THE HILBERT-SCHMIDT NORM OF A COMPOSITION OPERATOR ON THE
BERGMAN SPACE

CHENG YUAN AND ZE-HUA ZHOU*

ABSTRACT. We use a generalized Nevanlinna counting function to compute the Hilbert-Schmidt
norm of a composition operator on the Bergman space LZ(ID) and weighted Bergman spaces
Li(dA,) when « is an nonnegative integer.

1. INTRODUCTION

1.1. Background. Let D denote the unit disc in the complex plane C and let ¢ be a holomorphic
function on D with ¢(ID) C . For every function f analytic in D, the composition operator C,, is
a linear operator defined by C,(f) = f o .

In the last decades, lots of properties about composition operators on a variety kinds of analytic
function spaces has been investigated widely. [1, 5, 8, 10] are good references for composition
operators. One of the classical spaces is the Hardy space H?, which is the space consisting of the
analytic functions f on DD such that

2 o iy 240
1B = swp [ Ifre)PS < o0

0<r<1Jo Y
Another one is the Bergman space L2(DD), which is the space consisting of those holomorphic
functions f on D satisfying

\m@m—éum%ma<w

where
1
dA(z) = = dzdy = _ drdf
T T

is the normalized area measure on ID. It is well known that C, is always bounded on both H 2 and
L2(D).

In [7], J. Shapiro computes the essential norm of C, acting on 2 in terms of the Nevanlinna
counting function of ¢. Recall that the essential norm of a bounded operator 7" on a Banach space
X, denoted by ||7'||,x, is the distance from 7" to the subspace of all compact operators acting on
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X in the operator norm. Also, for a self-map ¢ on D, the Nevanlinna counting function N, is
defined on D\ {¢(0)} and given by

1
N@(w) = Z IOg m7
o(z)=w

where multiplicities are counted and N, (w) is taken to be zero if w is not in the range of . The
fundamental work of Shapiro ([7, Theorem 2.3]) asserts that

Ny (w)
IColle.pr2 = limsup — 22—,
ohe w1 log(1/|w])
Later, in [4], D. Luecking and K. Zhu proved that for 0 < p < oo, U, is in the Schatten class S,

of H? if and only if
Ny(z) P/
/ £ dA(z) < o0,
D logm

where dA(z) = dA(z)/(1 — |z|?)? is the M&bius invariant measure on ID.

On the Bergman space L2(ID), P. Poggi-Corradini verified in [6] that

' No,2(w)
Colle.r2my = limsup ——2"———
1Clle. 2 ) w1 (log(1/[wl))?

where

2
Noatw) = ¥ (log ) o weD\ (o0,

~ E
p(z)=w
Moreover, it is shown in [4] that for 0 < p < oo, C,, is in the Schatten class S, of L2(D) if and

only if
N,a(2) )

El

1.2. Overview. From the line stated above, we know that the Schatten p-class membership of
composition operators are closely related to the Nevanlinna counting functions. In particular, the
Schatten 1-class S is usually called the trace class, and S, is usually called the Hilbert-Schmidt
class.

For any T' € S of a seperable Hilbert space H, let {ex} be any orthonormal basis of H, the

trace of 7' is given by
oo

tr(T) = Z(Tek, ek)-
k=0
It is known that the sum is independent of the choice of the orthonormal basis. The Hilbert-
Schmidt norm of 7" is defined by
I35 = tx(T*T).

In this paper, we will compute the Hilbert-Schmidt norm of a composition operator on L2 (D).
The following assertion is established:



THE HILBERT-SCHMIDT NORM OF A COMPOSITION OPERATOR ON THE BERGMAN SPACE 3

Theorem 1. For an analytic self-map ¢ of D, let
No(w) =2N,(w) = 3 (1= [)
p(z)=w
be the general counting function of . Then

@

/Df(w(z))g(w(z))dfl(z) = f((0))g((0)) + /Df'(z)g’(Z)Nsa(Z)dA(z)
for f,g € L2(D).
(i) If Cy, is in the Hilbert-Schmidt class of LZ(D ) then

()P 2= i) Ro()2 1 ai)
= L+ [ R )

”CSOH%{S =1+

2. PROOF OF THEOREM 1(I)

Proof of Theorem 1(i). The argument is inspired by [3]. Let f,g € L2?(D), we can use the
Littlewood-Paley formula ([2, page 228]) to deduce that

| 16 aA(2)
-/ (W [ et ))((re@@))de) rar
:/012<f(<p 9(2(0) + /f rw)\go(rw)\QlongA( )) rdr
= ((0))g((0)) / </f (rw))g' (o(rw))|¢ (rw IQIOngA( )) r3dr.

Letting v = rw, then

/ f (o (rw) g (era)|¢ <rw>\21ongA< w)
[ ()Tl (] log 7 dAGw)

T2 Jul

27r
— / f((se™)) g (p(set))|¢’ (se)|? log " s dsdt.
o s

The Fubini’s theorem 1mphes that
1
/ </ f(o(rw)) g (p(rw))|¢’ (rw)|? log Tl dA(w)> r3dr
w
2m r
/ / / f((se)) g (p(seit))|¢ (s log — s dsrdrdt
s

2m 1
/ / f(o(se)) g (p(seit))|¢ (se)? / rlog " drsdsadt.
s s
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Using the identity

4

2m 1
/ / f(p(se™)) g (p(seit))| ¢’ (et )]2/ rloggdrsdsdt

s

/2”/f (s Tl (s (o~ 41 = 7)) sds
/2”/f (s Tl (s (105 3 = (1= ) sasat

! 1.1 1
/ TlOngT:*IOg*—*(l—SQ), (1)
s S 2 S

we have

2 o ~lwl? w
/f el ) (1og s — (1 - uf) ) aAw
- [ FETEIN )4,
The proof is completed. U

Let ¢(z) = z be the identity map of D in Theorem 4 (i), then we have the following corollary.
Corollary 2. If f € L2(D), then

1130y = 1O + [ 17 (10 g = (1= o)) aa(a),

3. THE HILBERT-SCHMIDT NORM

Proof of Theorem 1(ii). Tt is well known that an orthonormal basis for L2(ID) is

en(z) =vn+12", n>0.
Thus
IC, |15 = tr(CyCy)

(CoCper, ex)
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Now we can use Theorem 1(i) to deduce that

ICollts =1+ 3 (k +1) (!w(o)\% - [ k?\zﬁ“wz)m(z))

k=1

(1~ [¢(0) b &
\90(0)|2(2— Iso / 2+4IZ! )
=1+ N, ( 7 dA(2).
(1= le( —|2*)*
This completes the proof. ([l

4. COMPOSITION OPERATORS ON THE WEIGHTED BERGMAN SPACE

For o > —1, the weighted Bergman space L2(dA,,) is the space of analytic functions in I
satisfying
1 3aay = [ 17 Pdda(e) < o

where dA,(z) = (a + 1)(1 — |2|?)*dA(z). In some sense, H? can be treated as L2(dA_;). We
have the following corollary.

Corollary 3. If C, is in the Hilbert-Schmidt class of H 2 then

%) 0)‘2 1+ |Z’2
” AOHHS’H? 1 | (0)‘2 (1 |Z|2)3 <P( ) ( )

Proof. An orthonormal basis for H2 can be given as
en(2)=2", n>0.

Thus

ol =143 <|90 o+ [ n2|z|2”—2N¢<z>dA<z>>

n=1
_ (0)2 n222" 2
SO /Z 27 No(2)dA(2)
IO b
Vo e YA

O

When « is an arbitrary nonnegative integer, we can extend the results of Theorem 1 to the
weighted Bergman space case. In the rest of this section, we discuss the cases when az = 1 and 2.
Theorem 4. For an analytic self-map o of D, let

- 1
Np(w) =2Np(w) = 5 > (3 —4lzP+ 2"
p(z)=w

be the general 1-order counting function of . Then
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@)
[ oA = Fe0)5T0) + [ FETENY AR
for f,g € L3(dAy).
(i) If Cy, is in the Hilbert-Schmidt class of L2(d A1), then

3 —3|¢(0)|% + |p(0)[* 33|z +1
1C s paqany = 1+ 12O <(1_|’Z<(0>)‘2)3 PO / ((1\_ \‘z’ ) §2)AC).

Proof. (i). The argument is parallel to the proof of Theorem 1. It is worth to notice that equation
(1) should be substituted by

1 r
/ r(1— r2)log;dr =

1 1 1
log = — — (3 — 452
4ogs 16(3 s +s)

(ii). Let

4+ 1)(n+2) ,
en(2) = 4

Then, according to [10, page 78], {e,,} forms an orthonormal basis for L2(dA;). Thus

9 (n+1)(n+2) n+2 (n+1)(n+2) n—i—2
1€, 22(aa0) =
L3(dAy)

1y ”“)2(””) [ eoreranc)

n=1

iy e (Is0(0>\2” + [N

n=1

n > 0.

(023 — 30 + [o(0) (D0 +2) 5 s
=1 EEOBE /Z 2 2 NG (2)4A(2)

L OPE=3e0)F + O | [ 3R +1)
=1t EPEORE + T NG

Corollary 5. If f € L2(dA;), then

1 1
11224, = O + /D F(2)? (1og|z|2 S CRTIE |zr4>) dA(2).

Theorem 6. For an analytic self-map o of D, let

~ 1
N2(w) = 2N, (w) — S > (11— 18z + 9]z[* - 2/2(%)

w(z)=w

be the general 2-order counting function of . Then
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(1)
/ ()92 dAa(z) = F(of / 7z (2)dA(2)

for f.g € Li(dAs).
(i) If C,, is in the Hilbert-Schmidt class of L2(d As), then

2 (2 = lp(0)*)(2 = 2[p(0)]* + |¢(0)[*) / 6(6]2* + 1) oo
= NZ(z)dA(z).
1Cellirs.aann =1+ =0 2a = o F (1= e A
Proof. (i). In this case, the equation (1) should be substituted by
! 11
/s r(1—r?)? loggdr = logg - 5( 1 —18s% + 951 — 2s9).

(ii). Let

1 2 3
e(2) = \/(n+ )(n; n+3) W s
Then {e,,} is an orthonormal basis for L2(dAs). Thus

HCwaHS,Lg(dAZ) =1+ Z o+ Lin g 2 +3) / ¢(2)"p(2)"dAz(z)

D

n=1

=14 i (TL+ 1)(”;-2)(71-1- 3) <¢(0)|2n + /ﬂ)n2|2|2n_2N£(Z)dA(z)>

L(O)*(2 = 9 (0)[*)(2 — 2|p(0)[* + [¢(0)[)
(1 —[e(0)*)*

+/DZ (m+ 1)( ”*2)(7”3) n2)z[n 22 (2)d A(2)

n=1

n=1

=1+

| JORE [0~ 2p(0) +pO)) | [ 6612 +1) ¢
1~ e O)P) + T NG

Corollary 7. If f € L2(dAy), then

1
1712 (@ap) = 1FO) + / £z |2(log||2—6(11—18\z|2+9|zr4—2|z|6>)dA<z>.

Remark 8. We can use Maple to compute that

—

r(1—7r?)"log Dar = —%7’43Fg([2, 2, —n + 1]; [3, 3];72)
s

72

+ = ((@1og = = 1), (1L, —nls[2]:?)
where | Fy([a, -+ ,am]; [B1, -+, Bi]; x) is the hypergeometric function given by

= 2 T ()
Filar, - anl: B, Blia) = S — =110k
o Fi([on J; [B1 Bil; ) kz::o EVARESY
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and (), is the Pochhammer symbol defined by

I'(a+ k)
It is easy to check that if oj is a negative integer for some j € {1,--- ,m}, then the hypergeometric
function | Fi([a1,- -, am]; [B1, -+, Bi]; x) is a polynomial. In particular, for n > 2 is a positive

integer, ,F»([2,2,—n + 1];[3,3];2z) and ,F1([1, —n]; [2]; ) are polynomials. Thus, if n is a
positive integer with n > 2,

1 r
/ r(1 —7’2)” log — dr
s s

n 1 1
= B[22, —n 4+ 1 3,3 1) + 4 (2log S — 1) Fi([1, —nli 2] 1)
n
16

The corresponding result similar to Theorem 1 can be obtained.

2

+ 543F2([27 2,—n+ 1]5 [37 3]5 32) + SZ 2F1([17 _n]5 [2]; 32)'

5. THE HILBERT-SCHMIDT NORM OF C:;

It is well known that 7" is in the Schatten-p class S, on a Hilbert space H if and only if 7™ is in
Sp. Moreover, ||T%|s, = ||T|s,-

According to Theorem 6.4 in [10], the trace of a positive operator 7' on L2(dA,) can be ex-
pressed as

tr(T) = (o + 1) / T(2)dA(z),

D
where

T(2) = (Ths, k2)r2(aa,), 2 €D
is the Berezin transform of 7" and
(1 _ |Z|2)(2+a)/2

(1 _ w2)2+oz

k.(w) =

is the normalized reproducing kernel of L2(dA,). The reproducing kernel of L2(dA,) is given
by
1
Ka(w,Z):W, Z,U)ED.
Obviously,

kr(w) = Ko(w, 2)/v/ Koz, 2).

For the composition operator C, on L2(dA,), it is easy to check that
Cola(w, 2) = Ka(w,¢(2))
and

CT3) = legkl? = (5 s )
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Combine these facts together, we have

1—|Z|2 2+Ot
o2 e (CLCT) = (a4 1 / — ) A,
ch”HS,Lg(dAa) r(C@CQp) (a+ ) D 1—|§0(Z)|2 (Z)

In particular, if we let a = 0, 1, 2 respectively, we have

Corollary 9. Let ¢ an analytic self-map of D. Then

(1

R Vg [POPC OR[Nl

/D<1—|so<z>|2> W& =1 T oRe . -t 4G
(i1)

RV Ly ORE - 3O +e0)]Y)
2/[@(1—@@12) A=) =1+ 0= [p(O)2)?
z|? -
+ /D WN;(z)dA(z).

(iif)

L= l2 Y o =1 o @122 — 20e(0)P + [ (0)1")
s [ (pte) e =+ e

+/]D) (1—|z[2)8 Ng(2)dA(z).
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