当前位置: 首页 > 师资队伍 > 教师队伍 > 副教授 > 胡胜龙 >
胡胜龙

胡胜龙

职称:
副教授
院系:
数学系
电子邮箱:
timhu@tju.edu.cn
办公地点:
北洋园校区32教516

研究方向

最优化计算理论与方法

教育背景

2004.09 - 2008.06 天津大学 学士
2008.09 - 2010.03 天津大学 硕士
2010.04 - 2013.10 香港理工大学 博士

工作经历

2014.02 -  今 天津大学理学院 副教授
2015.10 - 2016.03 芝加哥大学统计系 博士后 (合作导师:Lek-Heng Lim)
2014.09 - 2015.08 新加坡国立大学数学系 博士后(合作导师:Defeng Sun 和 Kim-Chuan Toh)
2013.04 -06, 07 -08  2016.06 -08 香港理工大学 Research Associate
2016.11 - 2016.12 新南威尔士大学应用数学系   访问学者
2014.05 - 2014.08 韩国国家数学研究所,应用与计算数学研究中心 访问学者
2014.03 - 2014.05 北京大学数学科学学院 访问学者
2014.11 加州伯克利大学Simons研究所,理论计算研究计划  访问学者
 

教学工作

开设课程
 
研究生课程 《最优化理论与方法》、《应用数理统计》、《矩阵优化》
学生指导 指导硕士生1人(在读1人)
 

科研工作

基金项目 身份
2015-2017 国家自然科学基金青年项目,11401428,四次多项式系统S-引理的相关问题及应用 主持
2012-2014 国家自然科学基金青年项目,11101303,高阶张量的最佳低秩逼近及其在信号处理中的应用 第二完成人
文章著作 列表附后

主要荣誉

优秀学生干部,四川省教育厅(2004)
学生科学奖,天津大学(2009)

学术兼职

MathReview 评论员

其它

发表论文

  • 1. K. Ye and S. Hu, Inverse eigenvalue problems for tensors, Communications in Mathematical Sciences, 2017, in press.

  • 2.S. Hu, G. Li, L. Qi, A tensor analogy of Yuan's theorem of the alternative and polynomial optimization with sign structure, Journal of Optimization Theory and Applications, 2016, 168: 446—474.

  • 3.S. Hu, L. Qi, G. Zhang, Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors, Physical Review A, 2016, 93, 012304.

  • 4.L. Yang, Z.H. Huang, S. Hu, J. Han, An iterative algorithm for third-order tensor multi-rank minimization. Computational Optimization and Applications, 2016, 63: 169--202.

  • 5.S. Hu, K. Ye, Multiplicities of tensor eigenvalues, Communications in Mathematical Sciences, 2016, 14: 1049—1071.

  • 6.S. Hu, L. Qi, A necessary and sufficient condition for existence of a positive perron vector, SIAM Journal on Matrix Analysis and Applications, 2016, 37: 1747—1770.

  • 7.S. Hu, Relations of the nuclear norm of a tensor and its matrix flattenings, Linear Algebra and Its Applications, 2015, 478: 188—199.

  • 8.S. Hu, L. Qi, J. Xie, The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph. Linear Algebra and its Applications, 2015, 469: 1–27.

  • 9.S. Hu, L. Qi, The Laplacian of a uniform hypergraph. Journal of Combinatorial Optimization, 2015, 29: 331--366.

  • 10.J.Y. Shao, L. Qi, S. Hu, Some new trace formulas of tensors with applications in spectral hypergraph theory. Linear and Multilinear Algebra, 2015, 63: 971--992

  • 11.X.H. Miao, J.T. Yang, S. Hu, A generalized Newton method for absolute value equations associated with circular cones, Applied Mathematics and Computation, 2015, 269: 155—168.

  • 12.S. Hu, Z.H. Huang, L. Qi, Strictly nonnegative tensors and nonnegative tensor partition. Science in China Series A: Mathematics, 2014, 57: 181-195.

  • 13.S. Hu, L. Qi, The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph. Discrete Applied Mathematics, 2014, 169: 140—151.

  • 14.S. Hu, L. Qi, The E-eigenvectors of tensors. Linear and Multilinear Algebra, 2014, 62: 1388—1402.

  • 15.S. Hu, L. Qi, Convergence of a second order Markov chain. Applied Mathematics and Computation, 2014, 241: 183—192.

  • 16.Y. Wang, S. Hu, H. Ni, A family of generalized NCP-functions and a smoothing reformulation of D-eigenvalues, Pacific Journal of Optimization, 2014, 10: 613–629.

  • 17.S. Hu, L. Qi, Y. Song, G. Zhang, Geometric measure of entanglement of multipartite mixed states, International Journal of Software Informatics, 2014, 8: 317—326.

  • 18.T. Ni, S. Hu, A note on quadratic convergence of a smoothing Newton algorithm for the LCP. Optimization Letters, 2013, 7(3): 519–531.

  • 19.S. Hu, L. Qi, E-characteristic polynomial of a tensor of dimension two. Applied Mathematics Letters, 2013, 26: 225–231.

  • 20.S. Hu, G. Li, L. Qi, Y. Song, Finding the maximum eigenvalue of essentially nonnegative symmetric tensors via sum of squares programming. Journal of Optimization Theory and Applications, 2013, 158: 717–738.

  • 21.S. Hu, Z.H. Huang, C. Ling, L. Qi, On determinant and eigenvalue theory of tensors. Journal of Symbolic Computation, 2013, 50: 508–531.

  • 22.S. Hu, L. Qi, J.Y. Shao, Cored hypergraphs, power hypergraphs and their Laplacian H-eigenvalues. Linear Algebra and its Applications, 2013, 439: 2980–2998.

  • 23.S. Hu, L. Qi, Algebraic connectivity of an even uniform hypergraph. Journal of Combinatorial Optimization, 2012, 24(4): 564–579.

  • 24.S. Hu, Z.H. Huang, Theorems of the alternative for inequality systems of real polynomials. Journal of Optimization Theory and Applications, 2012, 154(1): 1–16.

  • 25.S. Hu, Z.H. Huang, A note on approximating quadratic programming with rank constraint. Optimization, 2012, 61(5): 525–534.

  • 26.S. Hu, Z.H. Huang, Q. Zhang, A generalized newton method for absolute value equations associated with second order cones. Journal of Computational and Applied Mathematics, 2011, 235: 1490–1501.

  • 27.10. S. Hu, Z.H. Huang, Alternating direction method for bi-quadratic programming. Journal of Global Optimization, 2011, 51(3): 429–446.

  • 28.S. Hu, Z.H. Huang, N. Lu, A non-monotone line search algorithm for unconstrained optimization. Journal of Scientific Computing, 2010, 42: 38–53.

  • 29.S. Hu, Z.H. Huang, N. Lu, Smoothness of a generalized merit function for the second-order cone complementarity problem. Pacific Journal of Optimization, 2010, 6: 551–571.

  • 30.S. Hu, Z.H. Huang, A note on absolute value equations. Optimization Letters, 2010, 4: 417–424.

  • 31.S. Hu, Z.H. Huang, Polynomial time solvability of non-symmetric semidefinite programming. Operation Research Letters, 2010, 38: 358–360.

  • 32.L.Y. Lu, Z.H. Huang, S. Hu, Properties of a family of merit functions and a merit function method for the NCP. Applied Mathematics, A Journal of Chinese Universities, 2010, 25: 379–390.

  • 33.Z.H. Huang, S. Hu, J.Y. Han, Convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search. Science in China Series A: Mathematics. 2009, 52(4): 1–16.

  • 34.S. Hu, Z.H. Huang, P. Wang, A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems. Optimization Methods and Software. 2009, 24: 447–460.

  • 35.S. Hu, Z.H. Huang, J.S. Chen, Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems. Journal of Computational and Applied Mathematics, 2009, 230: 69–82.

联系我们

地址:天津市海河教育园区雅观路135号32号教学楼,300350
邮箱:maths@tju.edu.cn
电话:+86 (0)22 27402850
传真:+86 (0)22 27402850

Copyright@2017 天津大学数学学院 版权所有

扫码关注学院最新动态