当前位置: 首页 > 科学研究 > 学术交流 >
学术交流

Polynomial parametrization of algebraic groups over rings

2019-03-06 09:08    

报告人:Dong Quan Ngoc Nguyen 【University of Notre Dame】

时   间:2019-03-12 11:00-12:00

地   点:卫津路校区6号楼108教


报告人简介

Assistant Professor of University of Notre Dame

报告内容介绍

       In 1938, Skolem asked a question as to whether the group $SL_n(Z)$ is polynomially parametrized, i.e., there is an element $A(x_1,...,x_d)$ in $SL_n(Z[x_1, x_2,.....,x_d])$ such that every element in $SL_n(Z)$ is of the form $A(r_1, r_2,....,r_d)$ for some integers $r_1,....,r_d$. It was not until 2010 when Vaserstein positively answered this question. One can replace the ring of integers $Z$ by an arbitrary commutative ring $R$, and ask a similar question as to whether the group $SL_n(R)$ is polynomially parametrized. I will discuss my recent result about the polynomial parametrization of $SL_n(F_q[T])$, where $F_q[T]$ is the ring of polynomials over a finite field $F_q$, which can be viewed as a function field analogue of Vaserstein’s result. I will also discuss my recent result in joint work with Michael Larsen (Indiana University) which generalizes Vaserstein’s theorem to an arbitrary number rings.

联系我们

地址:天津市海河教育园区雅观路135号32号教学楼,300350
邮箱:maths@tju.edu.cn
电话:+86 (0)22 27402850
传真:+86 (0)22 27402850

Copyright@2017 天津大学数学学院 版权所有

扫码关注学院最新动态