学术活动

Compactness and non-compactness theorems of the fourth- and sixth-order constant Q-curvature problems

2025-10-29 09:45

报告人: 巩刘伟

报告人单位: 香港中文大学

时间: 2025年10月29日(星期三)上午10:30-11:30

地点: 北洋园校区58楼414

开始时间: 2025年10月29日(星期三)上午10:30-11:30

报告人简介: 博士

年:

日月:

非线性泛函分析与偏微分方程学术报告

We will discuss some results about compactness and non-compactness in conformal geometry. Firstly, we prove that the solution set of the fourth-order constant $Q$-curvature problem is $C^4$-compact in dimensions $5 \le n \le 24$. For $n \ge 25$, an example of an $L^{\infty}$-unbounded sequence of solutions has been known for over a decade (Wei and Zhao). Secondly, we demonstrate that the solution set of the sixth-order constant $Q$-curvature problem is $C^6$-compact in dimensions $7 \le n \le 26$, whereas a blow-up example exists for $n \ge 27$.


Contact us

Add:Building 58, The School of Mathematics, Tianjin University Beiyangyuan Campus,

        No. 135, Ya Guan Road, Jinnan District, Tianjin, PRC 

Tel:022-60787827   Mail:math@tju.edu.cn