当前位置: 首页 > 科学研究 > 学术交流 >
学术交流

A generalization of an Erdos problem - tiling the integer lattice with translated sublattices

2019-01-28 15:22    

报告人:Sinai Robins 【University of Sao Paulo】

时   间:2019-01-29 16:00-17:00

地   点:卫津路校区6号楼108教


报告人简介

University of Sao Paulo教授

报告内容介绍

       In 1951 Erdos proposed the following problem: Suppose we tile the integers Z with any finite, disjoint union of arithmetic progressions.   Then it must be true that at least two of these progressions are translates of each other. In 2012, we extended this problem to the tiling of  with translated sublattices, where the desired conclusion is still open for d=2. In 2018, we discovered a new analytic formula, which uses some analytic number theory, and which we call a Lipschitz summation formula for cones. We then apply this Cone Lipschitz summation formula to this problem to get a new formulation in terms of certain group characters for the relevant finite abelian groups that come up naturally when one considers such a decomposition of the integer lattice into translated sublattices.

联系我们

地址:天津市海河教育园区雅观路135号32号教学楼,300350
邮箱:maths@tju.edu.cn
电话:+86 (0)22 27402850
传真:+86 (0)22 27402850

Copyright@2017 天津大学数学学院 版权所有

扫码关注学院最新动态