当前位置: 首页 > 师资队伍 > 教师队伍 > 副教授 > 彭珍玲 >
彭珍玲

彭珍玲

职称:
副教授
院系:
应用数学中心
电子邮箱:
zhenling@tju.edu.cn
办公地点:
卫津路校区25教B-1102

研究方向

计算生物与生物信息学;机器学习与数据挖掘

教育背景

  • 2001/09 - 2005/06
  • 中国衡阳师范大学,学士
  • 2005/09 - 2008/06
  • 中国湘潭大学,硕士
  • 2010/09 - 2014/06
  • University of Alberta,Canada,博士

工作经历

  • 2008/09 - 2010.06
  • 贵州工程应用技术学院数学系,助教
  • 2015/09 - 今
  • 天津大学应用数学中心,副教授

教学工作

本科生课程 《概率论》
指导在读硕士生4人》

科研工作

  • 2016/01-2018/12
  • 国家自然科学基金青年基金项目:与RNA、DNA及蛋白质绑定的固有无序片段的分析及预测,主持
  • 2017/01-2018/12
  • 天津大学自主创新基金:计算生物及生物信息学,主持
  • 2011/05-2014/04
  • 加拿大阿尔伯塔省项目:Computational Characterization and Improved Prediction of Protein Disorder with Application in Protein-Protein Interactions,主持
  • 2015/01-2017/12
  • 863项目:生物大数据开发与利用关键技术研究,参与
  • 2016/01-2016/12
  • 国家基金应急管理项目:天津应用数学中心平台建设,参与

主要荣誉

  • 2017/01-2018/12
  • 天津大学北洋学者*青年骨干教师计划
  • 2011/05-2014/04
  • 阿尔伯塔省优秀研究生奖学金(Alberta Innovates Graduate Student Scholarship)
  • 2014/05-2014/11
  • 阿尔伯塔大学博士论文奖 (Dissertation Fellowship, University of Alberta)
  • 2005
  • 湖南省优秀毕业生

学术兼职

BMC Bioinformatics,Computational Biology and Chemistry, International Journal of Molecular Sciences等多个SCI期刊的审稿人

其它

发表论文

  • 1.Peng Z, Wang C, Uversky VN and Kurgan L*, Prediction of Disordered RNA, DNA, and Protein Binding Regions Using DisoRDPbind. Methods in Molecular Biology, Springer New York, 2017.

  • 2.Wuyun Q#, Zheng W#, Peng Z and Yang J*. (2016) A large-scale comparative assessment of methods for residue-residue contact prediction. Briefings in Bioinformatics, doi: 10.1093/bib/bbw106.

  • 3.Xia J, Peng Z, Qi D, Mu H and Yang J*. (2016) An ensemble approach to protein fold classification by integration of template-based assignment and support vector machine classifier. Bioinformatics, accepted.

  • 4.Peng Z, Uversky VN and Kurgan L*. (2016) Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disordered Proteins, accepted.

  • 5.Peng Z and Kurgan L*. (2015) High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder. Nucleic Acids Research, 43(18), e121.

  • 6.Wu Z, Hu G, Yang J, Peng Z, Uversky VN* and Kurgan L*. (2015) In various protein complexes, disordered protomers have large per-residue surface areas and area of protein-, DNA- and RNA-binding interfaces. FEBS Letters, 589(19), 2561-2569.

  • 7.Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Uversky VN* and Kurgan L*. (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in a thousand proteomes from all domains of life. Cellular and Molecular Life Science. 72(1), 137-151.

  • 8.Peng Z, Oldfield CJ, Xue B, Mizianty MJ, Dunker AK, Kurgan L and Uversky VN. (2014) A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome. Cellular and Molecular Life Science. 71(8), 1477-1504.

  • 9.Groenendyk J, Peng Z, Dudek E, Fan X, Mizianty MJ, Dufey E, Urra H, Sepulveda D, Rojas-Rivera D, Lim Y, Kim do H, Baretta K, Srikanth S, Gwack Y, Ahnn J, Kaufman RJ, Lee SK, Hetz C, Kurgan L and Michalak M*. (2014) Interplay between PDIA6 and miR-322 controls adaptive response to disrupted endoplasmic reticulum calcium homeostasis. Science Signaling. 7(329), ra54.

  • 10.Peng Z, Sakai Y, Kurgan L, Sokolowski B* and Uversky VN*. (2014) Intrinsic disorder in the BK channel and its interactome. PLoS ONE. 9(4), e94331.

  • 11.Peng Z, Mizianty MJ and Kurgan L*. (2014) Genome-scale prediction of proteins with long intrinsically disordered regions. Proteins: Structure, Function, and Bioinformatics, 82, 145-158.

  • 12.Groenendyk J, Fan X, Peng Z, Ilnytskyy Y, Kurgan L, Michalak M*. (2014) Genome-wide analysis of thapsigargin-induced microRNAs and their targets in NIH3T3 cells. Genomics Data, 2, 325-327.

  • 13.Peng Z, Xue B, Kurgan L* and Uversky VN*. (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death and Differentiation, 20, 1257-1267.

  • 14.Uversky AV, Xue B, Peng Z, Kurgan L and Uversky VN*. (2013) On the intrinsic disorder status of the major players in programmed cell death pathways. F1000 Research, 2, 190.

  • 15.Mizianty MJ, Peng Z and Kurgan L*. (2013) MFDp2 - Accurate Predictor of Disorder in Proteins by Fusion of Disorder Probabilities, Content and Profiles. Intrinsically Disordered Proteins, 1, e24428-1.

  • 16.Peng Z, Mizianty MJ, Xue B, Kurgan L* and Uversky VN*. (2012) More than just tails: intrinsic disorder in histone proteins. Molecular Biosystems, 8, 1886-1901.

  • 17.Peng Z and Kurgan L*. (2012) Comprehensive comparative assessment of in-silico predictors of disordered regions. Current Protein and Peptide Science, 13, 6-18.

  • 18.Peng Z and Kurgan L*. (2012) On the complementarity of the consensus-based disorder prediction. Pacific Symposium on Biocomputing, 176-187.

  • 19.Howell M, Green R, Killeen A, Wedderburn L, Picascio V, Alejandro A, Peng Z, Larina M, Xue B, Kurgan L and Uversky VN*. (2012) Not that Rigid Midgets and not so Flexible Giants: On the Abundance and Roles of Intrinsic Disorder in Short and Long Proteins. Journal of Biological System, 20, 471-511

  • 20.Peng Z, Yang J* and Chen X. (2010) An improved classification of G-protein-coupled receptors using sequence-derived features. BMC Bioinformatics, 11, 420.

  • 21.Yang J*, Peng Z and Chen X. (2010) Prediction of protein structural classes for low-homology sequences based on predicted secondary structure. BMC Bioinformatics, 11 Suppl 1, S9.

  • 22.Yang J#, Peng Z#, Yu Z, Zhang R, Anh V and Wang D. (2009) Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation. Journal of Theoretical Biology, 257, 618-626.

联系我们

地址:天津市海河教育园区雅观路135号32号教学楼,300350
邮箱:maths@tju.edu.cn
电话:+86 (0)22 27402850
传真:+86 (0)22 27402850

Copyright@2017 天津大学数学学院 版权所有

扫码关注学院最新动态