当前位置: 首页 > 科学研究 > 学术交流 >
学术交流

Numerical methods for rotating Klein-Gordon equation in nonrelativisit limit regime

2019-03-12 09:28    

报告人:赵晓飞 【武汉大学】

时   间:2019-03-14 14:00-15:00

地   点:卫津路校区6号楼111教


报告人简介

武汉大学副教授

报告内容介绍

    We consider numerics / asymptotics for the rotating nonlinear Klein-Gordon (RKG) equation, an important PDE in relativistic quantum physics that can model a rotating galaxy in Minkowski metric and serves also as a model e.g. for a “cosmic superfluid”. Firstly, we formally show that in the non-relativistic limit RKG converges to coupled rotating nonlinear Schrödinger equations (RNLS), which is used to describe the particle-antiparticle pair dynamics. Investigations of the vortex state of RNLS are carried out. Secondly, we propose three different numerical methods to solve RKG from relativistic regimes to non-relativistic regimes in polar and Cartesian coordinates. In relativistic regimes, a semi-implicit finite difference Fourier spectral method is proposed in polar coordinates where both rotation terms are diagonalized simultaneously. While in non-relativistic regimes, to overcome the fast temporal oscillations, we adopt the rotating Lagrangian coordinates and introduce two efficient multiscale methods with uniform accuracy, i.e. the multi-revolution composition method and the exponential integrator. Various numerical results confirm (uniform) accuracy of our methods. Simulations of vortices dynamics are presented.

联系我们

地址:天津市海河教育园区雅观路135号32号教学楼,300350
邮箱:maths@tju.edu.cn
电话:+86 (0)22 27402850
传真:+86 (0)22 27402850

Copyright@2017 天津大学数学学院 版权所有

扫码关注学院最新动态