当前位置: 首页 > 师资队伍 > 教师队伍 > 教授 > 王凤雨 >
王凤雨

王凤雨

职称:
教授
院系:
应用数学中心
电子邮箱:
wangfy@tju.edu.cn
办公地点:
卫津路校区25楼1201

研究方向

随机分析

教育背景

1983.09 - 1987.06 安徽师范大学 学士
1987.09 - 1990.06 北京师范大学 硕士
1990.09 - 1993.06 北京师范大学 博士
 

工作经历

1993.09 - 1994.06 北京师范大学 讲师
1994.09 - 1995.06 北京师范大学 副教授
1995.06 - 2016.09 北京师范大学 教授
2016.10 -  今 天津大学 教授
1996年5月-1997年5月 赴英国Warwick大学 英国皇家学会Fellowship
1998年8月-2000年7月 德国Bielefeld大学洪堡学者
2007年9月-2011年9月  英国Swansea大学教授

教学工作

学生指导 指导硕士生27人,博士生12人
竞赛指导
教改项目 身份
2012 - 2013 项目来源及名称 主持人
教材编纂
教改论文 列表附后

科研工作

基金项目 身份
2001年1月-2004年12月 国家杰出青年基金/泛函不等式、马氏过程与谱理论 主持人
文章著作 列表附后

主要荣誉

教育部科技进步1等奖奖(1998;2/2);国家自然科学3等奖奖(1999;2/2);教育部自然科学1等奖(2009;1/1);
霍英东青年教师奖研究类1等奖(2004);教育部首届青年教师奖(1999);长江学者特聘教授(2000)。

学术兼职

期刊编委:Journal of Theoretical Probability, Electronic Journal of Probability, Electronic Communications in Probability, Science in China-Mathematics (中国科学-数学)、Frontiers of Mathematics in China (中国数学前沿)、Journal of Pure and Applied Analysis
英国Swansea大学兼职教授(2011.9-)

其它

发表论文

  • 1.F.-Y. Wang, Gradient Estimates and Applications for SDEs in Hilbert Space with Multiplicative Noise and Dini Continuous Drift, J. Diff. Equat. 260 (2016), 2792-2829.

  • 2.F.-Y. Wang, Gradient Estimates and Applications for Neumann Semigroup on Narrow Strip, Math. Zeit. 282:1(2016), 43--60.

  • 3.S. Feng, F.-Y. Wang, Harnack Inequality and Applications for Infinite-Dimensional GEM Processes, Pot. Anal. 44(2016), 137-153.

  • 4.F.-Y.Wang, J. Wang, Functional inequalities for convolution probability measures, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 2, 898–914.

  • 5.F.-Y.Wang,Derivative formulas and Poincar\'e inequality for Kohn-Laplacian type semigroups, Science in China-Mathematics 59(2016), 261-280.

  • 6.F.-Y. Wang, Integration by parts formula and applications for SPDEs with jumps. Stochastics 88(2016), no. 5, 737-750.

  • 7.F.-Y.Wang, X. Zhang, Degenerate SDE with Hölder–Dini Drift and Non-Lipschitz Noise Coefficient, SIAM J. Math. Anal. 48 (2016), no. 3, 2189-2226.

  • 8.F.-Y.Wang, Asymptotic couplings by reflection and applications for nonlinear monotone SPDEs, Nonlinear Analysis: Theory and Method, 117(2015), 169--188.

  • 9.F.-Y. Wang, X. Zhang, Heat Kernel for Fractional Diffusion Operators with Perturbations, Forum Math. 27 (2015), 973--994.

  • 10.F.-Y. Wang, J. Wang, Functional inequalities for stable-like Dirichlet forms, J.Theor.Probab. (2015) 28:423--448.

  • 11.J. Bao, F.-Y. Wang, C. Yuan, Hypercontractivity for functional stochastic differential equations, Stoch.Proc. Appl.125 (2015) 3636--3656.

  • 12.F.-Y. Wang, L. XU, X. Zhang, Gradient estimates for SDEs driven by multiplicative L\'evy noise, J. Funct. Anal.269(2015), 3195--3219.

  • 13.X. Chen, F.-Y. Wang, J. Wang, Perturbations of Functional Inequalities for L\'evy Type Dirichlet Forms, Forum. Math. 27:6 (2015), 3477--3507

  • 14.F.-Y. Wang, Exponential convergence of nonlinear monotone SPDEs, J. Disc. Cont. Dynam. Sys. Ser. A: 35:11(2015), 5239--5253. Special Issue on ``Analysis and Control of SPDEs".

  • 15.V. I. Bogachev, F.-Y. Wang, A. V. Shaposhnikov, Estimates of the Kantorovich norm on manifolds, Dok. Math. 92:1(2015), 494--499.

  • 16.J. Bao, F.-Y. Wang, C. Yuan,Hypercontractivity for Functional Stochastic Partial Differential Equations, Comm. Electr. Probab. 20:9(2015),1-15.

  • 17.F.-Y.Wang, X. Zhang, Degenerate SDEs in Hilbert Spaces with Rough Drifts, IDAQPRT 18 (2015), no. 4, 1550026, 25 pp.

  • 18. F.-Y. Wang, J. Wang, Harnack inequalities for stochastic equations drivenby Lévy noise J. Math. Anal. Appl. 410(2014), 513—523

  • 19.F.-Y. Wang, Derivative formula and Harnack inequality for linear SDEs driven by L\'evy processes, Stoch. Anal. Appl. 32(2014),30—49.

  • 20.F.-Y.Wang, Criteria on spectral gap of Markov operators, J. Funct. Anal. 266(2014), 2137—2152.

  • 21.F.-Y. Wang, T. Zhang, Log-Harnack inequalities for semi-linear SPDE with strongly multiplicative noise, Stoch. Proc. Appl. 124(2014), 1261--1274.

  • 22.F.-Y. Wang, Derivative formula and gradient estimates for Gruschin type semigroups, Journal of Theoretical Probability 27(2014), 80--95.

  • 23.F.-Y. Wang, Integration by parts formula and shift Harnack inequality for stochastic equations, Ann. Probab. 42(2014), 994—1019.

  • 24.X. Huang, F.-Y. Wang, Order-preservation for multidimensional stochastic functional differential equations with jumps, J. Evolution Equations, 14(2014), 445--460.

  • 25.F.-Y. Wang, $\Phi$-Entropy inequality and application for SDEs with jump, J.Math. Anal. Appl. 418(2014), 861--873.

  • 26.M. Arnaudon, A. Thalmaier, F.-Y. Wang, Equivalent log-Harnack and gradient for point-wise curvature lower bound, Bull. Math. Sci. 138(2014), 643--655.

  • 27.C. Deng, F.-Y. Wang, Exponential convergence rates of second quantization semigroups and applications, Quart. J. Math. 65(2014), 349--364.

  • 28.F.-Y. Wang, L. Xu,, Log-Harnack inequality for Gruschin type semigroups,Rev. Matem. Iberoamericana. 30 (2014), 405--418.

  • 29.F.-Y. Wang, Modified curvatures on manifolds with boundary and applications. Pot. Anal. 41(2014), 699—714.

  • 30.X. Huang, F.-Y. Wang, Order preservation for multidimensional stochastic functional differential equations with jumps, J. Evol. Equat. 14:2(2014), 445—460.

  • 31.F.-Y. Wang, Lixin Yan, Gradient estimate on convex domains and applications, to appear in Proc. Amer. Math. Soc. 141(2013), 253--263.

  • 32.F.-Y. Wang, J. Wang, Coupling and Strong Feller for Jump Processes on Banach Spaces, Stoch. Proc. Appl. 123(2013), 1588--1615.

  • 33.M. Rockner, F.-Y. Wang, T. Zhang, Stochastic generalized porous media equations with reflection, Stoch. Proc. Appl, 123(2013), 3943--3962.

  • 34.F.-Y. Wang, X. Zhang, Derivative formula and applications for degenerate diffusion semigroups, J. Math. Pures Appl. 99(2013), 726--740.

  • 35.F.-Y. Wang, Transportation-cost inequalities on path space over manifolds with boundary, Docum. Math.18 (2013) 297--322.

  • 36.J. Bao, F.-Y. Wang, C. Yuan, Derivative formula and Harnack inequality for degenerate functional SDEs, Stochastics and Dynamics. 13 (2013), 1250013, 22 pp.

  • 37.M. Rockner, F.-Y. Wang, General extinction results for stochastic partial differential equations and applications, J. Lond. Math. Soc. 87 (2013), 545--560.

  • 38.J. Bao, F.-Y. Wang, C. Yuan,Bismut Formulae and Applications for Functional SPDEs, Bull. Math. Sci. 137 (2013), 509--522.

  • 39.T J. Bao, F.-Y. Wang, C. Yuan, Transportation cost inequalities for neutral functional stochastic equations, J. Anal. Appl. 32(2013), 457—475.rtation Cost Inequalities for Neutral Functional Stochastic

  • 40.S.-X. Ouyang, M. Rockner, F.-Y. Wang, Harnack inequalities and applications for Ornstein–Uhlenbecksemigroups with jump, Potential Analysis 36(2012), 301--315..

  • 41.Truman, Wang, Wu, Yang, A link of stochastic differential equations to nonlinear parabolic equations, Science in China-Mathematics 55(2012), 1971—1976.

  • 42.A. Guillin, F.-Y. Wang, Degenerate Fokker-Planck Equations : Bismut Formula, Gradient Estimate and Harnack Inequality, J. Diff. Equat. 253(2012), 20--40.

  • 43.J. Shao, F.-Y. Wang. C. Yuan, Harnack Inequalities for Stochastic (Functional) Differential Equations with Non-Lipschitzian Coefficients, Elect. J. Probab. 17(2012), 1--18.

  • 44.F.-Y. Wang, LihuXu, Derivative formula and applications for hyperdissipative stochastic Navier-Stokes/Burgers equations, Inf. Dim. Anal. Quant. Probab. Relat. Top. 15(2012), 1250020 (19 pages).

  • 45.S. Feng, W. Sun, F.-Y. Wang, F. Xu, Functional inequalities for the unlabeled two-parameter infinite-alleles diffusion, Journal of Functional Analysis 260(2011), 399--413.

  • 46.F.-Y. Wang, Gradient Estimate for Ornstein-Uhlenbeck Jump Processes, Stochastic Processes Applications 121(2011), 466--478.

  • 47.M. Gordina, M. Rockner, F.-Y. Wang, Dimension-independent Harnack inequality for subordinated semigroups, Potential Analysis 34(2011), 293--307.

  • 48.F.-Y. Wang, Analysis on path spaces over Riemannian manifolds with boundary, Comm. Math. Sci. 9(2011),1203--1212.

  • 49.F.-Y. Wang, Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on non-convex manifolds, Annals of Probab. 39(2011), 1449--1467.

  • 50.F.-Y. Wang, J.-L. Wu, L. Xu, Log-Harnack inequality for stochastic Burgers equations and applications, J. Math. Anal. Appl.384(2011), 151--159.

  • 51.F.-Y. Wang, Equivalent semigroup properties for the curvature-dimension condition, Bull. Sci. math. 135 (2011) 803--815.

  • 52.A. Thalmaier, F.-Y. Wang, A stochastic approach to a priori estimates and Liouville theorems for harmonic maps, Bull. Sci. math. 135 (2011) 816--843.

  • 53.F.-Y. Wang, C. Yuan, Harnack inequalities for functional SDEs with multiplicative noise and applications, Stoch. Proc. Appl. 121(2011), 2692--2710.

  • 54.F.-Y. Wang, Coupling and applications for Ornstein-Uhlenbeck processes with jump, Bernoulli 17(2011), 1136--1158.

  • 55.F.-Y. Wang, Gradient and Harnack inequalities on noncompact manifolds with boundary, Pacific Journal of Math. 245(2010), 185--200.

  • 56.F.-Y. Wang, Intrinsic ultracontractivity for diffusion semigroups with infinite invariant measures, Science in China (A) 35(2010), 895--904

  • 57.F.-Y. Wang and T. Zhang, Gradient Estimates for Stochastic Evolution Equations with Non-Lipschitz Coefficients, J. Math. Anal. Appl. 365(2010), 1--11

  • 58.M. Rockner, F.-Y. Wang, Log-Harnack Inequality for Stochastic differential equations in Hilbert spaces and its consequences, Infinite Dimensional Analysis, Quantum Probability and Related Topics 13(2010), 27--37.

  • 59.F.-Y. Wang, C. Yuan, Poincar\'e Inequality on the Path Space of Poisson Point Processes, J. Theo. Probab. 23(2010), 824--833.

  • 60.F.-Y. Wang, Harnack inequalities on manifolds with boundary and applications, J. Math. Pures Appl. 94(2010), 304--321.

  • 61.F.-Y.Wang, Semigroup properties for the second fundamental form, Docum. Math. 15(2010), 543--559.

  • 62.F.-Y. Wang, Second fundamental form and gradient of Neumann semigroups, J. Funct. Anal. 256(2009), 3461--3469.

  • 63.F.-Y. Wang, Nash and log-Sobolev inequalities for hypoelliptic operators, Manusc. Math. 128(2009), 343--358.

  • 64.F.-Y. Wang, Log-Sobolev inequalities: different roles of Ric and Hess, Annals of Probability 37(2009), 1587--1604.

  • 65.G. Da Prato, M. Rockner, F.-Y. Wang, Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups, J. Funct. Anal. 257(2009), 992--1017.

  • 66.P. Cattiaux, A. Guillin, F.-Y. Wang, L. Wu, Lyapunov conditions for Super Poincaré inequalities, J. Funct. Anal. 256(2009), 1821--1841.

  • 67.F.-Y. Wang, Log-Sobolev inequality on non-convex manifolds, Adv. Math. 222(2009), 1503—1520.

  • 68.M. Arnaudon, A. Thalmaier, F.-Y. Wang, Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds, Stoch. Proc. Appl. 119(2009), 3653--3670.

  • 69.F.-Y. Wang and Bo Wu. Quasi--regular dirichlet forms on free Riemannian path spaces, Infinit. Dim. Anal. Quant. Probab. Relat. Topics. 12:2(2009), 251--267.

  • 70.Cholryong Kang, F.-Y.Wang, On F-Sobolev and Orlicz-Sobolev inequalities, Front. Math. China 2009, 4(4), 659--667.

  • 71.F.-Y. Wang, Orlicz-Poincar\'e Inequalities, Proc. Edinburgh Math. Soc. 51(2008), 529--543.

  • 72.F.-Y. Wang, Entropy-cost inequalities for diffusion semigroups with curvature unbounded below, Proc. AMS. 136(2008), 3331--3338.

  • 73.F.-Y. Wang, generalized transportation-cost inequalities and applications, Pot. Anal. 28(2008), 321--334

  • 74.S. Fang, F.-Y. Wang, Bo Wu, Transportation cost inequality on path spaces with uniform distance, Stoch. Proc. Appl. 118(2008), 2181--2197

  • 75.X. Chen and F.-Y. Wang, Construction of larger Riemannian metrics with bounded sectional curvatures and applications, Bull. London Math. Soc. 40(2008),659--663.

  • 76.J. Dolbeault, I. Gentil, A. Guillin and F.-Y. Wang, $L^q$-functional inequalities and weighted porous media equations, Potential Analysis. 28 (2008), 35--59.

  • 77.M. Röckner, F.-Y. Wang, Non-monotone stochastic generalized porous media equations, J. Differential Equations 245(2008), 3898--3935.

  • 78.W. Liu and F.-Y. Wang, Harnack inequality and strong Feller property for stochastic fast-diffusion equations, J. Math. Anal. Appl. 342(2008), 651--662.

  • 79. F.-Y. Wang, From super Poincare to weighted log-Sobolev and entropy-cost inequalities, J. Mathematiques Pure Appl. 90(2008), 270--285.

  • 80.F.-Y. Wang and B. Wu , Quasi-regular Dirichlet forms on Riemannian path and loop spaces, Forum Math. 20 (2008), no. 6,1084--1096.

  • 81.R. Durran, A. Neate, A. Truman, F.-Y. Wang, On the divine clockwork: the spectral gap for the correspondence limit of the Nelson diffusion generator for the atomic elliptic state. J. Math. Phys.49 (2008), no. 10, 102103--102125.

  • 82.F.-Y. Wang, J.-L. Wu, Compactness of Schrödinger semigroups with unbounded below potentials, Bulletin des Sciences Mathématiques, 132(2008), 679--689.

  • 83.X. Chen and F.-Y. Wang, Optimal integrability condition for the log-Sobolev inequality, Quart. J. Math. (Oxford) 58(2007),17--22.

  • 84.F.-Y. Wang, Estimates of the first Neumann eigenvalue and the log-Sobolev constant on Non-convex manifolds, Math. Nach. 280(2007),1431--1439.

  • 85.F.-Y. Wang, Ito type measure-valued stochastic differential equations, J. Math. Anal. Appl. 329(2007), 1102--1117.

  • 86.E. M. Ouhabaz and F.-Y. Wang, Sharp estimates for intrinsic ultracontractivity on $ C^{1,\alpha}$-domains, Manu. Math. 112(2007), 229--244.

  • 87.F.-Y. Wang, Harnack inequality and applications for stochastic generalized porous media equations, Annals of Probability 35(2007), 1333--1350.

  • 88.D. Bakry, M. Ledoux and F.-Y. Wang, Perturbations of functional inequalities using growth conditions, J. Math. Pures Appl. 87(2007), 394--407.

  • 89.J. Ren, M. Röckner, F.-Y. Wang, Stochastic generalized porous media and fast-diffusion equations, J. Diff. Equations, 238(2007), 118--152.

  • 90.M. Röckner, F.-Y. Wang, Concentration of invariant measures for stochastic generalized porous media equations, Inf. Dim. Anal. Quant. Probab. Relat. Topics. 10(2007), 397--409.

  • 91.S. Feng and F.-Y. Wang, A class of infinite-dimensional diffusion processes with connection to population genetics, J. Appl. Probab. 44(2007), 938--949.

  • 92.S. Fang and F.-Y. Wang, Analysis on free Riemannian path spaces, Bull. Sci. Math. 129(2005),339--355.

  • 93.G. Da Prato, M. Röckner, B.L. Rozovskii and F.-Y. Wang, Strong solutions of Generalized porous media equations: existence, uniqueness and ergodicity, Comm. Part. Diff. Equ. 31 (2006), no. 1-3, 277--291.

  • 94.F.-Y. Wang, The stochastic order and critical phenomena for surperprocesses, Infinite Dimensional Analysis, Quantum Probability and Related Topics 9(2006), 107--128.

  • 95.M. Röckner and F.-Y. Wang, Functional inequalities for particle systems on Polish spaces, Potential Analysis 24(2006), 223--243.

  • 96.M. Arnaudon,A. Thalmaier,F.-Y. Wang, Harnack inequality and heat kernel estimate on manifolds with curvature unbounded below, Bull. Sci. Math. 130(2006), 223--233.

  • 97.E. Priola and F.-Y. Wang, Gradient estimates for diffusion semigroups with singular coefficients, J. Funct. Anal. 236(2006), 244--264.

  • 98.M. Röckner, F.-Y. Wang and L.-M. Wu, Large Deviations for Stochastic Generalized Porous Media Equations, Stochastic Processes and Applications 116(2006), 1677--1689.

  • 99.F.-Y. Wang, Dimension-free Harnack inequality and its applications, Front. Math. China 1(2006), 53--

  • 100.F.-Y. Wang, A Harnack-type inequality for Non-Symmetric Markov Semigroups, J. Funct. Anal . 239(2006),297--309.

  • 101.59. F.-Y. Wang and Q.-Z. Zhang, Weak Poincaré inequalities, decay of Markov semigroups and concentration of measures, Act. Math. Sin. (New Ser.). 21(2005), 937--942.

  • 102.F.-Y. Wang, A character of the gradient estimate for diffusion semigroups, Proc. AMS. 133(2005), 827--834.

  • 103.F.-Y. Wang, A Generalization of Poincaré and log-Sobolev inequalities, Potential Analysis, 22(2005),1--15.

  • 104.F.-Y. Wang, Gradient estimates and the first Neumann eigenvalue on non-convex manifolds, Stochastic Processes and Applications 115(2005), 1475--1486.

  • 105.F.-Y. Wang, Probability distance inequalities on Riemannian manifolds and path spaces, J. Funct. Anal. 206 (2004), 167-190.

  • 106.F.-Y. Wang, Functional inequalities on abstract Hilbert spaces and applications, Math. Zeit. 246 (2004), 359-371.

  • 107.F.-Y. Wang, Gradient estimates of Dirichletsemigroups and applications to isoperimetric inequalities, Ann. Probability 32 (2004), 424--440.

  • 108.F.-Y. Wang, Weak Poincaré inequalities on path spaces, International Math. Research Notices 2004:2 (2004), 89--108.

  • 109.F.-Y. Wang, Equivalence of dimension-free Harnack inequality and curvature condition, Integral Equat. Operator Theory 48 (2004), 547--552.

  • 110.F.-Y. Wang, L1-convergence and hypercontractivity of diffusion semigroups on manifolds, Studia Math. 162 (2004), 219--227.

  • 111.A. Thalmaier and F.-Y. Wang, Derivative estimates of semigroups and Riesz transformations on vector bundles, Potential Analysis 20 (2004), 105-123.

  • 112.M. Röckner and F.-Y. Wang, Spectrum for a class of (nonsymmetric) diffusion operators, Bull. London Math. Soc. 36 (2004), 95-104.

  • 113.F.-Z. Gong and F.-Y. Wang, On Gromov's theorem and L2-Hodge theory, Internat. J. Math. Math. Sci. 2004:1 (2004), 25--44.

  • 114.F.-Y. Wang, Spectral gap for hyperbounded operators, Proc. AMS. 132:9 (2004), 2629--2638.

  • 115.V.I. Bogachev, M. Rockner, M., F.-Y. Wang, Invariance implies Gibbsian: some new results, Comm. Math. Phys. 248 (2004), 335--355.

  • 116.F.-Y. Wang, Functional inequalities on arbitrary Riemannian manifolds, J. Math. Anal. Appl. 300(2004), 426—435.

  • 117.F.-Y. Wang, Functional inequalities for the decay of sub-Markov semigroups, Potential Analysis, 18 (2003), 1--23.

  • 118.M. Röckner and F.-Y. Wang, Harnack and functional inequalities for generalized Mehlersemigroups, J. Funct. Anal. 203 (2003), 197--234.

  • 119.M. Röckner and F.-Y. Wang, Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds, Forum Math. 15 (2003), 893-921.

  • 120.X.-M. Li and F.-Y. Wang, On compactness of manifolds, Infinit. Dimens. Anal. Quant. Probab. Related Top 6: suppl. (2003), 29--38.

  • 121.F.-Y. Wang, Coupling, convergence rates of Markov processes and weak Poincaré inequalities, Science in China (A) 45:8 (2002), 975--983.

  • 122.F.-Y. Wang, Liouville theorem and coupling on negatively curved Riemannian manifolds, Stoch. Proc. Appl. 100 (2002), 27--39.

  • 123.F.-Y. Wang, Functional inequalities and spectrum estimates: the infinite measure case, J. Funct. Anal. 194 (2002), 288--310.

  • 124.F.-Y. Wang, Transportation cost inequalities on path spaces over Riemannian manifolds, Illinois J. Math. 46 (2002), 1197-1206.

  • 125.F.-Z. Gong and F.-Y. Wang, Functional inequalities for uniformly integrablesemigroups and application to essential spectrum, Forum Math. 14 (2002), 293--313.

  • 126.V. I. Bogachev, M. Röckner and F.-Y. Wang, Invariant measures of stochastic gradient systems on Riemannian manifolds and Gibbs measures, Dokl. Akad. Nauk 386 (2002), 151-155.

  • 127.F.-Y. Wang, Logarithmic Sobolev inequalities: conditions and counterexamples, J. Operator Theory. 46(2001), 183-197.

  • 128.V.I. Bogachev, M. Röckner and F.-Y. Wang, Elliptic equations for invariant measures on Riemannian manifolds: existence and regularity of solutions, C.R. Acad. Sci. Paris 332(2001), 333--338.

  • 129.F. Z. Gong and F.-Y. Wang, Heat kernel estimates with applications to compactness of manifolds, Quart J. Math. 52(2001), 1--10.

  • 130.V. I. Bogachev, M. Röckner and F.-Y. Wang, Elliptic equations for invariant measures on finite and infinite dimensional manifolds, J. Math. Pure Appl. 80(2001), 177--221.

  • 131.M. Röckner and F.-Y. Wang, Weak Poincar\'e inequalities and convergence rates of Markov semigroups, J. Funct. Anal. 185(2001), 564--603.

  • 132.V. I. Bogachev, M. Röckner and F.-Y. Wang, Elliptic equations associated with invariant measures of diffusions on finite- and infinite-dimensional manifolds, Dokady Mathematics 63(2001), 439--442.

  • 133.F.-Y. Wang, Functional inequalities for empty essential spectrum, J. Funct. Anal. 170(2000), 219--245.

  • 134.M. F. Chen and F.-Y. Wang, Cheeger's inequalities for general symmetric forms and existence criterion for spectral gap, Ann. of Probab. 28(2000), 235--257.

  • 135.F.-Y. Wang, Functional inequalities, semigroup properties and spectrum estimates, Infinite Dimensional Analysis, Quantum Probability and Related Topics 3:2(2000), 263--295.

  • 136.M. Cranston and F.-Y. Wang, Equivalence of coupling and shift-coupling, Ann. of Probab. 28(2000), 1666--1679.

  • 137.F.-Y. Wang, Sobolev type inequalities for general symmetric forms, Proceedings of AMS, 128(2000), 3675--3682.

  • 138.F.-Y. Wang, Estimates of Dirichlet spectral gap, Archiv der Math. 75(2000), 450--455.

  • 139.F.-Y. Wang, General formulae for the lower bound of the first two Dirichlet eigenvalues, Taiwanese J. Math. 3:2(1999), 235--242.

  • 140.F.-Y. Wang, Spectral gap on path spaces with infinite time-interval, Sci. Sin. (A), 42(1999), 600--604.

  • 141.F.-Y. Wang, Harnack inequalities for log-Sobolev functions and estimates of log-Sobolev constant, Ann. of Probability, 27:2(1999), 653--663.

  • 142.F.-Y. Wang, Existence of the spectral gap for elliptic operators, Arkiv f\"or Math. 37:3(1999), 395--407.

  • 143.A. Thalmaier and F.-Y. Wang, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal. 155:1(1998), 109--124

  • 144.F.-Y. Wang, The life time of diffusion processes with application to conditioned diffusions, Acta Math. Sin. New Ser. 14:2(1998), 113--116.

  • 145.F.-Y. Wang, Estimates for Dirichlet heat kernels, Stochastic Processes and Their Appl. 74(1998), 217--234.

  • 146.M. F. Chen and F.-Y. Wang, Estimates of logarithmic Sobolev constant: an improvement of Bakry-Emery criterion, J. Funct. Anal. 144(1997), 287-300.

  • 147.M. F. Chen and F.-Y. Wang, Estimation of spectral gap for elliptic operators, Trans. Amer. Math. Soc. 349:3(1997), 1239-1267.

  • 148.M. F. Chen and F.-Y. Wang, General formula for lower bound of the first eigenvalue, Sci. Sin. (A) 40:4(1997), 384—394.

  • 149.F.-Y. Wang, A probabilistic approach to the first Dirichlet eigenvalue on noncompact manifolds, Act Math. Sin. New Ser. 13:1(1997), 116--126.

  • 150.F.-Y. Wang, On estimation of logarithmic Sobolev constant and gradient estimates of heat semigroups, Probability Theory Relat. Fields 108(1997), 87--101.

  • 151.F.-Y. Wang, Logarithmic Sobolev inequalities on noncompact Riemannian manifolds, Probability Theory Relat. Fields 109(1997), 417--424.

  • 152.F.-Y. Wang, Sharp explicit lower bounds of heat kernels, Ann. Probability 25:4(1997), 1995--2006.

  • 153.F.-Y. Wang, Estimates of the logarithmic Sobolev constant for finite volume continuous spin systems, J. Statistical Physics, 84:1/2(1996).

  • 154.M. F. Chen and F.-Y. Wang, Estimation of the first eigenvalue of second order elliptic operators, J. Funct. Anal. 131:2(1995), 345-363.

  • 155.F.-Y. Wang, Estimates of the first Dirichlet eigenvalues by using diffusion processes, Probability Theory Relat. Fields 101(1995), 363--369.

  • 156.F.-Y. Wang, Uniqueness of Gibbs state and the $L^2$-convergence for infinite-dimensional reflecting diffusion processes, Sci. Sin. (A) 38:5(1995), 908--817.

  • 157.M. F. Chen and F.-Y. Wang, Application of coupling method to the first eigenvalue on manifold, Sci. Sin.(A), 23:11(1993) (Chinese Edition), 1130-1140; 37:1(1994)(English Edition), 1-14.

  • 158.F.-Y. Wang, Successful couplings for nongenerated diffusions on compact manifolds,} Acta Math. Sin. 37(1994), 116--121.

  • 159.F.-Y. Wang, Ergodicity for infinite-dimensional diffusion processes, Sci. Sin. (A) 37:2(1994), 137--146.

  • 160.F.-Y. Wang, Application of coupling method to the Neumann eigenvalue problem, Probability Theory Rel. Fields 98(1994), 299--306.

  • 161.M. F. Chen and F.-Y. Wang, On order-preservation and positive correlations for multidimensional diffusion processes, Prob. Th. Rel. Fields 95(1993), 421-428.

  • 162.F.-Y. Wang, Integrability Conditions for SDEs and Semi-Linear SPDEs, Ann. Probab. To appear

  • 163.X. Huang, F.-Y. Wang, Functional SPDE with Multiplicative Noise and Dini Drift, Toulouse Sci. Math. To appear

  • 164.F.-Y. Wang, Hypercontractivity and applications for stochastic Hamiltonian systems, J. Funct. Anal. To appear.

  • 165.M. Rockner, F.-Y. Wang, Closability of Quadratic Forms Associated to Invariant Probability Measures of SPDEs, Infin. Dim. Anal. Quant. Probab. Relat. Top. To appear

联系我们

地址:天津市海河教育园区雅观路135号32号教学楼,300350
邮箱:maths@tju.edu.cn
电话:+86 (0)22 27402850
传真:+86 (0)22 27402850

Copyright@2017 天津大学数学学院 版权所有

扫码关注学院最新动态