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Abstract Broersma and Veldman proved that every 2-connected claw-free and P6-free graph is hamil-

tonian. Chen et al. extended this result by proving every 2-connected claw-heavy and P6-free graph

is hamiltonian. On the other hand, Li et al. constructed a class of 2-connected graphs which are

claw-heavy and P6-o-heavy but not hamiltonian. In this paper we further give some Ore-type degree

conditions restricting to induced copies of P6 of a 2-connected claw-heavy graph that can guarantee

the graph to be hamiltonian. This improves some previous related results.
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1 Introduction

Throughout this paper, the graphs considered are undirected, finite and simple. For terminology
and notation not defined here, we refer the reader to Bondy and Murty [3].

Let G be a graph. For a given graph H, we say that G is H-free if G contains no induced
subgraph isomorphic to H. In this case, we call H a forbidden subgraph of G. Note that if H1

is an induced subgraph of H2, then an H1-free graph is also H2-free.
The bipartite graph K1,3 is called a claw. Instead of K1,3-free, we say that a graph is

claw-free if it does not contain a copy of K1,3 as an induced subgraph. As usual, we use Pi to
denote the path of order i. Some other special graphs used in this paper are shown in Figure 1.
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Figure 1 Graphs Z1, Z2, B, N and W

Forbidden subgraph conditions for hamiltonicity have been studied since the early 1980s,
but till 1991, Bedrossian [1] firstly gave a characterization of all pairs of forbidden subgraphs
for hamiltonian properties of graphs. First we note that a connected P3-free graph is complete,
and clearly is hamiltonian if it has at least three vertices. In fact, it is not difficult to see that
P3 is the only connected graph H such that every 2-connected H-free graph is hamiltonian. So
the following result of Bedrossian deals with pairs of forbidden subgraphs, excluding P3.

Theorem 1.1 (Bedrossian [1]) Let R, S be connected graphs of order at least 3 with R, S 6= P3

and let G be a 2-connected graph. Then G being R-free and S-free implies G is hamiltonian if
and only if (up to symmetry) R = K1,3 and S = P4, P5, P6, C3, Z1, Z2, B, N or W .

The above forbidden subgraph conditions for hamiltonicity are sometimes referred to as
structural conditions. There is another type of conditions with respect to hamiltonian properties
of graphs, so-called numerical conditions, of which degree conditions may be the most well-
known.

Let G be a graph. For a vertex v ∈ V (G) and a subgraph H of G, we use NH(v) to denote
the set, and dH(v) the number, of neighbors of v in H, respectively. We call dH(v) the degree
of v in H. The distance between two vertices x, y ∈ V (H) in H, denoted by dH(x, y), is the
length of a shortest path between x and y in H. When no confusion occurs, we will denote
NG(v), dG(v) and dG(x, y) by N(v), d(v) and d(x, y), respectively.

The followings are two well-known results concerning the degree conditions for hamiltonicity
of graphs.

Theorem 1.2 (Dirac [9]) Let G be a graph on n ≥ 3 vertices. If d(v) ≥ n/2 for every
v ∈ V (G), then G is hamiltonian.

Theorem 1.3 (Ore [13]) Let G be a graph on n ≥ 3 vertices. If d(u) + d(v) ≥ n for every
pair of nonadjacent vertices u, v ∈ V (G), then G is hamiltonian.

It is natural to relax the forbidden subgraph conditions to ones in which some of the forbid-
den subgraphs above are allowed, but some degree conditions are imposed on the subgraphs.
Broersma et al. [4] introduced the class of 1-heavy (2-heavy) graphs by restricting Dirac’s
condition to induced claws of a graph. Instead of Broersma et al.’s restriction, Čada [8] put
Ore’s condition to induced claws of a graph, and call it an o-heavy graph (In this paper, we
will call it a claw-o-heavy graph for convenience). Li et al. [10] extended Čada’s concept of
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claw-o-heavy graphs to a more general one.
Let G be a graph on n vertices. Following [10], for a given graph H, G is called H-o-heavy

(the authors used the notation ‘H-heavy’ in [10]), if every induced copy of H in G has two
nonadjacent vertices with degree sum in G at least n. Note that an H-free graph is trivially H-
o-heavy, and if H1 is an induced subgraph of H2, then an H1-o-heavy graph is also H2-o-heavy.
Following [11], we say that a graph G is H-f -heavy if for every induced copy G′ of H in G, and
every two vertices u, v ∈ V (G′) with dG′(u, v) = 2, there holds max{d(u), d(v)} ≥ |V (G)|/2.
Note that every claw-f -heavy graph is also claw-o-heavy.

Li et al. [10] completely characterized pairs of Ore-type heavy subgraphs for a 2-connected
graph to be hamiltonian, which extends Theorem 1.1. The main result in [10] is given as follows.

Theorem 1.4 (Li et al. [10]) Let R, S be connected graphs of order at least 3 with R, S 6=
P3 and let G be a 2-connected graph. Then G being R-o-heavy and S-o-heavy implies G is
hamiltonian if and only if (up to symmetry) R = K1,3 and S = P4, P5, C3, Z1, Z2, B, N or W .

It is easy to see that P6 is the only forbidden subgraph S appearing in Theorem 1.1 but
missing here. Li et al. [10] constructed a class of 2-connected graphs which are claw-o-heavy
and P6-o-heavy but not hamiltonian.

In fact, earlier than Bedrossian [2], Broersma and Veldman [5] proved that every 2-connected
claw-free and P6-free graph is hamiltonian. Chen et al. [7] furthermore extended Broersma and
Veldman’s result as follows.

Theorem 1.5 (Chen et al. [7]) Every 2-connected claw-o-heavy and P6-free graph is hamil-
tonian.

So one may ask the question: Which degree conditions can be used to restrict to all induced
copies of P6 in a 2-connected claw-o-heavy graph to make it hamiltonian?

A related result is as follows.

Theorem 1.6 (Ning and Zhang [11]) Every 2-connected claw-o-heavy and P6-f-heavy graph
is hamiltonian.

One may further ask: Can we still put Ore’s condition (or Dirac’s condition) to induced
copies of P6 in a graph but with some additional restrictions to guarantee that it is hamiltonian?

Our answers are the following two results. Note that the first theorem weakens the condition
of Theorem 1.6.

Theorem 1.7 Let G be a 2-connected claw-o-heavy graph of order at least n. If for every
induced copy of P6 : v1v2 · · · v6 in G, d(vi) + d(vj) ≥ n for some i ∈ {1, 2, 3} and j ∈ {4, 5, 6},
then G is hamiltonian.

Theorem 1.8 Let G be a 2-connected claw-o-heavy graph of order at least n. If for every
induced copy of P6 : v1v2 · · · v6 in G, max{d(v1), d(v6)} ≥ n/2, then G is hamiltonian.

Now we will go further on this direction. Before giving our main results, we will first
introduce some necessary terminology and notation.

Let γ be a graph (possibly with loops) with vertex set I = {1, 2, 3, 4, 5, 6} . We say that a
graph G is P6-γ-heavy if, for every induced copy of P6 : v1v2v3v4v5v6 in G, there exist i, j ∈ I

(possibly i = j) such that ij ∈ E(γ) and d(vi) + d(vj) ≥ n, where n = |V (G)|. Note that if γ′

is a (spanning) subgraph of γ, then a P6-γ′-heavy graph is also P6-γ-heavy.
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For two graphs γ and γ′ on I such that ij ∈ E(γ) if and only if (7− i)(7− j) ∈ E(γ′), we
say γ is symmetrical to γ′. Note that if γ and γ′ are symmetrical to each other, then a graph
G is P6-γ-heavy if and only if G is P6-γ′-heavy. If γ is symmetrical to itself, then we say γ is
symmetrical.

Let ε be the empty graph on I. Then a graph G is P6-free if and only if it is P6-ε-heavy.
Let σ be the graph on I with edge set E(σ) = {ij : |j − i| ≥ 2, i, j ∈ I}. Then a graph is P6-o-
heavy means it is P6-σ-heavy. Let γ1 be the graph on I with edge set {ij : i = 1, 2, 3 and j =
4, 5, 6}. Then Theorem 1.7 states that every 2-connected claw-o-heavy and P6-γ1-heavy graph
is hamiltonian.

The goal of this paper is to find all symmetrical graphs γ on I such that every 2-connected
claw-o-heavy and P6-γ-heavy graph is hamiltonian.

We describe the graphs γ1, γ2, γ3 on I by giving their edge sets (also see Figure 2):

E(γ1) = {14, 15, 16, 24, 25, 26, 34, 35, 36};
E(γ2) = {11, 12, 14, 15, 16, 25, 26, 36, 56, 66};
E(γ3) = {13, 14, 15, 25, 26, 36, 46}.
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N(x) is a heavy pair of G}. Let Go
x be the graph with vertex set V (Go

x) = V (G) and edge set
E(Go

x) = E(G)∪Bo
x(G). If Go

x[N(x)] consists of two disjoint cliques C1 and C2, then we call a
vertex z ∈ V (G)\({x} ∪N(x)) a join vertex of x in G if {x, z} is a heavy pair in G, and there
are two vertices y1 ∈ C1 and y2 ∈ C2 such that zy1, zy2 ∈ E(G). The vertex x is an o-eligible
vertex of G, if N(x) is not a clique and, Go

x[N(x)] is connected or, Go
x[N(x)] consists of two

disjoint cliques and there is some join vertex of x.

Let G be a claw-o-heavy graph. The closure of G, denoted by cl(G), is the graph such that
there is a sequence of graphs G1, G2, . . . , Gt and a sequence of vertices x1, x2, . . . , xt−1 such
that:
(1) G = G1, Gt = cl(G);
(2) for i = 1, 2, . . . , t− 1, Gi+1 is the local completion of Gi at some o-eligible vertex xi of Gi;
and
(3) there is no o-eligible vertex in Gt.

Theorem 2.1 (Čada [8]) Let G be a claw-o-heavy graph. Then
(1) the closure cl(G) is uniquely determined;
(2) there is a C3-free graph H such that cl(G) is the line graph of H; and
(3) G is hamiltonian if and only if cl(G) is.

Note that every line graph is claw-free (see [2]). The above theorem implies that cl(G) is a
claw-free graph.

Now we will give some terminology and notation firstly introduced in [12] by the authors.
Let G be a claw-o-heavy graph and C be a maximal clique of cl(G). We call G[C] a region of
G. For a vertex v of G, we call v an interior vertex if it is contained in only one region, and a
frontier vertex if it is contained in two distinct regions. For two vertices u, v ∈ V (G), we say
u and v are associated if u, v are contained in a common region of G; otherwise u and v are
dissociated. We denote by IR the set of interior vertices of a region R, and by FR the set of
frontier vertices of R.

From [8], it is not difficult to get the following

Lemma 2.2 Let G be a claw-o-heavy graph. Then
(1) every vertex is either an interior vertex of a region or a frontier vertex of two regions;
(2) every two regions are either disjoint or have only one common vertex; and
(3) every pair of dissociated vertices have degree sum in cl(G) (and in G) less than |V (G)|.

We also need the following tools developed in [12].

Lemma 2.3 Let G be a claw-o-heavy graph and R be a region of G. Then
(1) for any two vertices u, v ∈ V (R), there is an induced path of G from u to v such that every
internal vertex of the path is in IR; and
(2) for two vertices u, v in R, if uv /∈ E(G) and {u, v} is a heavy pair of G, then u, v have two
common neighbors in IR.

For two associated vertices u, v, by Lemma 2.3 (1), we use Π[u, v] to denote a shortest path
between u and v of G such that every internal vertex of it is an interior vertex of the region
containing u, v. Assume that u, v are two vertices in the region R and {x, y} be a heavy pair of
G contained in Π[u, v]. By Lemma 2.3 (2), x, y has two common neighbors in IR, implying that
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x, y have distance at most 2 in Π[u, v]. So we conclude that any pair of vertices with distance at
least 3 in Π[u, v] is not a heavy pair. Let P = v1v2 · · · vp be an induced path in cl(G) (p ≥ 3).
Then all the vertices vi (2 ≤ i ≤ p − 1) is a frontier vertices, common to the two regions
containing {vi−1, vi} and {vi, vi+1}, respectively. Since P is an induced path, Π[vi, vi+1] and
Π[vj , vj+1] are internally disjoint for i 6= j. So the path P ′ = Π[v1, v2]Π[v2, v3] · · ·Π[vp−1, vp]
is an induced path of G.

Following [6], we define P to be the class of graphs obtained by taking two vertex-disjoint
triangles a1a2a3a1, b1b2b3b1 and by joining every pair of vertices {ai, bi} by a path Pki

:
aic

1
i c

2
i · · · cki−2

i bi for ki ≥ 3 or by a triangle aibici. We denote the graphs in P by Pxi,x2,x3 ,
where xi = ki if ai, bi are joined by a path Pki

, and xi = T if ai, bi are joined by a triangle.
The following theorem plays the central role in our proof.

Theorem 2.4 (Brousek [6]) Every non-hamiltonian 2-connected claw-free graph contains an
induced subgraph H ∈ P.

3 Proof of the ‘if ’ part of Theorem 1.9

Let G be a claw-o-heavy non-hamiltonian graph of order n. For each γk, k = 1, 2, 3, we
will show that there exists an induced P6 : v1v2 · · · v6 such that for every edge ij ∈ E(γk),
d(vi) + d(vj) < n. For convenience, we call such an induced P6 a bad P6 to γk in the following.

Let G′ = cl(G). By Theorem 2.1, G′ is claw-free and non-hamiltonian. By Theorem 2.4, let
H ⊆ G′ be an induced copy of some graph in P. We denote the vertices of H as in Section 2.
If xi = ki, then let a′i be the neighbor of ai on Π[ai, c

1
i ], b′i be the neighbor of bi on Π[bi, c

ki−2
i ],

and let Πi = Π[ai, c
1
i ]c

1
i Π[c1

i , c
2
i ]c

2
i · · · cki−2

i Π[cki−2
i , bi]. If xi = T , then let a′i be the neighbor

of ai on Π[ai, ci], b′i be the neighbor of bi on Π[bi, ci], and let Πi = Π[ai, bi]. For 1 ≤ i, j ≤ 3,
let Πa

ij = Π[ai, aj ] and Πb
ij = Π[bi, bj ]. Let a′ij (b′ij) be the neighbor of ai (bi) on Πa

ij (Πb
ij).

For convenient, we take Πa
ij (Πb

ij) and Πa
ji (Πb

ji) as the same path (with opposite direction).
Set

S =
⋃

1≤i≤3

({a′i, b′i} ∪ V (Πi)) ∪
⋃

1≤i<j≤3

(
V (Πa

ij) ∪ V (Πb
ij)

)
.

For a path P with the origin x, we use P |xi (or briefly, P |i) to denote the subpath of P

consisting of the first i edges of P . If P = v1v2 · · · vp, then we denote
←−
P = vpvp−1 . . . v1.

Claim 1 There is a heavy vertex of G in S\{ai, bi : 1 ≤ i ≤ 3}, or there are two heavy vertices
in {ai, bi : 1 ≤ i ≤ 3}.
Proof Up to symmetry, suppose that a1 is the vertex with the largest degree among all vertices
in {ai, bi : 1 ≤ i ≤ 3}. If G has no heavy vertex in S or has the only one heavy vertex a1 in S,
then P = b′1b1Π

b
12b2

←−
Π2a2Π

a
23a3a

′
3 is an induced path of order at least 6 and each vertex of P is

not heavy in G. Thus P |5 is a bad P6 to every γk.
Note that any two heavy vertices are associated (see [8]). Up to symmetry, we have the

following two cases:

Case 1 There is a heavy vertex in {a′1, b′1} ∪ (V (Π1)\{a1, b1}), or both a1 and b1 are heavy.

Suppose that there is a heavy vertex of G contained in S\({a′1, b′1} ∪ V (Π1)), then two
heavy vertices form a dissociated pair, a contradiction. Thus every heavy vertex of G contained
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in S is in {a′1, b′1} ∪ V (Π1). Also clearly either
⋃

1≤i<j≤3 V (Πa
ij) or

⋃
1≤i<j≤3 V (Πb

ij) contains
no heavy pair of G. We suppose without loss of generality that

⋃
1≤i<j≤3 V (Πa

ij) contains no

heavy pair of G. Let Q1 = a′1a1Π
a
12a2Π2b2Π

b
23b3b

′
3. Then

←−
Q1|5 is a bad P6 to γ1.

Suppose now that Π1 = a1x1x2 · · ·xp−1b1, where p is the length of Π1.

Case 1.1 p = 1, i.e., Π1 = a1b1.

Let Q2 = (Πa
12a2a

′
2)|2 and Q′2 = (Πb

13b3b
′
3)|2. Then

←−
Q2a1b1Q

′
2 is a bad P6 to γ2, γ3.

Case 1.2 p = 2, i.e., Π1 = a1x1b1.

Let Q2 = a′13a1x1b1Π
b
12b2b

′
2. Then Q2|5 is a bad P6 to γ2, γ3.

Case 1.3 p = 3, i.e., Π1 = a1x1x2b1.

Note that the pair {a1, b1} is light by Lemma 2.3 (2). Suppose first that
⋃

1≤i<j≤3 V (Πb
ij)

contains a heavy pair of G, say {b1, x}. Then b1 is heavy, a1 is light, and {a1, xi} is light
for i = 1, 2 (for otherwise {a1, b1} or {xi, x} is a heavy pair, a contradiction). Let Q2 =
a1x1x2b1Π

b
12b2b

′
2. Then Q2|5 is a bad P6 to γ2. Let Q3 = x1a1Π

a
12a2Π2b2 Πb

23b3b
′
3. Then Q3|5

is a bad P6 to γ3.
Now we suppose that

⋃
1≤i<j≤3 V (Πb

ij) contains no heavy pairs of G. Recalling that⋃
1≤i<j≤3 V (Πa

ij) contains no heavy pairs of G, Q2 = a′12a1x1x2b1b
′
13 is a bad P6 to γ2, γ3.

Case 1.4 p ≥ 4.

If both a1 and x1 are light, then Q2 = (x1a1Π
a
12a2Π2b2Π

b
23b3b

′
3)|5 contains no heavy vertices

of G, and hence is bad to γ2, γ3. So we assume that either a1 or x1 is heavy, and similarly,
either b1 or xp−1 is heavy. By Lemma 2.3 (2), the only possible case is that p = 4, x1, x3 are
heavy and a1, b1 are light.

Note that either {a1, x1} is light or {b1, x3} is light. we assume without loss of generality
that {a1, x1} is light. Thus Q2 = a1x1x2x3b1b

′
12 is bad to γ2, γ3.

Case 2 There is a heavy vertex in
⋃

1≤i<j≤3(V (Πa
ij)\{ai, aj}), or two of {a1, a2, a3} are heavy.

Clearly every heavy vertex of G is in
⋃

1≤i<j≤3 V (Πa
ij), and at most one of {a′i, b′i} ∪ V (Πi)

contains heavy pairs of G. We assume without loss of generality that both {a′1, b′1} ∪ V (Π1)
and {a′2, b′2} ∪ V (Π2) contain no heavy pairs of G.

Let Q1 = b′2b2

←−−
Πb

12b1
←−
Π1a1Π

a
13a3a

′
3, then Q1|5 is a bad P6 to γ1.

Suppose now that Πa
12 = a1x1x2 · · ·xp−1a2, where p is the length of Πa

12.

Case 2.1 p = 1, i.e., Πa
12 = a1a2.

Let Q2 = a′1a1a2Π2b2Π
b
23b3b

′
3. Then Q2|5 is a bad P6 to γ2, γ3.

Case 2.2 p = 2, i.e., Πa
12 = a1x1a2.

Let Q2 = a′2a2x1a1Π1b1b
′
13. Then Q2|5 is a bad P6 to γ2, γ3.

Case 2.3 p = 3, i.e., Πa
12 = a1x1x2a2.

Let Q2 = a′1a1x1x2a2a
′
2. Then Q2 is a bad P6 to γ2, γ3.

Case 2.4 p ≥ 4.

Let Q3 = x1a1Π1b1Π
b
12b2

←−
Π2a2xp−1. Then Q3|5 is a bad P6 to γ3.

If one of a1, a2 is heavy in G, say a1 is heavy, then xi (i ≥ 3) and a2 are light. Thus
Q2 = (a′1a1Π

a
12)|5 is a bad P6 to γ2. So we assume that a1, a2 are light.
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Recall that for each two vertices with distance at least 3 in Πa
12, at least one of them is

light. This implies that there exists an integer i, 2 ≤ i ≤ p − 2, such that every vertex in
V (Πa

12)\{xi−1, xi, xi+1} is light. Note that either {xi−2, xi−1} or {xi+1, xi+2} is light (we set
x0 = a1 and xp = a2). We assume without loss of generality that {xi−2, xi−1} is light. Then
Q2 = (xi−2xi−1 · · ·xp−1a2a

′
2)|5 is a bad P6 to γ2.

The proof is complete.

4 Proof of the ‘only if ’ part of Theorem 1.9

Let γ be a symmetrical graph on I such that every 2-connected claw-o-heavy and P6-γ-heavy
graph is hamiltonian. We will prove that γ is a subgraph of γ1, γ2 or γ3. Assume not. Then
for every k = 1, 2, 3, E(γ)\E(γk) 6= ∅. Note that the graphs in Figure 3 are claw-o-heavy and
non-hamiltonian. Hence they are not P6-γ-heavy. Let P = u1u2 · · ·u6 and Q = v1v2 · · · v6 be
two induced copies of P6 in a graph G of order n. We say P and Q are essentially same if for
every i, j ∈ [1, 6], d(ui) + d(uj) ≥ n if and only if d(vi) + d(vj) ≥ n.

Claim 2 None of {22, 23, 24, 33, 34, 35, 44, 45, 55} is in E(γ).

Proof Recall that E(γ)\E(γ1) 6= ∅, i.e., one of {11, 12, 13, 22, 23, 33, 44, 45, 46, 55, 56, 66} is in
E(γ). Since γ is symmetrical, one of {11, 12, 13, 22, 23, 33} is in E(γ) and one of {44, 45, 46, 55, 56, 66}
is in E(γ).

Suppose that one of {22, 23, 24, 33, 34, 35, 44, 45, 55} is in E(γ). Since γ is symmetrical, one
of {22, 23, 24, 33, 34, 44} is in E(γ) and one of {33, 34, 35, 44, 45, 55} is in E(γ). Consider the
graph G1. Let P = v1v2 · · · v6 be an induced path of G1, and let ij be an edge in E(γ) such
that

ij ∈





{11, 12, 13, 22, 23, 33}, if P = x′′wy′′yzz′;

{22, 23, 24, 33, 34, 44}, if P = x′x′′wy′′yz;

{33, 34, 35, 44, 45, 55}, if P = xyy′′wz′′z′;

{44, 45, 46, 55, 56, 66}, if P = x′xyy′′wz′′.

Then d(vi) + d(vj) ≥ |V (G1)|. Note that G1 has only the four essentially different induced
copies of P6. This implies that G1 is P6-γ-heavy, a contradiction.

Let E1 = {22, 23, 24, 33, 34, 35, 44, 45, 55}. Then for k = 1, 2, 3, E(γ)\(E(γk) ∪ E1) 6= ∅.
Note that E(γ2)\E1 = {13, 46}. Since γ is symmetrical, we can see that 13, 46 ∈ E(γ).

Claim 3 None of {11, 16, 66} is in E(γ).

Proof Suppose not. Since γ is symmetrical, we can see that one of {11, 16} is in E(γ) and
one of {16, 66} is in E(γ).
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Figure 3 Three classes of claw-o-heavy non-hamiltonian graphs

Consider the graph G2. Let P = v1v2 · · · v6 be an induced path of G3, and let ij be an edge
in E(γ) such that

ij =





13, if P = wx1x
′′xyy′;

11 or 16, if P = x1x
′′xyy′′y1;

46, if P = x′xyy′′y1w;

46, if P = xyy′′y1wz1;

46, if P = x′x′′x1wy1y
′′;

13, if P = x′′x1wy1y
′′y′;

13, if P = x1wy1y
′′yz.
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Then d(vi) + d(vj) ≥ |V (G2)|. Note that G2 has only the seven essentially different induced
copies of P6. This implies that G2 is P6-γ-heavy, a contradiction.

Let E2 = E1∪{11, 16, 66}. By Claims 2 and 3, E(γ)\(E(γ3)∪E2) 6= ∅. Note that E(γ3)\E2 =
{12, 56}. Since γ is symmetrical, we can see that 12, 56 ∈ E(γ).

Let γ′ be a graph on I with edge set E(γ′) = {12, 13, 46, 56}. Then γ′ is a subgraph of
γ. Similarly as in Claim 3, one can check that G3 is P6-γ′-heavy, and then is P6-γ-heavy, a
contradiction. This completes the proof of the ‘only if’ part of Theorem 1.9.
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[10] Li, B., Ryjáček, Z., Wang, Y., Zhang, S.: Pairs of heavy subgraphs for Hamiltonicity of 2-connected graphs,

SIAM J. Discrete Math. 26, 1088–1103 (2012)

[11] Ning, B., Zhang, S.: Ore- and Fan-type heavy subgraphs for Hamiltonicity of 2-connected graphs, Discrete

Math. 313, 1715–1725 (2013)

[12] Ning, B., Zhang, S., Li, B.: Solution to a problem on hamiltonicity of graphs under Ore- and Fan-type

heavy subgraph conditions, Graphs Combin., 32, 1125-1135 (2016)

[13] Ore, O.: Note on Hamilton circuit, Amer. Math. Monthly 67, 55 (1960)
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