Therefore, choosing an appropriate constant ¢, such that for any ¢ > ¢,ty we have

(R/’I/])n[,l/}(’ t)]n,Bmuj (&5) S t_B”f I*,B,Qera- (410)

By the same token, the estimate (4.10) also holds for g < ¢ < ¢ptp. Thus, (4.5)

holds for any ¢ > tg. The proof is completed. O
4.2. Solvability of the outer problem. Now we fix ¢ satisfying
-2
0 <o < & where 7 < n S&jbi_%, j=1,---,k, (4.11)
S

and 7; and b; are defined in (2.28) and (2.19) respectively. Given h(t) : (t9, 00) —
R* and § > 0, we define the weighted L> norm as

1Alls == [l10(8) "R | oo 10 00)-
In the rest of this paper, we always assume that a is a positive constant satisfying

a > 2s and a — 2s is sufficiently small. We also assume the parameters A, &, /.\, §
satisfy the following two constraints,

IAOll-sss140 + 1€ n-ss1r0 < 55 (4.12)
INOlliro+ 160 = alliee < (4.13)
where ¢ is a positive constant independent of ¢, ¢ty and R.
Denote
H¢||nf2s+6,a = j:rrff-l-}-(,k ||¢j||n725+a,av
where ||¢;|ln—2s+0,a is defined as the least number M such that
n—2s+o

Ho

Fo ___ j—1,...k (414
L+ T (4.14)

holds. Suppose ¢ = (¢1,- - , Pi) satisfies

||¢Hn72s+a,a é Ctag (415)
for some small € > 0. Then we have the following proposition.
Proposition 4.1. Assume X, &, \, € satisfy (4.12) and (4.13), ¢ = (¢1,-- , dx)
satisfies (4.15), 1o € C*(R™) and we have
t*E
%ol Lo &) + [[V¥ol| Loo mr) < ﬁ-

Then there exists to sufficiently large such that the outer problem (4.1) has a unique
solution v = W[\, &, N\, &, @]. Moreover, there exists o satisfying (4.11) and € > 0
small such that, for y; = 2=t;

o

_ k n72s+
to” po® (1)

[ (a,t)] < + e 070 [y || poo (e, (4.16)
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and
ty we® )
0 J "0
[ (@, O], B mie) S Trams Z T gz 1o il < 2R, (4.17)

j=1
where R, p are defined in (3.1) and n € (0,1).
Proposition 4.1 states that for any small initial conditions g, a solution ¥ to

(4.1) exists. Moreover, it clarifies the dependence of W[\, &, /.\, f , @] in the parameters
A& N E, ¢, which is proved by estimating, for example,

\ij‘vga ).‘76.7 (b][q;] = 85\11[)\,§, ).‘aé> ¢ + Sé]‘szo

as a linear operator between parameter Banach spaces. For simplicity, we denote
the above operator by 9,¥[¢]. Similarly, we have Oy W[N], 0 ¥[E], 05[], O, \I/[g]

Proof. Lemma 4.1 defines a linear operator T" which associates the solution ¢ =
T(f,g,h) of problem (4.2) to any given functions f(z,t), g(x,t) and h(x). Denote
Yi(z,t) == T(0, —u}, ¢,90). From (2.23), (2.4) and (2.22), for any z € R" \ Q we
have
. n+2s

[upe(@, )] S po * (1) (4.18)

By Lemma 4.1, we have
n—2s n o)

2(n —4s)  n—4s’
Therefore, the function ¢ + 1 is a solution to (4.1) if ¥ is a fixed point for the
operator

1] S e lg || oo () + P 1o (t0)** ™ where 3 =

A(d’) = T(f(i/’% 0, O)a
where

k
=3 {1 AV, ~(=8) 58] + 35— (~A)° = B)nyn }+ N (D) +Sour
j=1

(4.19)

By the Contraction Mapping Theorem, we will prove the existence of a fixed point

1 for A in the following function space

n—2s n o
2(n —4s)  n—4s’
Here ||9)]|4,8,a is the least M > 0 such that the following inequality holds

19| x.8,0 is bounded with 3 =

|z — &l
(z,t)| < M y; = >
) Z L+ ‘yj|a 207 Hj
As a first step, we establish the following estimates.
(1) Estimate for Soue(x,1):
_ —2s 25+‘7
to© B Ho (t)
Sout (1) S 52 . 4.20
| t( )| ~ Ra—2s Z 1+ |yj‘a ( )

Jj=1
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o

(2) Estimate for Z?Zl {[— (=A)2n;p,—(— A)%ij} + ¢j( - (-A)* = 875)77]‘71?}:

k
Z{ s —(=8)36,] + 6, (= (=8)" = 9)njin
- atey (4.21)
1 152 g (t)
< _ j
~ fza—QsH(b”n—%—i—o,mjg1 1+|yj|“
(3) Estimate for N, ¢():
Nm&(ﬁi;) S
E —2s 252
My :uo (t)
¢2—s aa+ w** a ! 5 When652n,
T AP A I T
k 728 n— 2q+a(t
+ ,  Wwhen 6s < n.
(H¢||n 2s+40,a ||1/}H>k>k7ﬁa Ra 25 g 1+|y]|a
(4.22)
Proof of (4.20). Recall from (3.5) that
Sout = +Z 77]R HfJ'

By (2.24) and Lemma 2.2, in the region |z — ¢;| > ¢ with ¢ > 0 small, S,,; can be
estimated for all j as

—25

k —2s +o
S 0 70 5 0 ) Y
= 1yl
(4.23)
Now we consider the region |z — ¢;| < ¢ with § > 0 small, where j € {1,--- ,k} is
fixed. Lemma 2.2 implies that
n— 25
(2) *"tzs #3_2S+2 2s—(a—2s)— a i 72 i
R B el 03 S (2

From the definition of n; r, (1—n; r) # 01if |z —&;| > poR. Therefore, in the region
|z — gj] <6,

k _9s n;2s+a

1 1 1 Ky Ho
1= p)S, . < g J . 4.25
|( nij) H:f:]l ~ (Rn?sa + R45a) Ra72s = 1 + ‘yj|a ( )

Here we have used the decaying assumptions (4.12) and (4.13) for A and &, respec-
tively. Thus, (4.20) is valid.

Proof of (4.21). First, we consider [—(—A)?
that

[MIFY

Nir, —(—A)3 d; ;| for j fixed. Recall

bet) =i, oy (5.
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From the assumptions (4.14) and (4.15), we obtain

(M1

([~ o)) ()

<[ (o] | (S250)

n( 55 ]) - n( e\
< 1 / Ry, Rpoj d (y - 5])
~ RSIU/SJ' n ‘ | +s

[N

Riproj Rﬂoj
2 3
_n—2s r—§; Y=g
oMo © / %5 Gt — 9 Gt t) d (y _€j>
o, n |”Zojy 3ts Hoj
2 3
=& _ (Y8 n_2s 4
o 1 M Fe; 1) — 1 7 ) y—§ po
~ S ¥s d s+a ||¢||n72s+a,a
Ropg; | Jer ikl Rpio; (L+ [y;]5t%)
1 TR ()
i Ho
S Wllé\\nfzm,az W
j=1 J

(4.26)

Now let us consider the second term ¢~>j ( —(—A)* — Gt)nj_, r. From direct computa-

tions, we have

(= &
‘éj(—(—ﬁ)s—at)ﬂjﬂ‘ 5‘ ( A;QSM(JJ_R# )‘ﬂo gyl
= 6.

£J>(Ifc—§j : 1 )
n (I Fo, | 2 Ho + Ruo§ Ho
(4.27)

For the first term in the right hand side of (4.27), by the definition of ¢;, we obtain

Fearo ()] e (5] P

+

‘ | ~ S H¢||n72s+a',a
RQs J 0 J R2s (2)]' (1+|y]| )
k n— 25_,’_0_
1 % g (t)
R -~ - 7
~ Ra,QS ||¢||n—2s+a,ajz=; 1+ |yj‘a 5
(4.28)
where we have used the fact that ’— —A)? ( 2#? ) ~ 1+|3j e From (2.18) and
=

(4.12), the second term in the right hand side of (4.27) can be estimated as

| — &l + pol | —mzze
7 (1% |)< e |
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v (15|
Hoj n—2s n—2s+o
5 T (2)5 ( 2 RQs _’_'u 25+ R2s 1) |¢j|
’ n—2s 23 (429)
<1 Z’“: T ()
S Pa—as 1Plln—2s40,a .
Ra—2 = 1+ |yJ|
From (4.26)-(4.29), we get (4.21).
Proof of (4.22). Since p — 2 > 0 gives 6s > n, we have
~ k ~
Nue@W+d1+ > n5rd))
j=1
k: ~
(ur )2 ([P + 19> + D Injrds[*| . when 65 >n, (4.30)
j=1
k ~
[P+ |1 ]P + Z 1n;.r®51" when 6s < n.
j=1
When 6s > n, we have
37” 5s5+20
* p—2 i . < :u‘
(“u,g) (n]7R¢]) ~ 1+ | |2a H¢||n 2s+0,a
k s 25240
1 Ky~ g
< N 28+<7Ra 2s J
~ M ¢ n—2s4+0,a Pg—2s a
0 17200 g ]
and
. \p_2.,2 —Gs—n t—28
| (uj )" 20%] < o WWH
—25,—f8
1 py Tt
P ] ’
B, Ra— 2s ; 1+|yj|a
When 6s < n, we have
o é'rL;25+U)p )
'»R(rb" Szi ¢ n—2s+o,a
R I el L S
1 k /L!L 25+G_
< 2s+(p—1)o Ra 2s 0
S Mo Tl 0.0 a3 —,
” ||n 25+ R 2 ; 1+‘yj|
and
P < t—pB
|’(/)| ~ 1 + |yj|p(a_25) H’(/)H** ,B,a
1 k ﬂ ‘LLn 25+o_
45(1+n 7 )+p(a—2s)— apa— ZGHwH J 0
N **BaRa 25]; 1+|yj|“

The estimates for 11 are similar. Hence we have (4.22).
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Now we apply the Contraction Mapping Theorem to prove the existence of a
fixed point 9 for A. First, set

t—E
B={us 100 < Mg}

with 8 = 5 (’:;2435) +.—%; and a, € are fixed as above. Here the positive large constant

M is independent of ¢ and tg. For any ¢ € B, A(¢) € B as a consequence of (4.19)
and the estimates (4.20)-(4.22). We claim that for any 1, 12 € B,

IA®D) = AP x50 < ClIYY =P g0
where C' < 1 is a constant depending on tg which is chosen sufficiently large. Indeed,
AWy — APy =T (Nu,g@b(l) + P14 6™) = Nue(W® 441 + ™), 0, 0) ,
where
Nug@® 411 +0™) = Nug(0® + 1 +6™) =
NP NP

<UTL,§ +q/)(1) + 1/)1 4 d)zn) _ <uz)£ + w(l) + 1/11 + ¢zn) 7]9(11,;75):071 [’l/)(l) _ w(Q)] .
Similar to (4.30), we have

[N + 1 +6™) = Nyug (6@ + 9+ 6)

(UZ,g)”‘zlqﬁi”IIw(” -y, when 6s > n,
| P= ) — @) when 6s < n.

<

When 6s > n,

Nue@® + 1 + ™) — Ny e (0P + 41 + ™)

2 et 1 k qu%fﬂ
S ||¢||n—2s+a,a||¢(l) - ¢(2)”**,ﬂ,aRa72SU02 (tO)Ra,QS Z 1j
j=1

+ ;e
while in the case of 65 < n,

Nue(p® + 11 + ™) — Ny e (0@ + 1y + ¢™)

) k —2s,—f3

—1 Loy 25 HERH 1 Z py
5 ||¢||fz—25+0,a||¢(1) - ¢(2)”**75,0Ra 25:”0 : (tO)Ra,QS 1j
j=1

+ ;|
Hence there exists a choice of R in the form (3.1) such that

@) = AWD) g0 < CllYD = s g0

holds with C' < 1, provided t is sufficiently large. Therefore, if ¢y is fixed sufficiently
large, A is a contraction map in B. The validity of (4.17) follows directly from (4.5).
The proof is completed. O



32 M. MUSSO, Y. SIRE, J. WEI, Y. ZHENG, AND Y.ZHOU

4.3. Properties of the solution .

Proposition 4.2. Under the assumptions in Proposition 4.1, ¥ depends smoothly

on the parameters X, €, A, €, ¢, for y; = ﬁj{jf‘, we have
AU €A € N0 S s 3O > W SENCEN
k ;2571
ey = U v e BT
. k £)
00,63, 681, 0] £ s IO 15140 > 1“°1+y e =l BCED
s t5* ~ (1

306 A& BN (.| S 70 O IAE) a5 140 2 01 +\y =k
(4.34)
0,016 3,€,6161(. )| S g 19020100 :m (4.89

Proof. Step 1. Proof of (4.31) and (4.32).

We fix j = 1. U[)\q] is a solution to problem (4.1) for all \; satisfying (4.13).
Differentiating problem (4.1) with respect to A; gives us a nonlinear equation.
From the Implicit Function Theorem, the solutions are given by 9Oy, ¥[A\1](z, ).

Decompose Oy, ¥[\](z,t) = Z1 + Z with Z; = T(0, —(0x, v M)f)[)\ ],0), where T is
defined in Lemma 4.1. Then Z is a solution of the following nonlinear problem

07 = —(=AVZ +VyeZ + (Ox, Vi) Nl + On, [Ny (4 +6™)] [N
+ 8)\150ut [Xl] in Q X (t07 OO), (4.36)
Z =0 in (R"\ Q) x (tp,00),
Z('7t0) =0 in R".
By definition, 7, { [— (—A)en;r, —(—A)3 ;] + 6;(—(-A)* — 5t)77j,R} is inde-
pendent of A\;. Then for any z € R™\ Q,
o e (@) Sy ® (O, (4.37)
From (4.37) and Lemma 4.1, we obtain

n—

51
t
e . “Oi(ﬁ
Ra s = 1+ ‘yj|a7 s

—E

|Z1(, 1)

For problem (4.36), we compute
On, [ (0 +6™)] Il =p [(u. +6 -+ 6777 = (3,7 (2 + 20)
+p(p = 1) (up, )P (3 + ¢™)O, 1, e [M].
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Therefore, Z is a fixed point of the operator
A(Z)=T(f+p [(U;E + 1+ )Pt — (u;@)p*l] Z,0,0), (4.38)
where
f =05, SoutIM] + (Ox, Vie) MY +p [(uf, ¢ + 9 + ")t — (uz,g)pfl] A
+p(p = 1)(u )P 2 + ™) ), e[M].
We claim that

(4.39)

. o Bz 2&71+U

to Ky "o
1) Moy 22 4.40
£ )] S g Ml g T (4.40)

To prove (4.40), we first estimate Oy, Spu[M1]. In the region |z — q;| > 0 (i =
1,--+, k), we have the following estimate for 9y, S(uj, () by (2.24), (4.12) and (4.13)

n—2s

SOt (@) = g f @ iy L )M (1),

where the smooth and bounded function f depends on (x, p1g Y, €). Now we fix j
and consider the region |z — ¢;| <. From (2.26), we have

Ox, S (uy, )Ml (. t) = O3, S (upee) Ml (2, ) (L + o f (2, p1g ' 11,6, 1)),

where the smooth and bounded function f depends on (z, pg Y1, €,t). Differentiat-
ing (2.5) with respect to A1, we obtain

n —2s —nz2s_ o, :
B {mznﬂ(yl) VU

1 n—2s (n—2s -
— — 1) g% H (e, q;) | M (

H—TQS+1 2 ( 92 )Ml H1 (z,q)] 1()
—§1

n—2s
1

a)\IS(U#’E)[S\l](LC,t) = (

—pp 2 @D ) + iV ()] - ()

n—2s

p—1
+p<2ul T U(y) — H(x,qi)>

XOn i 7 Uy =7 Hiz,g)| M)
)

o (1 U)ol

From (4.12) and (4.13), we have

2.
—e —2s £-1

- t < M Mo
|92, S (upe) Ml (2, 1) S ﬁﬂ)\lﬂuaz ’

e M (4.41)
= l+lyle

Therefore, by the definition of S,,; together with (4.41), we obtain

to® T
‘a)\l Out[Al](‘r t)’ Ra 25||>\1||1+02W.
J

j=1
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Next, we estimate the remainders in f. Direct computations imply that

(On, Vi) ] (2 ) =p<p—1>[< P 20510 [ ]

n—2s n—2s

—nur(uy 2 U@)P%0x (pr 2 Un))[M]|-

n—2s _

TU )| S ugt U ()| and B = m+ 255, we have

S —140

Since ‘8)\1 (/J;

—e —2s

_ to Hy
|00, Visie) Pl @ D] £ Ibllew .0 o A s Z T

By the same token, we can deal with p(p—1)(u}, ()P~ 2(¢p + ™) 0N, u* uy, 5[ 1] in (4.39)
and obtain

p(p — 1)(u5.)" (0 + 6™, w5, ) N%nmnmz’”

7j=1

Analogously, we can estimate the last term p [(“25 +h + )Pt — (uzé)p_1 Zy.
Therefore, we conclude the validity of (4.40).
Now we consider the fixed point problem (4.38). Then the operator A; has a
fixed point in the set of functions satisfying
_6 k n-2s_g

B g

|Z(z,t)| < M—>— —_—
‘ ~ 1+ |yj‘a72s

Ra 2s

with the large constant M fixed. In fact, A; is a contraction map when R is chosen
properly large in terms of to. Therefore, the estimate (4.31) for dx, ¥[\;] holds.
The estimate (4.32) for 9¢W[¢] can be verified in a similar way. Here we omit the
details.

Step 2. Proof of (4.33) and (4.34).

We fix j = 1. From the discussions above, the function ¥[\;] is a solution to
(4.1) for all \; satisfying (4.13). Then we differentiate problem (4.1) with respect
to A1 and obtain a nonlinear equation. From the Implicit Function Theorem, the
solutions are given by d5 W[Ai](x,t). Denote Z(x,t) = 85 W[\i](z,t). Then Z is a
solution to the following nonlinear problem

Wz =

— (“AYZ+ Ve Z + 05, [Ny (6 +6™) | ] + 05, Sowalhi] in © x (to, 0),
Z(x,t) =0 in (R™\ Q) x (tg,00),
Z(,tg) =0 in R".

From the definition of N, ¢ (¢ + ¢™"), we have
05, [Ne (v+6™)] ] = p (e + 0+ 6™ — (g, P~ Z(a 1),
Therefore, Z is a fixed point for the operator

A1(2) =T (85, Sowlu] + p [(w ¢ + 6+ ™)™ = (us '] £,0,0) . (442)
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Now we differentiate S(uj, ) with respect to A1 in (2.25) directly and obtain

n—2s

05, S ] 1) =y T [zn+1<y1> o=

S p_os :
S )| o)

—nis 1 |n—2s A
+ zts—1 [ 5 Q1 (y1,t) +y1 - qu)l] Av(t).
Hence
_nfﬁs_l
) . t—e ,U]_2S( )/J‘O :
05,8 (u. ) M(z, )| S 7oz e I lln-ss 140 Z L+ Jy;1e

j=1
Now we consider the fixed point problem (4.42). Similar to Step 1, A; has a
fixed point in the set of functions satisfying
e k —n=bs g

to Ho
1Z(x, 1) < Ta— QSH)\l( )||n—4s+1+agw~

Thus estimate (4.33) holds.
On the other hand, observe that

n—2s

O, S(us e (@, t) =y = [VU@) + V(g 1) &1().  (4.43)
From (4.43) we have

_28 ) 7n—26571

k
06,505, ) )0, 0)| £ A 6Dl soirso Z PR

Therefore, we have (4.34).

Step 3. Proof of (4.35). -

Define Z(z,t) = 049[¢](z,t) with ¢ satisfying (4.15). Therefore, Z is a solution
to

WZ =—(—D)Z+V,eZ
- Z{ i, —(=0)8 ] + &5 (= (=8)° = 9)njn |
+p (e + 9+ 6™ = (u )" @ in Q@ x (to, 00),

Z =0 in (R"\ Q) x (tg,0),
Z(',t()) =0 in Rn7

N  n—2s _ )
where ¢ =y > ¢; (x_§’ ,t).

Hoj
As in Step 1 and Step 2, we have

k
S {[= A imim —(=8)385] + &5 (— (—A)° = 0)nyn }
j=1
1 - 1% g ? R
S W||¢Hn725+0’a2W

Jj=1
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and
e+ + 0™ = ("] ¢'
& Y n;Zs to
L s -1 in|p—1 Hi  Ho
S T 1Fh-zeroa W + 107 1 2| 2~
j=1
From Lemma 4.1, we conclude the validity of (4.35). O

5. THE INNER PROBLEM

Substituting the solution ¢y = ¥[\, &, A€, @] of the outer problem given by propo-
sition 4.1 into the inner problem (3.8), the full problem is reduced to the following
system

Ng;at% = _(_A)Z¢j +pUp_1(y)¢j + Hj [)‘757 }‘aév d)}(yvt)v Yy e Rn, t 2(591)
for j=1,---  k, where

n+2s
2

Hj[\ &N E, ] 1—{% Sp.e. (&5 + pojyst) + Bjle;] + Bjloy]

(5.2)

2

e Bt (19 e 1 pgt) v)

pMOj MQS 14 Y J Ho5Y, XB2R(O) Y
J

and Bj[¢;] and BY[¢;] are defined in (3.9), (3.10) respectively.
After the change of variables

dt s
t=1t(r), I = M?)j(t),

(5.1) is reduced to
O0rdj = —(=A)ybs +pUP " (1) + Hi[N &, A€, ¢](y, (7)), y €R", 7270 (5.3)

with 7 the unique positive number satisfying ¢(79) = to.
We will find a solution ¢ = (¢1,--- , @) to the system

Ord; = —(=A)id; +pUP L (y)d; + Hj[N &N, € 0](y,t(T)), y €R™, 7> 7,
¢j(ya7_0) = erZO(y)a Yy e Rna

4
for a constant ep; and all j = 1,--- , k. Here Zj is a radially symmetric eigenfunc(fioi
associated to the unique negative eigenvalue Ay of the eigenvalue problem

Lo() + Ao =0, ¢ L®(R").
Note that \g is simple and Z, satisfies
Zo(y) ~ lyl ™" as Jy| — oo,
see, for example, [30]. We will prove that (5.4) is solvable in the function space of

those ¢,’s satisfying (4.15), provided £ and X are chosen so that H; [\, €, A€ 0l (y, t(7))
satisfy the orthogonality conditions

M N ENE By, t(r)) Zi(y)dy =0, (5.5)

forall7>7m,j=1,---,kand Il =1,2,--- ,n+ 1. We first develop a linear theory
which is the context of the subsection 5.1.
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5.1. The linear theory. In this subsection, for R > 0 fixed large, we find a solution
to the nonlocal initial value problem

Or¢=—(=A)¢+pUP  (y)o + h(y,7), y €R", 7> 70, 56)

é(y,10) = e0Zo(y), y € R™. '
Let

vr=1+ g
n—2s’
then ,ug*QH" ~ 77, Define
[hlla,wm = sup sup 77(1 + [y[*)(|h(y, T)| + (1 + [Y]")XBor(0) W 7))y, By (0))-
T>T0 YyEB2g

In the following, we always assume that h = h(y,7) is a function defined in the
whole space R™ which is zero outside Bag(0) for all 7 > 7. The main result in this
subsection is the following.

Proposition 5.1. Suppose a € (2s,n — 2s), v > 0, ||h|l2s4a,0,n < +00 and
/ h(y,7)Z;(y)dy =0 forall 7€ (19,00), j=1,---,n+1.
Bar

For sufficiently large R, there exist = ¢[h](y,T) and eqg = eg[h](T) (T € (70, +00),y €
R™) satisfying (5.6) and

I+ yDIVyo(y, 7) X Bar(0) (¥) + |0y, T)]

5.7
5 T_V(l + |y|)_a|‘h||28+a,l/,77a TE (TOa +OO)7ZJ € Rna ( )
leo[h]] < [1hll2s4a,0,n- (5.8)
Lemma 5.1. Suppose a € (2s,n —2s), v > 0, ||h||2s4a,p,n < +00 and
My, 7)Z;(y)dy =0 forall 7€ (19,00), j=1,--- ,n+1.
R7l
For any sufficiently large 71 > 0, the solution ($(y,7),c(7)) of the problem
0-¢ = —(=A)°¢ +pUP~H(y)¢ + h(y, 7) — c(1) Zo(y), y €R", T = 7,
(Y, 7)Zo(y)dy =0 for all T € (79, +00), (5.9)
Rn
d)(vaO) = O» Yy e an
satisfies the estimates
oy, T ar S IPll2s+a,m (5.10)
and
()| S 777 R*|hll2sta,n for T € (T0,71)
Here [hllor, = $Dre(r ) 7 (1 + lyl"Vhll o e
Proof. Note that (5.9) is equivalent to
079 = —(=A)°¢ +pUP~ (y)p + h(y, ) — c(1) Zo(y), y €R", 7> 70, (5.11)
(b(ya TO) = 07 Yy e R" '

for ¢(7) given by the relation

() [ 1zaPdy = [ 1t Zo(0)d
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It is easy to see that

le(r)] S 777 R*||hll2s+a,m (5.12)
holds for 7 € (79, 71). So we only need to prove (5.10) for the solution ¢ of (5.11).
Inspired by Lemma 4.5 of [20] and the linear theory of [43], we will use the blow-up

argument.

First, we claim that, given 71 > 79, we have ||¢|lsr, < +00. Indeed, by the
fractional parabolic theory (see [34]), given Ry > 0 there is a K = K(Ry, 1) such
that

[6(y,7)| < K in Bp,(0) x (10, 71]-
Fix Ry large and take K; sufficiently large, K1p~® is a supersolution for (5.11)
when p > Ry. Hence |¢| < 2K1p~* and ||¢||q,r, < +o00 for any 7 > 0. Next, we
claim that the following identities hold,

¢y, 7)- Z;(y)dy =0 for all 7 € (19,71),7 =0,1,--- ,n+ 1. (5.13)
Rn
Indeed, From the definition of ¢(7), we have

. (y,7) - Zo(y)dy = 0.

Testing (5.11) with Z;n, where n(y) = no(ly|/R1), j = 1,---,n+ 1, Ry is an
arbitrary positive constant and the smooth cut-off function 7 is defined as

1, for r < 1,
mo(r) = {O, for r > 2,

we get

. o(,7) - Zjn = /OT ds /n(qﬁ(-, 8) - Lo[nZ;| + hZjn — c(s)Zo Z;jn).

Furthermore, it holds that

/ (cb - Lo[nZ;] + hZn — c(s) Zo Zm)

= [ o (Bt-arm [- Coyin—-ayiz))
b Zy () e 2051 )
- o(r;")

for some small positive number ¢ uniformly on 7 € (79,71). Then (5.13) hold by
letting Ry — 4o00. Finally, we claim that for all ; > 0 large enough, any ¢ with
lolla,r, < 400 solving (5.11) and satisfying (5.13), we have

||¢||a,7'1 5 ||hH2s+a,Tl- (514)

Hence (5.10) holds.
To prove (5.14), we use the contradiction argument. Suppose that there exist
sequences 7F — +oo0 and ¢y, hy, ¢, satisfying

Ordr = —(—=A)¢r + pUP~ (y)br + hi. — cr(T) Zo(y), y €R", 7> 7,
¢k(y7T) ! Zj(y)dy =0forall T € (TOaTllc)aj = Oa 17 eyn ]-7
R'ﬂ

¢k(y77-0) - an S Rn
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and
0kllar =1, hll2stars =0 (5.15)
By (5.12), we have sup, ¢y, ) 77cx(7) — 0. First, we claim that
sup  7"|¢k(y,7)| = 0 (5.16)
TO<T<le

holds uniformly on compact subsets of R™. Indeed, if for some |yx| < M and
k k
TO < 7-2 < 7-1 3

1
(72)" [on (yrs 73) 2 5,
2
then it is easy to see that 74 — +o0o. Now, we define

Q;n(ya T) = (TZk)qun(yv 7_2k +7).
Then ~ ~ ~
Ordk = Lo[k] + hi — &(7) Zo(y) in R x (10 — 75, 0],
with h — 0, & — 0 uniformly on compact subsets of R™ x (—c0,0] and

|¢/€(va)| < in R™ x (TO - T2k70]'

L4yl
Using the fact that a € (2s,n — 2s) and the dominant convergence theorem, we

have ¢ — ¢ uniformly on compact subsets of R” x (—o0, 0] with (Z) # 0 and
0-6 = —(=A)*¢+pUP " (y)$ in R™ x (—o0,0],
oy, 7) - Zi(y)dy =0 for all T € (—o0,0], 7=0,1,--- ,n+1,

e (5.17)

~ 1
oy, 7)| < in R" x (—o0, 0],
60, < s i R x (00,0

¢(y,7'0) =0,y € R".

We claim that g?) = 0, which is a contradiction. By fractional parabolic regularity

(see [34]), ¢(y,T) is smooth. A scaling argument shows
(L+ 1) I(=2) 2] + -] + [(=A)*d S (1 + [y} ~>
Differentiating (5.17), we get 0;¢, = —(—=A)*¢, + pUP~1(y)p, and
L+ I (=2)E e | + [drr| + [(=A)°0r | S (14 [y) 77
Moreover, it holds that

1 S e
58T ,/]Rn |¢T| +B(¢T7¢T) - 07
where
5.6 = [ (18023 — o7 ()10 do.

Since fRn (;E(y,T) -Z;i(y)dy =0 for all T € (—00,0], j=0,1,--- ,n+1, B(qz;,(;;) > 0.
Also, we have

/ |§Z§‘r|2 = _%aTB((E)a (Z))
RTL

From these relations,

0
0 |6-]? <0, / dT/ |- |? < +o0.

Rn
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Hence ¢, = 0. So ¢ is independent of 7 and Ly [q?)] = 0. Since ¢ is bounded, by the
nondegeneracy of Lo (see, [19]), ¢ is a linear combination of Z;, j = 1,--- ,n+ 1.
But [,,¢-Z;=0,j=1,---,n, ¢ =0, a contradiction. Thus (5.16) holds.

From (5.15), there exists a certain y; with |yx| — +o0o such that

1
(72)" (1 + lyn| )| ne (g, 75)| > 3

Let
oz, 7) = (75)" [y b (Y + lyelz, lye > + 73),
then ~ ~ ~ ~
Orpp = —(—A) bk + ardr + hi(z,7),
where

hic(z,7) = (73)" [y > B (yr + lyelz, a7 + 3.
By the assumption on hy, one has

[Pk (z, 1) S (i + 2|72~ ((75) " Hywl**r +1)7
with

e = 2 5 e
|y

and |é| = 1. Thus hg(z,7) — 0 uniformly on compact subsets of R™\ {&} x (—o0, 0]
and ay has the same property. Moreover, |g5k (0,70)] > % and

12 S 1+ 217 () +1) 77
Hence we may assume ér — & # 0 uniformly on compact subsets of R” \ {&} x
(—00,0] with ¢ satisfying
Br = —(-A)G R\ {6} x (=00, (519)

and

lp(z,7)| < |z —¢é|7% inR"\ {é} x (—o0,0]. (5.19)
Similar to Lemma 5.2 of [13], functions ¢ satisfying (5.18) and (5.19) must be equal

to zero (A proof can be found in [13]), which is a contradiction and we conclude
the validity of (5.14). The proof is complete. O

Proof of Proposition 5.1. First, we consider the problem
9r¢ = —(=A)¢ +pUP™ ()¢ + h(y, 7) — c(1)Zo, y €R", T 2> 70,
(rb(vaO) = 05 y e R™.

Let (¢(y,7), c(7)) be the unique solution of the nonlocal initial value problem (5.9).
From Lemma 5.1, for any 71 > 7, we have

[0(y, I S 77"+ [y~ IAll2star, forall 7 € (10,71), y € R"
and
le(T)] < 777 RY||h|254q,r, for all 7 € (19, 71).
By assumption, ||A|l2s+a,,y < +00 and ||A|2sta,r < ||Bl|2s4a,0,n for an arbitrary
71. It follows that
[6(y, DI S 7" (L + [y) " “lIAll2sta,vp for all 7 € (10,71), y € R"

and
le(T)| < 777 R||h||25+a,0,n for all T € (19, 71).
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By the arbitrariness of 71,

[0y, )l S 77" (L4 [y) " |[hll2sta,vn for all 7 € (10, +00), y € R"

and

le(T)| < 77V R*||h]|25+a,v,n for all T € (19, +00).
From the regularity result of [42] and a scaling argument, we get the validity of
(5.7) and (5.8). O

5.2. The solvability conditions: choice of the parameters A and £. Denote

)\18 A(t) flgtg &i(t) T
Aot . Aot 2(t . o(t 2
P s = | e = | o= [ 0= |

i (1) Ak(t) &k (t) €i(t) k

First we consider (5.5) in the case I = n + 1.

Lemma 5.2. Whenl=n+1, (5.5) is equivalent to

A (PTdmg((2‘9‘”””3_28“)PA) NG AL A (520
J

n —4s

where the matriz P, the numbers . > 0 and b, > 0 are defined in Section 2. The
right hand side term can be expressed as

—E&

A€ A€ 01(8) = i 4 (1) 10

—€

0
Ra72s

_|_

{A T (3 P T () W A 45*%} (t)

(5.21)
where f(t) and © [)\ E b (ON, pi =4 (€ — q), un T B () are smooth and
bounded functions for t € [tg,00). Further, the following estimates hold,

€

O] ~ OLa)(0)] S 5 (6) — Ao

O — O] £ g lén(t) &),

01 I(1) — Ol Xa)(1)] £ pege e (1) — o)

005 (& — (1) — Oy 4S<fz—q>l<t>\~ata_2s'5l<) 0l

|®[M6L+1748+0¢1](t) - 9[M8+174S+0¢2](t)’ Ra 2s H(bl( ) 2(t)||n72s+a,a-

(5.22)

Proof. Suppose ¢ satisfies (4.15). For a fixed j € {1,--- ,k}, we compute

Hjlp, N &N &y, (1) Znsa (y)dy,

Bar
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where H; is given by (5.2). Decompose

nt2s
to;° Suei(&5 + Hojyst)

n+2s

[0; 2 s—
= (U]J> (11051 (2, ) + )‘jb? 'Sa(z,t) + MjSB(Z7t)]Z:§j+ﬂjy
n+2s
T (’Z) 403 1816 + pojy. 1) — 516 + gy )]
’ n42s
Hoj 2 25—1
U Aib5 T [S2(& + pojys t) — S2(&5 + 1y, 1)]
j
n+2s
poj | *
+ (uoj 3 195(85 + pogy: 1) = Ss(&5 + pgy, )],
J
where
Sl(Z)
= (bjpo)** %),
¢, —2 1 SN
Az, (2 §J> L . 5 s  2s5ApU (z@)
Hj =g 7\ ° .
1+ e
k
— g pU ()P Y Mg,
i=1
L z— & n—2s 1
Sa(2) =(2s = Vg jio | Zosa ( M@) T e 2\ "7
J z=§;
(1 T >
p—1
Z—Gj n—2s—
+pU <€]> o
122}
n—6s n—2s
X (_ by H (505) + Dby 7 b7 Glagya) + (25 - DB)
i#]
and
& =&\
S3(2) :N?S_Qan,S(n —2s) = 24 U </J]>
J

z2=&;
M

(elsf)

B n—2s n—2s z — f
< | =i VH(q5,q) + Y py 2 p 2 VG(g5,q) <]>
i75
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By direct computations, we have

S1(&j + 1Y) Zns1(y)dy = (25Act + e2) (1 + O(R* ™)\ (bj o) 2
Bar

k
+er(L+OR™2))ug 272> My,
i=1

/B S2(&5 + 15y) Zn+1(y)dy

n—os— 2SAC + G Ss—n —z8 NnN—uis—
= —(2s = g T S e O(RYT A Ry
(n—4s8)en s
n—2s— 2sc - - n—2s—
:_(28_2),“0 2 l(niés)_i_O(RéLs "R QS)MO 2s—1

and

i S3(&5 + 1jy) Zny1(y)dy = 0 (by symmetry).
2R

Ajy—1 _
To]) , for any [ = 1,2, 3, we have

3 Hoj __
Since = 1+
/ [S1(&5 + 1oy, t) — Si(&5 + 5y, )] Zny1 (y)dy
Bar
— ()2 o+ glt, SN2 % + gt ) S A+ R (1),
Ho Ho Ho =

where f, g are smooth and bounded functions such that g(-,s) ~ s as s — 0. Thus

n+2s

Bi\ o 1-2s ntls
¢ , Hoj . o Suei (&5 + 1oy, t) Zns1(y)dy
J 2R

. 1 n—2s —Tb2—28 1
\; + = ( PTdiag 5 0% T A1 P
t n—4s

j
t5e Ao 5T e A
£, 2 (A n—dsgp 2y
+ a5z Mo)( T+ pammtn Yl Mo)
where ¢ is a positive number, the function g is smooth, bounded and g(-,s) ~ s as
s — 0.
A

Next we compute pjg;® (14 25)72° [ UP=HERy)) (& + poys ) Znsa (y)dy.

The principal part is I := fBQR UP=Y () (& + p0jyst) Zn+1(y)dy. Recall o =
’w[)\:fa ).‘7£a ¢](y7t), we have

I = [0,4,0,0,0)(¢;. ) /B UP () Zos1 () dy

+ L Upil(y)Zn-‘rl(y) (77[}[07 q, Oa 03 0](5] + Hoj5Y, t) - ¢[07 q, 07 07 O](Qja t))dy

4 /B U () Zuvss () (0N, . A, €, 6] — 900, 4,0,0,00) (& + poyy, 1)y
=I5+ I+ Is.
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By (4.16), I, = Rt%;s,ugg S+af(t) with f smooth and bounded. By (4.17), I =
—€ n—2s
%#0 2 +Ug(t, %0, &—q) for a smooth and bounded function g satisfying g(-, s, ) ~

sand g(-,-,s) ~ s as s — 0. From the mean value theorem again, we have
I = /B UP~1 () Zn1(5) | 031500, 4, 0,0, 0][5N)(&; + oy, 1)
+ 010, 4,0,0,0][s(¢; — ¢)](& + poy, t) + 95%[0, 4, 0,0, 0][sA| (& + 05y, t)
+9:0[0,4,0,0,0)[s€)(&5 + pojy, t) + 0p[0, 4, 0,0,0][s6](€; + oy t) | dy

for some s € (0,1). Using Proposition 4.2, I5 is the sum of terms like

n—6s —€
N 26 —1lto tO
Ho Ra—Qs

FOA+EOFNENE 0)(1)

and
—€

p® e OO+ OFINEAE 4I0)

where f is a smooth, bounded function and F' is a nonlocal operator satisfying
F0,q,0,0,0](t) bounded.
Now, we consider the terms Bj[¢;], By[¢;] and obtain that

to© n+l—4s+o .
| Bl Zu iy = 1 1 (04610 + 16100
2R
and
BO 7 dy = tas n—2s—1 A t
j[¢j](ya ) Zn+1(y)dy = Ra_gsﬂo g\ — ) [ol®)
Bag Ho
for a smooth function g¢(s) satisfying g(s) ~ s as s — 0, £[¢](t) is smooth and
bounded in ¢. Combining the above estimates, we conclude the result. O
Similarly, we compute
; Hy[\ €0, €, 0]y, t(T)) Zu(y)dy, (5.23)
2R
forany j=1,--- ,k, Il =1,--- ,n. We have
Lemma 5.3. Forj=1,--- k, l=1,--- n, (5.5) is equivalent to
f] = H?,j [)‘7 fa ).‘7 éa ¢](t)) (524)

H?,j [)‘7 67 ).‘7 é’ (Z)] (t)

n—=2s n—2s

n=2s n-2s oo
= pg e | BTV H (g5, q5) — Y b 7 by 2 VG q) |+ pg T £(0)

ij
t-¢ .. Coul o Cdsto
+ ez O &g ™ (O g €= @) g 0)(0),
n UPT1 By d . . . . . .
where ¢ = pr—aleyly} fi(t) is an n dimensional vector function which is

Jen (3%) "y
smooth and bounded for t € [tg,00). The function © has the same properties as in
Lemma 5.2.
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The proof of Lemma 5.3 is similar to that of Lemma 5.2 so we omit it.
From Lemma 5.2 and Lemma 5.3, we know that the orthogonality conditions

HiNENE Oy, t(1) Zi(y)dy, for j=1,-- ,kandl=1,--- ,n+1,
Bar
are equivalent to the system of ODEs for A and &
2s ~ b2 2s +1 L.
AN+ = (Pszag () P)\) = I[N\ N 8],
J

n —4s

(5.25)
§j = HQ,j[/\’§7>.‘aév¢](t)7j = 17' v 7k~

System (5.25) is solvable for parameters A and £ satisfying (4.12) and (4.13). Indeed,
we have

Proposition 5.2. There exists a solution A = M¢|(t), & = &[P](t) to (5.25) satis-
fying (4.12) and (4.13). Fort € (tp,00), it holds that

— (140
1 I OINGIE) ~ A6)(0)] S gl — Gallareion (520
and
s W€l ®) — Elal(0)] S 1 11— Gallzeroa (320
Proof. Let h be a vector function with [|A|lnt+1—4st0 S ﬁ. The solution to
237 b2 2$+1
A PTa "2 T T2 pa) =), 5.28
g (Praeg (=) ea) =, (5:29)
can be expressed as
vi(t)
Vg(t)
Aty =PTut) vty =| .|,
Vie(t)
TS @b? 2s t 1pn52s, bz 25
vi(t) =t n—ds dj+/ T#(Ph)j(T)dT , (5.29)
to
where dj, j =1,--- ,k are arbitrary constants. Then, for 0 < d := max;—1 ... x |d;],
we have
1+o _5_;‘:
[E7 = A Lo (t0,00) Sto " d 4 [[hllnt1-a5+0
and

”/\( )||n+1—4s+a ~ to " 4§d+ ||h||7l+1 4s+o0-
Let A(t) = A(t), then

1 . 2829— b2 28+1
A+ ; (P dza,g< p—p / A(s h(t), (5.30)

which defines a linear operator £; : h — A associating to any h with ||A||p+1-4s+0
bounded the solution A. £; is continuous between the spaces L™ (tg, 00)* with the

| - [ln+1-4s+o-topology.
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For any h : [tg, 00) — R* with ||A||,41_4s1 bounded, the solution to

n— 2:. n—2s

éj:M8_4s+20 by~ Y H(qj,q;) Zb b, > VG(gj,q)| + h(t) (5.31)

i#]
is given by
[ee]
&(t) = &)(t) + / h(s)ds, (5.32)

t
where

—25 n—2s (o)
f?(t):qj—&-c —by~ >V H(qj,q;) —|—Zb b, 2 VG(gy,q) / uh =412 (s)ds.

i#£] t

Then we have
1+o
ORI

hllnt1-as+o
and
1€ = Ellnt1-15+0 S hllnt1-s4o-
Let E(t) = £(t) — £° which is a vector function, then (5.32) defines a linear operator
Lo : h — E which is continuous in the | - ||n+1 dsto- topology

Observe that (), €) is a solution of (5.25) if (A = \, E = ¢ — £°) is a fixed point
for the problem

(AE) = AN E) (5.33)
where
A= (LA, E, 9], £2(1T[A, . 9]) ) = (A1(A,Z), A(A, F))
with
ﬁl[AaE7¢] :Hl |:/ AaQ+/ ‘:‘7A757¢:|7
t t
and
ﬁQ[AEa¢] ::HQ |:/ A7Q+/ E;A757¢:|
t t
Let
K := Ra_28 maX{||an+174s+0'7 ||f1||n+174s+0; T ka:”n+174s+a}
where f, fi, -+, fr are defined in Lemma 5.2 and Lemma 5.3. Now, we show that

problem (5.33) has a fixed point (A, =) in the following space

B= {(A,E) € L™ (ty, 00) x L (tg, 00) :
- cK
1A=zt 25130 + [Elln-20-1426-100 < 255 }
for suitable ¢ > 0. Indeed, from (5.21) we have

n+l—4s+o —

nods Al(Aa E)

1 K
5 N d+ Ra— 25”¢H" 2s+aa+ Ra—2s

to© to©

+W||AH"+1—4S+G Ra— 25H~||n+1 4s+o
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and
ntl—dsto - K
t~ n—4s AZ(Aa‘—‘) S Ro— 28”¢”n 29+o’a+ Ra— 25
to© ty
T pa—2s Ra—2s HA”"‘H ds+o T Ra) 2s ||HHTL+1 4s+o-

Thus, for d satisfying to n=is d< Ra —-~3 and the constant ¢ chosen sufficiently large,
A(B) C B. As for the Lipschitz property of A, we have

5 | A (A, B) — Ay (Ag, B)|
= 1 |2 (A E 0] - T[4, 2. 0]
S tn+71l:i'z+" tas |£1(®2(A1’ E) - @2(A2,E))|

n+1l—4s+o

it 40 [Ly(ug T ?O3(A,E) — g2 T2 03(Ag, D))
= taEHAl - A2||n+174s+a'~
The same estimate holds for [A;(A,Z1) — Ay (A, Zp)|. Thus, we have
[A(AL, Er) = A(A2, Bo)llnt1-asto <57 [[AL = Agllnti—asto-

Since ¢,° < 1 when ?( is large enough, A is a contraction map. Hence, from the
Contraction Mapping Theorem, there exists a solution to system (5.25) with A, £
satisfying (4.12) and (4.13) .

To prove (5.26) and (5.27), we observe that A = A[¢1]—\[é2] and & = &[] —E[pa]
satisfy

- 525— b2 29+1 _ . _ )
)\+ P dlag T P :Hl(t), g] :HQ’j(t), J = ].7 ,k

where

(T (1)),
= CPM; NOJ /B urt (ZOJZ/> [[o1] — Do)l (&5 + 1oy, t) Znt1 (y)dy

()
()

(rh(t))j
—oppy /B yrt (“"y) Wlé] — wldall (€ + oy, t)?—j(y)dy

n+2s

1 29/ {Bj[(d)l)]] [(gf)g) ]} n+1(y)dy
Bar

uir® [ (B0 - BYl0),)] Zuna )y
Bar

an

14 ;
(L) i [ [l = Bila)]] 5wy
ro(2) T [ (B0 - o] 5

Then (5.26) and (5.27) follow from (5.22). This completes the proof. O
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6. GLUING: PROOF OF THEOREM 1.1

After we have chosen parameters A = A[¢] and £ = £[¢] such that the orthog-
onality conditions (5.5) hold, we only need to solve problem (5.3) in the class of
functions with ||¢||s,, (or equivalently ||¢|ln—2s+0,6) bounded. With the chosen
parameters, we can apply Proposition 5.1 which states that there exists a linear
operator 7 associating any function h(y, 7) with ||A||2s4q,,-bounded the solution to
(5.6). Thus problem (5.3) is reduced to a fixed point problem

¢ = (lev e 7¢k) = A(QS) = (T(Hl[)‘vgvAagvd)])v e 7T(Hk[)‘v§a )‘757(;5])) (61)
We claim that, for each j = 1,--- |k, there hold

U+ lol™) [HNEAE 01 D]  xmno () + [HINE A 6w, )|

Coere (6.2)
B L M

T P

77731(0)

and

(L Iyl [HBDIC, 0 = HE0] X)) + [HI0D] = HI9]| (3, 1)
S t65||¢(1) - (15(2) ||n—2s+0,a~
(6.3)
From (6.2) and (6.3), A has a fixed point ¢ within the set of functions ||¢[|n—2s+0,a <
cty © for some large positive constant c. This proves the existence part of Theorem
1.1.
Estimate (6.2) is obtained from the definition of H;, Lemma 2.2 and (4.16). As
for (6.3), from (5.26) and (5.27), we have

n,B1(0)

n+2s
to;°  1Su1.e1,5(Ein + 105y t) = Sps en,5 (8,2 + 105y, T)]
—2s+o
T ), @ @
<t W”(ﬁ — " n-25t0,a
where

pi=ple®], & =¢0Y], gi=¢g"]), i=12
By Proposition 4.2, it holds that

2s
n—2s ILLO i _ ’uo .
pro;” | UPT (J y) 6 M](&51 + pojys t)
Hja i1
H%s Hoj
- Ut (f y) D102 + pojy, 1)
Hj2 Hj2
n—2s+o
—e Mo ), 1 @
St 5 - n—2s+o,a
~ "0 1+ |y|2s+a ||¢ ¢ || 2s+o0,
where

Finally, from the definitions (3.9) and (3.10) in Section 3,

n—2s+o
.y (t)
B;[¢{"1 - Blo{]| St T

J H(b(l) - ¢(2)||n725+a,a
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and )

n—2s+o
1 2 —e M (t)
BYo\] - 6| S 575016 — 6P ussro

+ 1yl

hold. This proves the estimate (6.3).

The stability part of Theorem 1.1 is the same as [17], so we omit it. a
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