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a b s t r a c t 

In this paper, we propose a novel semi-supervised method to predict clothing attributes with the assis- 

tance of unlabeled data like fashion shows. To this end, a two-stage framework is built, i.e., the unsu- 

pervised triplet network pre-training stage that ensures frames in the same video having coherent repre- 

sentations while frames from different videos having larger feature distances, and a supervised clothing 

attribute prediction stage to estimate the value of attributes. Specifically, we first detect the clothes of 

frames in the collected 18,737 female fashion shows and 21,224 male fashion shows which contain no 

extra labels. Then a triplet neural network is constructed via embedding the temporal appearance con- 

sistency between frames in the same video and the representation gap in different videos. Finally, we 

transfer the triplet model parameters to multi-task clothing attribute prediction model, and fine-tune it 

with clothing images holding attribute labels. Extensive experiments demonstrate the advantages of the 

proposed method on two clothing datasets. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

With the popularity of online shopping especially for clothing,

clothing related research [1,2] , particularly clothing attribute pre-

diction [3–9] , has become a hot topic in the field of multimedia

and computer vision. There are various related applications includ-

ing: clothing recommendation [10,11] , clothing retrieval [5,6] , per-

son re-identification [12,13] , fashion parsing [14–20] . 

The general framework of existing work [3,21] for attribute

learning is that they train the classifier with hand-crafted features

[22,23] . However, the attribute prediction accuracy has been re-

stricted by the limited discrimination of hand-crafted features. 

To improve the discriminative feature representation, the deep

convolutional neural network (DCNN) [24–28] is introduced for

feature learning. The flowchart of attribute learning based on CNN

is to train a powerful DCNN model with plenty of labeled images

to learn a better feature representation from raw image for the at-

tributes. More labeled images used, a better DCNN model maybe

obtained. However, it is not an easy work to obtain large amounts

of supervised data, especially for clothing attributes. So how to re-

lease humans from laborsome labeling is a meaningful problem. A
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atural input of vision system, which needs computer understand-

ng the physical world, is video. Video itself provides temporal

oherence that can be regarded as supervised cue for visual rep-

esentation learning. But how to utilize this useful unsupervised

nformation to reduce human labeling burden and learn a power-

ul feature is an open problem. 

To address the above-mentioned challenges, in this paper, we

ropose a semi-supervised approach which first uses a large

mount of unlabeled videos to pre-train a CNN model, and then

ne-tunes the model with relatively small number of labeled im-

ges for clothing attribute prediction. As shown in Fig. 1 , in the

eginning, the clothing video datasets are collected from the In-

ernet. Here, each video contains a single person walking on the

atwalk. We extract keyframes from each video through appro-

riate choosing strategies e.g. uniformly extracting fixed frames,

o generate the clothing pairs. Positive clothing pairs come from

he same videos while negative pairs are selected from different

ideos. Fast R-CNN [29] approach is then applied to train a cloth-

ng detector with annotated clothing object bounding box location.

hen, we design a triplet ranking ConvNet for training with unla-

eled videos. The key motivation is that detected clothing should

e similar with the one from same video, while dissimilar with

he one from different videos. By exploring on this video context

nformation, we use a triplet ranking loss while training to learn

iscriminative clothing feature. Finally, the unsupervised ConvNet

nformation is transferred to the clothing attribute prediction task.

https://doi.org/10.1016/j.neucom.2017.12.027
http://www.ScienceDirect.com
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Fig. 1. Overview of our proposed approach. (a) We first detect the clothing in the unlabeled videos by the clothing detector. Then, (b) the triplet DCNN network is designed 

to train with detected clothing patches, which is based on the triplet ranking loss. (c) Adapting the triplet DCNN network for the initialization of clothing attribute prediction 

network and fine-tune the network with labeled attribute clothing images to predict the clothing attributes. 
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e evaluate the performance of the unsupervised ConvNet in two

lothing attribute datasets, woman and man clothing. We also

valuate on two different deep ConvNet models based methods,

lexNet [8,25] and VGG16 [30,31] . Experimental results have cer-

ificated the effectiveness of the unsupervised trained model with

ideo data. 

The main contributions can be summarized as follows: 

(a) We collect two new clothing video datasets for unsupervised

earning. And two new clothing image datasets are annotated with

0 pre-defined clothing attributes. These datasets will be released

o the public. 

(b) A novel semi-supervised approach is proposed for clothing

ttribute learning, which makes full use of large scale unlabeled

ata. Concretely, two stages are designed, unsupervised triplet net-

ork to learn the pattern of discriminative clothing representation

rom unlabeled data and a multi-task framework to predict cloth-

ng attributes. 

(c) We demonstrate the effectiveness of the video context. And

t is also a good solution to alleviate costly human annotation. 

The rest of this paper is organized as follows. In Section 2 , we

eview the most relevant works on clothing attribute study and

ideo context study. In Section 3 we introduce two new cloth-

ng video datasets. In Section 4 we present our method including

lothing detection, triplet network and clothing attribute predic-

ion. Section 5 gives both qualitative and quantitative experimental

esults and analyses. We conclude this paper in Section 6 . 

. Related work 

Here we review the related work from three aspects, clothing

ttribute study, unsupervised learning and video context study. 

Clothing attribute study: Clothing attribute prediction can ben-

fit various clothing relative applications. Chen et al. [4] proposed

 fully automated system that describes the clothing appearance

ith a list of semantic attributes. And clothing attributes can be

irectly utilized in a novel application of dressing style analy-

is. Liu et al. [6] made use of labeled clothing attributes in the
ask of cross-scenario online shopping clothing retrieval. These

raditional methods use hand-crafted feature to train attribute

lassifier. Recently, Chen et al. [8] proposed a deep domain adap-

ation approach describing people with fine-grained clothing at-

ributes. Huang et al. [5] integrated attribute-guide learning into

ealing cross-domain image retrieval problem. They designed a

ual attribute-aware ranking network which combines attributes

ith visual information. Liu et al. [30,32] introduced a DeepFash-

on dataset which provided massive attribute annotation for multi-

abel attribute prediction. These methods all use labeled attributes

mages as an important clue in CNN training and can be applied in

ifferent applications. Our work is focused on how to make use of

nlabeled clothing videos assist in improving the performance of

ulti-task clothing attribute prediction. 

Unsupervised learning: Unsupervised representation learning 

as gained more attention in visual tasks. The goal of unsuper-

ised learning is to learn a feature embedding which the distances

f similar images are smaller than dissimilar images. Some re-

earchers solve this problem through exploring from the spatial

ontext information of images. [33] proposed to learn patch repre-

entation through judging a patch’s position while randomly give

ne of eight spatial configuration. [34] proposed a context-free net-

ork (CFN) which is trained to solve Jigsaw puzzles as a pretext

ask. There are also some works utilizing video information, next

e will give a brief introduction about this. 

Video context study: Annotating images with proper tags of-

en takes lots of time and effort. So researchers start to consider

aking use of thousands or millions of videos when training Con-

Net. The sequential information of video owned is that the frames

hange smaller in the same video. The similarity of the frames

n the same video is larger than frames from different videos.

ome works prove that video-context information can help to im-

rove the performance. Liang et al. [35] proposed computational

aby learning framework which mimics baby learning process by

earning with video contexts. Through the video contexts baby

earning method can get better object detection results on Pas-

al VOC-07/10/12 object detection datasets. This method is based
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Fig. 2. Some examples of woman clothing video dataset. Frames in every column come from one video. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

The distribution of video duration in woman and man clothing video datasets. 

Woman clothing video Man clothing video 

Duration (s) #videos Duration (s) #videos 

≤ 9 2135 ≤ 10 915 

10 6626 11 4147 

11 6656 12 15,558 

≥ 12 3320 ≥ 13 604 

Total 18,737 Total 21,224 
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on a pre-trained CNN model on ImageNet classification. An inter-

esting work [36] proposed a method to learn manipulation action

plans from unconstrained videos. Misra et al. [37] learned to dis-

cover multiple unknown objects from sparsely labeled videos. How

to use the unsupervised video context information train a discrim-

inative CNN model without using label information? Triplet rank-

ing loss is a superior design to solve this problem. Triplet ranking

loss can constrain the distance of the similar frames and dissimilar

frames. It can be optimized by stochastic gradient descent (SGD)

method. The triplet ranking loss has been used in many tasks,

for example, image retrieval [38,39] , face recognition [40] , hash-

ing code generation [41] , object detection [42] . These works use

triplet ranking loss as the final loss of the neural network’s last

layer. The most relevant work is [42] , this paper proposed an un-

supervised learning approach using 100K unlabeled videos to learn

a visual representation. They designed a siamese-triplet network

with triplet ranking loss to train a CNN model. They verified the

effectiveness in the tasks of the object detection and surface nor-

mal estimation. Our work differs from their work in that we focus

on how to utilize unsupervised video context for a specific domain,

i.e., clothing attribute prediction. 

3. Clothing video dataset 

Two clothing video datasets are collected, i.e., woman and man

clothing dataset which are composed of fashion shows. The num-

ber of woman clothing video set is 18,737 and a man clothing

video set contains 21,224 videos. All videos are downloaded from

the Internet website asos 1 which provides many videos showing

clothes online. Generally, each video contains a single woman or

man walking on the catwalk. The female walks from the backstage

and then gradually move toward the front, turn around and go

back. Some examples are shown in Figs. 2 and 3 . 

(a) Woman clothing video dataset: Several important statis-

tic results including video duration and corresponding number of

videos are shown in Table 1 . We uniformly extract keyframes from

woman videos. Considering the small variance of adjacent frames,

we extract one frame from every 25 frames in each video. In the

woman clothing video dataset, the duration is not long and the

background is often fixed, but the important clues of videos are
1 http://www.asos.com . 
he multiple views of clothing (as shown in Fig. 2 ). To ensure

ach video keyframe containing clothing object, we would adopt

ifferent strategies uniformly extracting keyframes each video ac-

ording to the duration. For the short videos, such as the ones

n 7s, 8s, we extract frames from the beginning of videos. While

or longer videos, the beginning frames are often background, we

hoose keyframes by skipping this duration. Finally we select seven

rames from each video by eliminating the frames without cloth-

ng. 

(b) Man clothing video dataset: For the man clothing videos,

e also analyze the distribution of man clothing videos’ durations

n Table 1 . According to man videos’ content, we adopt a different

trategy to extract keyframe. We use ffmpeg 2 to extract keyframes

rom man videos. 

As the extracted keyframes may have unsatisfactory cases like

ontaining no clothing object, we employ clothing detection algo-

ithm which will be introduced in the following section. 

. Methodology 

Our goal is to develop a semi-supervised deep model for im-

roving the performance of clothing attribute prediction via the

nlabeled videos. First, the clothing detector is trained to detect

lothing in each keyframe based on fast R-CNN [29] . Second, based

n these detected clothing, we generate triple pairs which consist

f positive and negative pairs to train a triplet model. After that,

e initialize the proposed clothing attribute prediction network via

rained triplet network. Moreover, images with labeled attributes
2 https://www.ffmpeg.org/ . 

http://www.asos.com
https://www.ffmpeg.org/
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Fig. 3. Some examples of man clothing video dataset. Frames in every column come from one video. 
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re used to fine-tune the attribute learning network and evaluate

he attribute prediction performance. 

.1. Clothing detection 

We follow the object detection approach fast R-CNN [29] to get

lothing bounding boxes. Fast R-CNN combines the advantages of

-CNN [43] and SPPnet [44] , in terms of the fast speed and im-

roved accuracy. According to the fast R-CNN framework, clothing

roposals are first generated by selective search approach [45] . In

ur method, we revise the default fast mode for proposal gener-

tion with three color types (HSV, Lab and rgI) and three thresh-

lds (k = 50, 100, 150). Then the extracted proposals are processed

hrough a VGG16 model [31] for fast R-CNN training. Fast R-CNN

as multiple-task losses, one is classification task and the other is

bject bounding box regression task. We predict the existence of

lothing, the four-dimension coordinates of bounding box and the

orresponding object confidence. 

For our clothing detector training, we collect two new clothing

atasets from the Internet, i.e., a woman clothing image dataset

nd a man clothing image dataset. Both datasets contain 13,500

lothing images with annotations of the upper-clothing bound-

ng box coordinates. We adopt the same strategy for two clothing

atasets as separating the clothing images into two subsets, 10,200

mages for training and 3300 images for testing. Here, the object

lasses only contain two classes, namely clothing vs. background.

imilar with fast R-CNN, we train the clothing detector with pre-

rained VGG16 network [31] parameters initialization. The final de-

ection average precision (AP) of the woman clothing detector in

he test set is 90.61%, and the man clothing detector is 95%. We

elieve the detection accuracy is sufficient for the further process-

ng. 

Then we apply the trained clothing detector on clothing video

rames. First, we use the selective search approach [45] to gen-

rate the video keyframes’ object proposals. Then we feed these

roposals into the clothing detection model and obtain the cloth-

ng object localization in the video frames. Because we care more

bout the detection precision instead of recall and the clothing de-

ector is not perfect with 90.61% or 95% test average precision, we

nly keep the video frames according to object confidence larger

han 0.95. In this way, certain false negatives are removed. How-

ver, considering the large amount of collected videos, the remain-

ng pairs are sufficient to train a robust model. Fig. 4 shows some

xamples of two woman clothing videos’ frames and the detected

esults of fast R-CNN. Fig. 5 shows some examples of two man

lothing videos’ frames and the fast R-CNN detected results. 
.2. Triplet network 

In this part, we introduce an approach to train a triplet DCNN

etwork which makes use of large scale of unlabeled video data

rom the web. A label-free neural network is constructed to force

he similarity between two frames in the same video to be higher

han those from different videos. To this end, the triplet network

onsists of three input frames, among which the first two belong

o one video and the third one comes from another random se-

ected video. We enforce that the first frame is closer to the sec-

nd frame than the third frame. The three frames share the same

etwork parameters. We adopt two popular deep ConvNet as the

ase network. One is based on the AlexNet [25] framework and the

ther is based on VGG16 [31] framework. We use the same convo-

utional layers of the AlexNet and VGG16, and then two full con-

ected layers are followed. The neuron number of these two full

onnected layers are 4096 and 1024, respectively. The triplet rank-

ng loss function is designed over the 1024 feature space. Fig. 6

hows an example of AlexNet framework with detailed network

arameters. 

For AlexNet [25] framework in our experiments, we take the

nput video frame resizing to 256 ×256 ×3 and extract 10 patches

ith 227 × 227 (the four corner patches and the center patch

n original as well as their horizontal reflections). For VGG16

31] framework, we take the input video frame resizing to 256 ×
56 × 3 and extract 10 cropped patches with 224 × 224. 

.2.1. Triplet ranking loss function 

We use X to indicate the video frame, F(X) as the feature repre-

entation. Then we define the distance between two frames X 

a and

 

b based on cosine distance space as: 

 

(
X 

a , X 

b 
)

= 1 − X 

a · X 

b 

‖ 

X 

a ‖ 

∥∥X 

b 
∥∥

= 1 −
∑ n 

i =1 X 

a 
i 

× X 

b 
i √ ∑ n 

i =1 

(
X 

a 
i 

)2 ×
√ ∑ n 

i =1 

(
X 

b 
i 

)2 
. (1) 

A triple frames X i , X 

p 
i 
, X 

n 
i , where X i is i th frame from video ,

 

p 
i 

is the frame from the same video , and X 

n 
i is randomly selected

rom other videos. The estimation of among three frames should

eet the requirement: 

 

(
X i , X 

p 
i 

)
+ α < D 

(
X i , X 

n 
i 

)
, (2) 

here α is a margin between distance of the positive pair and the

egative pair. 
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Fig. 4. Example of two woman clothing videos’ frames and the results of the fast R-CNN results. The first row and third row are the original woman video frames, the 

second row and fourth row are the fast R-CNN detected results. 

Fig. 5. Example of two man clothing videos’ frames and the results of the fast R-CNN results. The first row and third row are the original man video frames, the second row 

and fourth row are the fast R-CNN detected results. 
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Then we define the triplet ranking loss function based on hinge

loss as: 

� 
(
X i , X 

p 
i 
, X 

n 
i 

)
= max 

{
0 , D 

(
X i , X 

p 
i 

)
− D 

(
X i , X 

n 
i 

)
+ α

}
. (3)

Substituting Eq. (1) into Eq. (3) , so the loss function can be

written as: 

� 
(
X i , X 

p 
i 
, X 

n 
i 

)
= max 

{
0 , C i · C 

n 
i − C i · C 

p 
i 

+ α
}
, (4)

where 
X i √ ∑ n 

i =1 ( X i ) 
2 
, 

X 
p 
i √ ∑ n 

i =1 

(
X 

p 
i 

)2 
, 

X n 
i √ ∑ n 

i =1 

(
X n 

i 

)2 
are denoted as C i , C 

p 
i 
,

C n i . 

In our experiment, we set α = 0.5. Since the triplet ranking loss

is convex, we solve it by stochastic gradient descent (SGD). 
The gradients with respect to C i , C 
p 
i 
, C n i are 

∂� 

∂C i 
= 

(
C n i − C p 

i 

)
I condition> 0 

∂� 

∂C p 
i 

= ( −C i ) I condition> 0 

∂� 

∂C n 
i 

= ( C i ) I condition> 0 (5)

here condition = C i · C n i − C i · C 
p 
i 

+ α. If condition > 0 then I = 1,

therwise I = 0. 

.2.2. Triplet selection 

In the triplet ConvNet training, it is important to generate the

riplet pairs. We choose the frames in the same video as positive
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Fig. 6. The framework of proposed two-stage approach. (a) Unsupervised triplet network. Here we use AlexNet framework as a toy example. Three input frames go through 

three convolutional neural networks which share the same parameters. Three frames generate three output features F(X i ) , F(X 
p 
i 
) and F(X 

n 
i ) , the triplet ranking loss is 

calculated based on them. After the triplet CNN model is trained, it is transferred toward (b) clothing attribute prediction task. The attribute prediction network shares 

the five convolutional layers and first 4096 fully connected layer with the triplet network. Multiple tasks (totally 10 tasks) are defined. Each task corresponds to a specific 

attribute prediction task. Every task contains two fully connected layers, one has 1024 neurons and the other owns the number of corresponding attribute values. Every task 

takes the softmax cross-entropy loss. 
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airs. The selection of the negative pair is critical for the discrimi-

ative training. Here we introduce two types of choosing negative

airs, i.e., random selection and hard negative selection. 

(a) Random selection 

We select the first frame from a video as the base reference

rame. The positive frames are the remaining frames in the same

ideo. For each positive pair in the mini-batch, we randomly select

 sample frames as the third negative frames from different videos.

n the experiment, we set the number of random sample frames n

s 4. 

(b) Hard negative selection 

After 10 epochs of training, the randomly selected triplet pairs

end to be convergent. We can infer that the trained random triplet

odel has general ability of feature learning. We take hard neg-

tive mining strategy to generate new triplet pairs. The negative

airs which are close to the positive pairs are selected. We only

erform optimization and learn on the hardest negative frames

hat the loss is highest in a mini-batch. 

In order to increase the difficulty of training, for each positive

air, we select top n highest negative samples according to the loss

unction in Eq. (3) as the final negative frames. We finally compute

ur loss function with these n hard negative triplet pairs. We also

se n as 4 in the experiment. 

.3. Adapting for clothing attribute prediction 

After the triplet model is trained through the videos, we trans-

er this model to related tasks for better performance. In this pa-

er, we adapt the pre-trained video model on clothing image at-

ribute prediction task. We use the pre-trained triplet model for

nitialization, and change the learned video context information to

he supervised clothing attribute prediction task. 

For the clothing attribute prediction task, we design a multiple

ttribute prediction framework for fine-tuning. As Fig. 6 shows, we

hare the convolutional layers and the first fully connected layer

arameters with the trained triplet ConvNet. Then we define two
ew fully connected layers for each specific attribute prediction

ask. The first fully connected layer is designed with 1024 neu-

ons and the second one has an adequate number of neurons ac-

ording to the defined kinds for each attribute. The loss is softmax

ross-entropy loss. Thus this model simultaneously learns multiple

ttribute prediction tasks. Here, the two new layers are randomly

nitialized. The learning rate of the new layers is set higher than

ther layers because the parameters of these layers are randomly

nitialized. 

. Experiments 

.1. Experimental setting 

Datasets: For training the fast R-CNN clothing detector, 13,500

oman clothing images and 13,500 man clothing images are col-

ected and labeled with the upper clothing bounding box localiza-

ion. The bounding box localization contains four-dimension co-

rdinates with the left top point’s position and the right bottom

oint’s position. Both woman clothing images and man clothing

mages are divided into two subsets, 10,200 images for training

nd 3300 images for testing. 

For training triplet network with videos, we obtain about

27,0 0 0 triplets from woman clothing videos and 856,0 0 0 triplets

rom man clothing videos. The number of triplets is exactly the

ame in the random negative training stage and hard negative

raining stage. 

For clothing attribute prediction task, we have 10,200 images

or training and 3300 images for testing. In total, 10 attributes are

redicted, including color, style, collar, styleofcolor, styleofsleeve,

engthofsleeve, zip, belt, button and lengthofwhole. Each attribute

as different values. As man and woman clothing have different

alues in some attributes, we define the attribute kinds accord-

ng to their needs. The detailed woman and man clothes attribute

inds information is shown in Table 2 . The numbers of images for

ome attributes are shown in Fig. 7 . 
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Table 2 

Clothing attribute values in woman and man clothing. 

Attribute Attribute values 

Color Woman and man clothing Red, orange, yellow, green, blue, purple 

Black, white, gray, brown, multi-color 

Collar V-shape, round, pile collar, turndown collar/POLO 

Stand collar, irregular 

Styleofcolor Pure color, round dot, cell, irregular 

Lengthofsleeve Sleeveless, short, long 

Zip Exist, without 

Belt Exist, without 

Button Exist, without 

Lengthofwhole Median, short, long 

Style Woman clothing Skinny, straight, loose, irregular 

Man clothing Shirt, sweater, T-shirt, outwear, suit, tank, top, other 

Styleofsleeve Woman clothing Normal sleeve, puff sleeve, shirt sleeve, pile sleeve, irregular 

Man clothing Set-in sleeve, shirt sleeve, tight sleeve, irregular 

Fig. 7. Image number of some attributes in woman and man clothing image dataset. (a) Color attribute. (b) Style attribute of man clothing. (c) Style attribute of woman 

clothing. (d) Styleofsleeve attribute of man clothing. (e) Styleofsleeve attribute of woman clothing. 
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Baselines: We compare with some recent methods used in

clothing attribute prediction task. (1) baseline_AlexNet [8] . The

main network used in [8] is the standard AlexNet. (2) base-

line_VGG16 [30] . The network adopted in [30] is named Fashion-

Net, which has the same convolutional parts with VGG16 network.

The FashionNet consists of three stages, i.e., predicting clothing

landmarks, extracting local features via estimated clothing land-

marks and fusing local and global features for category and cloth-

ing attribute prediction. It needs extra clothing landmarks and cat-

egory annotations to train a powerful model. Here the annotations
f landmarks and category are missed in our woman and man

lothing datasets, so we ignore these parts and choose the core

etwork VGG16 as comparisons. Both baseline_AlexNet and base-

ine_VGG16 methods are trained from scratch with woman cloth-

ng or man clothing images, respectively. Furthermore, we also add

ome pre-trained models to certificate the effectiveness of our un-

upervised video model. (3) CFN_rec [34] . It employs the trained

ontext-free network (CFN) model as initialization. The CFN model

s trained through unsupervised learning which takes solving Jig-

aw puzzles as a pretext task. (4) ImageNet_AlexNet and Ima-
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7  

c  
eNet_VGG16. We also add experiments with supervised initializa-

ion, pre-trained on ImageNet dataset as comparisons. The AlexNet

nd VGG16 frameworks with ImageNet pre-trained model are de-

oted as ImageNet_AlexNet and ImageNet_VGG16, respectively. 

First, we detect clothing in the labeled images using the trained

lothing detector via our method (trained by fast R-CNN with

0,200 labeled bounding boxes). Then we train the deep network

sing the detected clothing regions. The network structure of the

aseline is similar with that of AlexNet and VGG16 framework. We

eplace the last second fully connected layer with 1024 neurons

nd the output layer (holding 10 0 0 neurons) with the number of

ttributes for each attribute prediction task. For all baselines, we

se 10,200 labeled clothing attribute images for training and 3300

or testing. 

For baseline_AlexNet method, the base learning rate is 0.01. We

educe the learning rate every 30 epochs and train for 90 epochs.

ll input images are resized to 227 × 227 × 3. 

For baseline_VGG16 method, the base learning rate is also 0.01,

educes the learning rate every 20 epochs and train for 90 epochs.

ll input images are resized to 224 × 224 × 3. As a bad initial-

zation cannot learn good representation due to the instability of

radient in deeper network, we follow [31] as using two stages to

rain the VGG16 baseline. In the first stage we train a shallow net-

ork named VGG11 (the network configuration comes from con-

guration A in [31] ). When training VGG16, we initialize weight

arameters of the first four convolutional layers and the first fully

onnected layer from the trained VGG11. We found that this strat-

gy is not fit for man clothing attributes images. If we take this

trategy into the man clothing attribute images, it cannot converge.

o we initialize the all convolutional layers and the first fully con-

ected layer from VGG11 when training VGG16 with man clothing

ttribute images. 

Evaluation metrics: We use mean average precision (mAP) to

easure the performance of the clothing attribute prediction. Av-

rage precision (AP) is defined as follows: 

P = 

N ∑ 

i =1 

w i ×
T i 
P i 

, (6) 

here N denotes the number of attribute values, w i is the weight

atio of the i th attribute kind in the testing set. T i indicates the

orrect number of i th attribute kind prediction. P i is the number

f images which are predicted the i th attribute kind. Then mAP is

efined as: 

AP = 

K ∑ 

i =1 

AP i 

K 

, (7) 

here K is the number of attributes, AP i denotes the i th attribute

verage precision. 

.2. Triplet network training details 

In the pre-training on video context, the triplet AlexNet frame-

ork is shown in Fig. 6 . 3 input frames go through 3 paths shar-

ng same CNN network parameters. These inputs perform forward

ropagation and compute the triplet ranking loss based on the

024 output feature space. Given a triple pair X i , X 

p 
i 
, X 

n 
i , we will

et three output feature F(X i ) , F(X 

p 
i 
) , F(X 

n 
i ) and compute the loss

ccording to Eq. (3) . The triplet VGG16 framework is the same to

he triplet AlexNet, just own more convolutional layers. 

Through the pre-processing clothing detection stage, we obtain

bout 122,0 0 0 woman clothing regions and 125,0 0 0 man clothing

egions. For triplet AlexNet training, we start base learning rate

from 0.0 0 01 and set batch size B as 100. In the triplet Con-

Net training, we first train 10 epochs with the fixed learning rate

ith the randomly selected triplet samples. Then we use the same
earning rate to apply the hard negative mining triplets, reduce the

earning rate every 20 epochs and train for 90 epochs. We note

hat the initialized bias should be set as 0.1. 

For triplet VGG16 network training, we set the initial base

earning rate ε = 0.01, the batch size B = 80. In the triplet

GG16 ConvNet training, we adopt the same optimization strategy

s triplet AlexNet training, the only difference is train 10 epochs

n the hard negative mining stage. The convolutional weights are

nitialized from a normal distribution with the zero mean and

.01 variance. The biases are initialized with zero. While training

riplet VGG16 network, it also may have instability of gradient.

e adopt the same initialization strategy training baseline_VGG16

odel with woman clothing attribute images. All experiments are

mplemented with Caffe [24] . 

.3. Clothing attribute prediction task 

At the fine-tuning stage, we design a multiple attribute pre-

iction network. Here we introduce an example of fine-tuning

lexNet framework. The basic AlexNet network configuration refers

o Fig. 6 . The parameters of convolutional layers and first 4096

ully connected layer are set as the pre-trained triplet CNN net-

ork. Then we add a new 1024 fully connected layer and a new

ully connected layer whose neuron number is the number of at-

ribute values. The five convolutional layers’ parameters are ini-

ialized by the unsupervised video triplet AlexNet parameters. The

ew fully connected layers’ parameters are randomly initialized. 

The VGG16 framework used in clothing attribute prediction task

s similar with the AlexNet framework, all convolutional layers and

he first fully connected layer are transferred from the unsuper-

ised video triplet VGG16 network parameters. Then two new fully

onnected layers are followed, the neuron number is equivalent to

he AlexNet framework in Fig. 6 . The new fully connected layers’

eights are initialized from a normal distribution with zero mean

nd 0.01 variance. The biases are initialized with zero. 

We adopt a similar optimization strategy with the baseline

ethod, the only difference is that set the base learning rate as

= 0.001. We adopt ε = 0.01 in the baseline training in order to

btain a good performance. 

We show the learned first convolutional layer filters in Figs. 8

nd 9 based on AlexNet and VGG16 framework with woman and

an clothing videos. We can observe that the unsupervised triplet

NN network can learn more colorful filters in the first convo-

utional layer. The top receptive fields of pool5 layer in our pre-

rained AlexNet triplet ConvNet model is shown in Fig. 10 . We can

bserve from Fig. 10 that the top receptive field often localize at

he clothing object position in the video frames. 

The mAP quantitative results are shown in Tables 3 and 4 .

he baseline_AlexNet method with no pre-trained model is in-

icated as baseline_AlexNet. Our AlexNet method is indicated as

ur_AlexNet. The baseline VGG16 framework is indicated as base-

ine_VGG16 and Our_VGG16, respectively. We analyze the results

n woman clothing attribute image dataset and man clothing at-

ribute image dataset in the following. 

Woman clothing image dataset: Table 3 shows the mAP re-

ults in woman clothing attribute image dataset. As to the base-

ine, we train the baseline_AlexNet and baseline_VGG16 network

ith 10,200 labeled clothing attribute images and separately ob-

ain 71.09% mAP and 75.83% mAP. Fine-tuning on our unsupervised

ideo triplet AlexNet, we get 4.91% and 1.5% higher mAP than the

aseline_AlexNet and CFN_rec. Fine-tuning on our unsupervised

ideo triplet VGG16 network, we obtain a 1.97% higher mAP than

he baseline. Comparing to the same approach, we conclude that

GG16’s performance is better than AlexNet (75.83% vs. 71.09% and

7.8% vs. 76%). Through Fig. 8 , the unsupervised triplet network

an learn more colorful information in first convolutional layer.
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Fig. 8. Visualization of the first convolutional layer filters learned with unlabeled woman clothing videos. (a) The learned conv1 layer filters of the unsupervised AlexNet 

triplet network. (b) The learned conv1_1 layer filters of the unsupervised VGG16 based triplet network. We can find that it learns more colorful information in this layer. 

Fig. 9. Visualization of the first convolutional layer filters learned with unlabeled man clothing videos. (a) The learned conv1 layer filters of the unsupervised AlexNet triplet 

network. (b) The learned conv1_1 layer filters of the unsupervised VGG16 based triplet network. We can find that this layer learns some colorful information. 

Table 3 

The mean average precision (mAP) results of woman clothing attribute prediction. 

Method Color Style Collar Styleofcolor Styleofsleeve Lengthofsleeve Zip Belt Button Lengthofwhole mAP 

baseline_AlexNet [8] 38.44 70.41 37.13 75.71 78.81 87.98 89.96 84.59 68.71 79.19 71.09 

CFN_rec [34] 55.7 69.54 43.7 80.01 76.07 89.7 91.95 86.67 73.84 77.84 74.5 

Our_AlexNet 66.84 71.27 41.33 80.25 77.15 91.04 91.51 86.05 74.27 80.22 76 

baseline_VGG16 [30] 44.75 72.86 47.93 81.67 78.43 92.13 92.39 87.4 80.47 80.25 75.83 

Our_VGG16 64.79 70.96 49.87 83.87 78.66 91.86 91.97 86.37 79.81 79.84 77.8 

ImageNet_AlexNet 71.36 71.27 51.46 83.6 78.38 92.65 91.75 88.11 78.77 81.44 78.88 

ImageNet_VGG16 71.01 77.31 64.68 87.97 79.47 95.73 95.39 90.33 89.91 84.07 83.59 

Table 4 

The mean average precision (mAP) results of man clothing attribute prediction. 

Method Color Style Collar Styleofcolor Styleofsleeve Lengthofsleeve Zip Belt Button Lengthofwhole mAP 

baseline_AlexNet [8] 52.04 77.73 69.48 74.89 79.61 94.92 87.14 99.71 79.01 96.49 81.1 

CFN_rec [34] 61.59 80.29 71.55 79.77 80.74 95.23 88.67 99.58 82.51 97.32 83.73 

Our_AlexNet 75.47 83.68 74.62 82.55 83.31 96.27 90.93 99.71 84.21 97.12 86.79 

baseline_VGG16 [30] 52.18 83.38 76.66 79.88 83.52 95.53 93.1 99.71 87.03 97.05 84.8 

Our_VGG16 67.8 84.52 76.33 81.86 84.51 96.33 93.2 99.78 87.92 97.41 87 

ImageNet_AlexNet 74.37 86.59 81.91 83.9 86.22 96.61 92.97 99.82 88.11 97.35 88.79 

ImageNet_VGG16 76.21 90.91 88.8 87.79 90.11 97.72 96.37 99.82 94.05 97.87 91.97 
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Fig. 10. Top receptive fields visualization of pool5 layer in our pre-trained triplet AlexNet network with clothing videos. The receptive fields are indicated by the red bounding 

boxes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Woman clothing attribute prediction results. The bounding boxes with green color are the detected clothing. The attribute with red indicates that it is judged wrong. 

Note that the second image in the first row, the lengthofwhole attribute results are all wrong. In fact, all methods judge right. The reason of this error is because the 

groundtruth is wrong labeled with ‘long’ value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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o it helps the color and styleofcolor attributes to improve more

erformance. Other clothing attributes also obtain higher perfor-

ance with our proposed method. It illustrates that using video

ontext information learns more discriminative feature representa-

ion and can help improve the performance of the woman clothing

ttribute prediction task. We can find that the unsupervised meth-

ds can not surpass supervised ImageNet models, but the unsu-

ervised methods can obtain closer scores to supervised methods.

hough there is a gap between them, the unsupervised method is

seful to alleviate human from labeling labor. 

The qualitative clothing attribute prediction results are shown

n Fig. 11 . Compared with the baseline method, Fig. 11 shows that
ur approach is better than the baseline network. The color at-

ribute can be judged by our method more precisely than the su-

ervised method. These results also have been certified in mAP re-

ults. 

Man clothing image dataset: Table 4 shows the mAP results

n man clothing attribute image dataset. As to the baseline, we

rain baseline_AlexNet and baseline_VGG16 network with 10,200

abeled clothing attribute images and separately obtain 86.79%

AP and 87% mAP. Fine-tuning on our unsupervised video triplet

lexNet, we obtain 5.69% and 3.06% higher mAP than the base-

ine_AlexNet and unsupervised CFN_rec pre-trained model. Fine-

uning on our unsupervised video triplet VGG16 network, we also
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Fig. 12. Man clothing attribute prediction results. The bounding boxes with green color are the detected clothing. The attribute with red indicates it is judged wrong. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. The mAP performance comparison of different number of labeled training 

man clothing images with AlexNet model. 
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obtain a 2.2% improvement than the baseline. Similarly, only com-

paring the same approach we conclude that VGG16’s performance

is better than AlexNet (84.8% vs. 81.1% and 87% vs. 86.79%). We

observe from Fig. 9 that the color attribute also helps to improve

performance. The styleofcolor attribute obtains higher performance

especially in AlexNet based method. The reason is that large num-

ber of unlabeled videos provide more color information and the

trained model can also learn these while training. And many other

clothing attributes can obtain better performance comparing with

baseline approach. These results also illustrate that using video

context information can help to improve the performance of the

man clothing attribute prediction task. Through the experimental

results in man clothing dataset, a similar conclusion can be con-

cluded that the unsupervised methods can not surpass supervised

ImageNet model based methods, but it can give a solution to re-

duce annotation labor. 

The qualitative clothing attribute prediction results are shown

in Fig. 12 . Compared with the baseline method, Fig. 12 results

show that our approach can obtain better attribute prediction re-

sults than baseline method. 

Besides, we also certify the performance with different scale of

labeled training images. We use man clothing images and AlexNet

network for this experiment, the results are shown in Fig. 13 .

Through Fig. 13 , we can observe that the more training images
sed, the higher mAP are obtained by the supervised method

nd our semi-supervised method in the testing set. The semi-

upervised approach can obtain good results than the supervised

pproach. The mAP result of our method using 5100 training im-

ges can be close to the supervised method using 10,200 training

mages. This illustrates that unlabeled videos can help improve the

erformance of clothing attribute prediction. 

. Conclusion 

In this paper, we explore a deep semi-supervised method which

akes advantages of unlabeled videos to improve the performance

f clothing attribute prediction task. First, triplet ranking loss is

tilized to train an unsupervised network with video data via con-

training the distance of similar and dissimilar frame pair. Then

his triplet video network is transferred to learn a clothing at-

ribute prediction model with clothing images whose attribute val-

es are annotated. To that end, two new clothing video datasets

nd two new clothing image datasets are collected. We demon-

trate the effectiveness of our proposed method in different CNN

etwork (AlexNet and VGG16). We have shown the effectiveness

f the video context and we believe that the unsupervised video

earning algorithm is a good solution to alleviate human from la-

eling. In the future, we will explore some common prior infor-

ation of clothing attribute in similar images, for example, the at-

ribute value distribution, and utilize them to train more powerful

odel with unsupervised learning. 
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